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Abstract 
The use of genetic markers as instrumental variables (IV) is receiving increasing attention from 
epidemiologists, economists, statisticians and social scientists. This paper examines the conditions 
that need to be met for genetic variants to be used as instruments. Although these have been 
discussed in the epidemiological, medical and statistical literature, they have not been well-defined 
in the economics and social science literature. The increasing availability of biomedical data 
however, makes understanding of these conditions crucial to the successful use of genotypes as 
instruments for modifiable risk factors. We combine the econometric IV literature with that from 
genetic epidemiology using a potential outcomes framework and review the IV conditions in the 
context of a social science application, examining the effect of child fat mass on academic 
performance.  
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1.  Introduction 

Many studies in the social and epidemiological sciences aim to make causal inferences using 

observational data. This is often problematic, as it is not always clear which of any two associated 

variables is the cause and which is the effect, or whether other unobserved factors affect both 

variables. Randomization of treatment, like that in a Randomized Controlled Trial (RCT), is one way 

to infer causality. However, such experiments are not always possible or feasible. 

To deal with issues of reverse causation and unobserved residual confounding, an approach 

commonly used in the economics and econometrics literature is that of Instrumental Variables (IV). 

This approach introduces a third variable (the instrument) that (partly) determines the level of the 

treatment or exposure of interest, but does not have a direct or indirect effect on the outcome 

variable, other than through its effect on treatment. This instrument can then be exploited to make 

causal inferences about the effect of the variable of interest on different outcomes. 

‘Mendelian randomization’ refers to the random assignment of an individual’s genotype at 

conception (Davey Smith and Ebrahim, 2003). Under certain assumptions that we discuss in detail 

below, observed associations between genetic variants and the outcome of interest cannot be due 

to reverse causation or confounding by behavioural or environmental factors, including those that 

occur in utero. Mendelian randomization can therefore be exploited to make causal inferences 

about the effects of modifiable (non-genetic) risk factors, on different outcomes (see Appendix A for 

a brief guide to the terms used in genetic studies). 

Mendelian randomization is receiving increasing attention from epidemiologists, statisticians, 

economists and social scientists. Statisticians have highlighted some of the implicit statistical 

assumptions commonly made in Mendelian randomization studies (e.g. Didelez and Sheehan, 2007; 

Didelez, Meng, and Sheehan, 2010). Studies in genetic epidemiology on the other hand, emphasize 

the importance of carefully examining the conditions that need to be met for genetic variants to be 

used as instruments (see e.g. Davey Smith and Ebrahim, 2003; Sheehan et al. 2008; Lawlor et al., 

2008). These conditions, however, have not been disseminated widely in the economics and social 

science literature, but the increasing availability of biomedical information in social science datasets 

makes understanding them crucial to the successful use of genotypes as instruments for modifiable 

risk factors. The main contribution of this paper therefore, is to discuss the conditions as defined in 

the epidemiology literature and relate them to the IV assumptions as used in statistics and 

economics. We do this using the potential outcomes framework, building on the work by Imbens 

and Angrist (1994) and Angrist, Imbens and Rubin (1996), which has been of great importance in 

linking the econometric IV literature to the potential outcomes framework. Note, however, that 
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instrumental variables have also been defined using different approaches to causal inference, 

including causal Directed Acyclic Graphs (DAGs) and structural equation models (see Hernàn and 

Robins (2006) for an overview and comparison). 

To clearly communicate best practice in genetic epidemiology to a wider social science audience, we 

review these conditions in the context of an empirical social science application. Specifically, we 

examine whether child adiposity (fat mass) causally affects academic achievement, using recently 

identified genetic variants as instrumental variables for adiposity.  

We select this example for the following reasons. A causal effect of adiposity on academic 

achievement may run via various pathways. For example, obese children are more likely to be 

absent from school, to have sleep disorders, and be treated differently by teachers, parents and 

peers. All of these may affect children’s (learning) environment and educational outcomes. 

However, an observed association between adiposity and academic achievement is not necessarily 

causal. It could, for example, be driven by children changing their eating habits in response to poor 

school results. In addition, one can never be sure that all relevant confounders are accounted for. In 

other words, the association may be driven by other unobserved factors relating to both weight and 

academic outcomes.  

We attempt to deal with this possible reverse causation and unobserved confounding using 

Mendelian randomization, aiming to identify the causal effect of adiposity on academic 

achievement. When using carefully selected genetic variants as instrumental variables for adiposity, 

we find no evidence of a causal relationship between adiposity and academic performance, although 

the parameters are imprecisely estimated. In contrast, the use of ordinary least squares (OLS) leads 

to inferences of an inverse association.  

The next section presents our statistical framework, details the conditions that need to be met for 

genetic variants to be used as instruments, presents our choice of genetic variants and contrasts this 

with the existing literature. Section three introduces the data. The results are presented in section 

four; section five concludes and discusses the implications of our findings.  

 

2.  The Use of Genetic Variants as Instrumental Variables 

2.1  The Potential Outcomes Framework 

Let 𝑆, 𝐴 and 𝑍 denote random variables representing, respectively, the educational outcome, the 

adiposity measure and the (for now: binary) genetic variant as instrumental variable. 𝑍𝑖 = 1 

indicates that individual 𝑖 carries the genetic variant, 𝑍𝑖 = 0 implies that individual 𝑖 does not carry 
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the genetic variant.  

Let 𝐴𝑖(𝑧) be the potential adiposity for individual 𝑖 when the instrument is set to 𝑧. As with all 

potential outcomes, only one of the treatment assignments is ever observed for any one individual. 

Hence, we either observe 𝑖’s adiposity when 𝑖 does not carry the risk allele, 𝐴𝑖(0), or we observe 𝑖’s 

adiposity when 𝑖 does carry the risk allele, 𝐴𝑖(1). Similarly, let 𝑆𝑖(𝑎, 𝑧) be the potential outcome for 

individual 𝑖 that would be obtained if the adiposity, the treatment variable, was set to 𝑎 and the 

instrument set to 𝑧 by external intervention. We refer to 𝐴𝑖(𝑧) and 𝑆𝑖(𝑎, 𝑧) as the potential 

treatments and potential outcomes respectively.  

The individual treatment effect, or causal effect, is 𝑆𝑖(𝑎′, 𝑧) − 𝑆𝑖(𝑎, 𝑧), where 𝑎 is some baseline 

value. Under the exclusion restriction discussed below, we can write 𝑆𝑖(𝑎′, 𝑧) = 𝑆𝑖(𝑎′). Our causal 

estimand of interest can therefore be written as: 

 

     𝐸[𝑆𝑖(𝑎′) − 𝑆𝑖(𝑎)].     (1) 

 

Hernàn and Robins (2006) outline the assumptions under which this causal effect is identified by the 

simple IV estimator that we use. These include linearity of the causal effect of 𝐴 on 𝑆 and no effect 

modification of the instrument on the treatment effect. Angrist, Graddy and Imbens (2000) however, 

specify the conditions under which the simple IV estimator identifies a weighted average of the 

derivative function of the (nonlinear) causal response function, exploiting a monotonicity 

assumption of the effect of the instrument on the exposure. We discuss these assumptions in turn. 

 

Assumption 1. (Stable Unit Treatment Value Assumption, or SUTVA). 

SUTVA implies that individual 𝑖’s potential treatment is unrelated to the instrument values of other 

individuals, and that individual 𝑖’s potential outcomes are unrelated to the treatment and 

instrument values of other individuals. In other words, there is no interference between units. 

 

Assumption 2. (Independence). 

𝑍𝑖 ⊥ {𝑆𝑖(𝑎, 𝑧),𝐴𝑖(𝑧)}𝑎,𝑧  

 

The independence assumption implies that the instrument is independent of all potential outcomes 

and potential treatments, for all values of 𝑎 and 𝑧. In other words, the instrument is as good as 
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randomly assigned.  

 

Assumption 3. (Exclusion). 

𝑆𝑖(𝑎, 1) = 𝑆𝑖(𝑎, 0), for all 𝑎. 

 

Exclusion implies that the potential outcomes, at any level of adiposity 𝑎, are unchanged by the 

presence or absence of the genetic variant. In other words, the only way through which the 

instrument affects the potential outcome is via 𝐴. Exclusion is distinct from the independence 

assumption, in that it is a claim about a unique channel of the causal effect of the instrument. It 

implies that 𝑆𝑖(𝑎, 𝑧) is a function of 𝑎 only, and hence we can write 𝑆𝑖(𝑎, 𝑧) = 𝑆𝑖(𝑎), as used in (1). 

 

Assumption 4. (Non-zero effect of instrument on treatment). 

 

𝐸[𝐴𝑖(1) − 𝐴𝑖(0)] ≠ 0 

 

This implies that expected potential adiposity is affected by the genetic variant and therefore that 

the instrument has an effect on the treatment. 

 

Assumption 5. (Monotonicity). 

𝑃[𝐴𝑖(1) ≥ 𝐴𝑖(0)] = 1, for all 𝑖 

 

(or vice versa), saying that the potential treatment (i.e. adiposity) for individual 𝑖 with the genetic 

variant is at least as high as the potential treatment for the same individual without the genetic 

variant for all 𝑖. In other words, all those affected by the instrument are affected in the same way. 

 

In the presence of heterogeneous responses, the potential outcome for individual 𝑖 can be written 

as a general function of 𝑎, say 𝑆𝑖(𝑎) ≡ 𝑔𝑖(𝑎). We use assumptions 1 to 5 to interpret differences in 

average outcomes and treatments at different values of the instrument. Under these assumptions, 

the instrumental variables estimand, defined as the ratio of the difference in average outcomes at 

two values of the instrument to the difference in average treatment at the same two values of the 

instrument, can be written as:  

𝐸[𝑆𝑖|𝑍𝑖 = 1] − 𝐸[𝑆𝑖|𝑍𝑖 = 0]
𝐸[𝐴𝑖|𝑍𝑖 = 1] − 𝐸[𝐴𝑖|𝑍𝑖 = 0] 



 5 

 = 
∫𝐸�𝑔𝑖

′(𝑞)|𝐴𝑖(0)<𝑞<𝐴𝑖(1)�𝑃{𝐴𝑖(0)<𝑞<𝐴𝑖(1)}𝑑𝑞
∫𝑃{𝐴𝑖(0)<𝑞<𝐴𝑖(1)}𝑑𝑞

, (2) 

 

where 𝑔𝑖′(𝑞) is the derivative of 𝑔𝑖(𝑎) w.r.t. 𝑎 evaluated at 𝑞. Hence, the IV estimand is a weighted 

average of the derivative function (Angrist, Graddy and Imbens, 2000; Angrist and Pischke, 2009).  

In our application, the IV (Wald) estimand in (2) can be interpreted as the effect of adiposity on 

educational attainment for those whose adiposity is affected by the genetic instrument. This specific 

group is also referred to as the compliers: those who are induced to take treatment by assignment to 

treatment. In addition to these compliers, three further (latent) groups have been defined: those 

who do the opposite of their assignment (defiers), those who never take treatment, whatever their 

assignment (never-takers), and those who always take treatment, regardless of their assignment 

(always-takers). This stratification into latent groups is commonly used in the econometrics 

literature (see e.g. Angrist, Imbens and Rubin, 1996). Frangakis and Rubin (2002) have generalised 

this concept to any type of post-treatment variable within the potential outcomes framework, 

known as ‘principal stratification’. Principal stratification has two important properties: (1) the strata 

(in this case: compliers, defiers, always-takers and never-takers) are not affected by the assigned 

treatment, and (2) comparisons of potential outcomes under different assignments within principal 

strata, also called principal effects, are well-defined causal effects. Hence, principal stratification can 

be seen as an extension of the IV methodology used here (see e.g. Barnard et al. (2003) for an 

application of principal stratification to a ‘broken’ randomized experiment, and Shinohara et al. 

(2009) and Shinohara and Frangakis (2009) for a comparison of principal stratification and IV in case-

control studies).  

The above discussion uses a binary instrument throughout. In our application however, we have 

multiple and multi-valued instruments. In the case of such discrete instruments, the number of 

instruments is irrelevant; it is the number of distinct values of the instrument vector that matters, 

averaging the (pairwise) instrument-specific weighted averages of the derivative function (Angrist, 

Graddy and Imbens, 2000).  

 

2.2  Mendelian Randomization 

We discuss the use of Mendelian randomization from a statistics and economics perspective in the 

context of a social study, with the aim of making causal inferences of the effect of a modifiable risk 

factor on an outcome of interest. As opposed to observational studies that estimate the effect of 

short term (current) differences in exposure, estimates from Mendelian randomization experiments 
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reflect lifetime differences in exposure. Hence, they indicate the long term (cumulative) effects of 

the modifiable risk factor on the outcome of interest (Davey Smith and Ebrahim, 2005).  

The concept of Mendelian randomization is closely linked to Randomised Controlled Trials (RCTs), 

where the allocation of treatment is randomised over all eligible individuals. Indeed, the 

instrumental variable methodology can be applied to analyse encouragement designs (such as RCTs 

where the treatment is the encouragement to participate) that are affected by non-ignorable non-

compliance. Non-compliance refers to the fact that individuals can choose treatments other than 

those to which they are randomised. Non-ignorable non-compliance refers to participants choosing 

treatment in a manner associated with their study outcomes, after adjusting for baseline 

characteristics. This is also known as endogenous treatment in economics, or selection into 

treatment. 

The idea is similar for the social context in our application: individuals ‘select’ their treatment – 

adiposity – through lifestyle choices, such as diet and physical activity. Even after adjusting for 

baseline characteristics, these choices are likely to be related to their study outcome (educational 

attainment). In other words, they are non-ignorable. Mendelian randomization exploits the fact that 

there is an equal probability that either parental allele is transmitted to offspring. Whilst this 

allocation is random at the family trio level, at a population level it has been demonstrated that 

genetic variants are largely unrelated to the many socioeconomic and behavioural characteristics 

that are closely linked with each other and that confound conventional observational studies (Bhatti 

et al., 2005; Davey Smith et al., 2008; Kivimäki et al., 2008; Lawlor et al., 2008; see also Fisher, 1952 

and Box 2010). Hence, as genes are randomly assigned during meiosis, individuals of different 

genotypes are expected not to differ systematically in any other respect.  

We use Mendelian randomization and IV in the context of an empirical social science application. 

Although IV methods are widely used in statistics and economics, the use of genetic variants in these 

fields is relatively new. As noted by Didelez and Sheehan (2007), the potential limitations of 

Mendelian randomization experiments can be represented in two main categories. First, limitations 

related to the implicit statistical assumptions common in many Mendelian randomization studies 

(see e.g. Didelez and Sheehan (2007) and Didelez, Meng, and Sheehan (2010) for a thorough 

discussion). Second, potential limitations relating to the assumptions of the validity of the 

instrument. Genetic epidemiology studies mainly emphasize the latter: the importance of carefully 

examining several situations and (biological) processes that may violate the assumptions mentioned 

in section 2.1 (see e.g. Davey Smith and Ebrahim, 2003; Sheehan, et al. 2008; Lawlor et al., 2008). 

The existing research in economics however, has mainly failed to recognise these. But the increasing 

availability of biomedical information in social science datasets makes understanding of these 
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conditions crucial to the successful use of genotypes as instruments for modifiable risk factors. We 

therefore discuss the concepts defined in epidemiology and relate them to the assumptions that 

need to be met to obtain causal estimates of the effect of the risk factor on the outcome of interest, 

as defined in the statistics and economics literature.  

 

2.3  Conditions for the Use of Genetic Variants as Instrumental Variables 

For a valid causal interpretation of the IV (Wald) estimand, we require assumptions 1 to 5 in section 

2.1 to hold. Although we believe these assumptions are plausible, there are various situations that 

may violate them, and therefore need to be examined.  

 

Assumption 1 – SUTVA  

The potential treatment of any individual is not affected by the genetic variants of other individuals. 

Similarly, the potential outcome of any individual is not affected by the genetic variant or treatment 

of other individuals. The assumption of no interference between units is conventional in statistics 

and medical research, but the existence of peer effects may invalidate this. However, as peer effects 

are more likely to be due to (unobserved) behaviour than genes, this is less likely to be a problem 

here.  

 

Assumption 2 – Independence 

Although genotypes are randomly allocated at conception, the allele distribution may differ for 

different population subgroups. If these subgroups also have systematically different outcomes of 

interest, this could lead to an association between the two at the population level without an actual 

causal relationship. A systematic relationship between the allele frequency and the outcome of 

interest across different sub-populations is also referred to as population stratification. For example, 

allele frequencies can vary across ethnic groups. Any systematic differences in educational outcomes 

across these subpopulations that are not due to a genetic make-up may therefore lead to biased 

estimates of the effect of adiposity by violating the independence Assumption 2. In other words, 

despite the fact that genotypes are randomly allocated and with that satisfy the independence 

assumption, any population stratification can violate this assumption. This can be dealt with 

however, by examining the question of interest within ethnic groups, separately analyzing the 

different sub-populations, and/or adjusting for principal components from genome wide data that 

function as ancestry markers, relying on the conditional independence assumption.  
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As genotypes are randomly assigned given the parental genes, the presence of assortative mating 

based on genes can violate the independence assumption. The cleanest experiment, therefore, is 

one with biological siblings, examining randomization of genes within families (Davey Smith and 

Ebrahim, 2003). However, even when we only observe one individual per family, Mendelian 

randomization is valid assuming that, at the population level, genetic variants are unrelated to other 

characteristics, as has been shown in many studies (Bhatti et al., 2005; Davey Smith et al., 2008; 

Kivimäki et al., 2008; Lawlor et al., 2008; see also Fisher, 1952; Box 2011). One way to indirectly test 

independence is by exploring whether the distribution of individual or family-level characteristics 

that are available in the data is the same in different groups defined by the value of the instrument 

(i.e. different genotypes). The idea is that, if the instrumental variable is indeed randomized, there 

should be no systematic variation in the covariates by genotype, whether we use a within- or 

between-family analysis. This raises the question however, about which covariates to test for, as any 

characteristic is, in principle, a post-treatment variable with respect to the instrument. Hence, any 

systematic variation in these indirect tests does not necessarily indicate a violation of independence 

(or exclusion). It may be, for example, that the instrument is picking up additional causal effects of 

the same risk factor, or that it is picking up reverse causation from the outcome to a different 

covariate. 

 

Assumption 3 – Exclusion  

There can, in principle, be various situations in which Assumption 3 – the exclusion restriction – does 

not hold, invalidating the instruments. A first situation is that ‘behaviours’ may be affected by the 

genotype. As individuals inherit their genes from their parents, it may be important to consider 

whether parents’ behaviours or preferences are affected by their genotype (and hence their 

offspring’s genotype). This may be a problem in studies that examine maternal behaviours that 

influence the outcome of interest via intrauterine effects, or in studies where parental behaviours 

influence the outcome of interest via affecting their (child’s) behaviour. For example, if one were 

interested in the effect of an individual’s alcohol consumption on their later liver disease using a 

genetic variant that robustly relates to alcohol intake, any intrauterine effects of maternal alcohol 

consumption during pregnancy on offspring liver development could result in a violation of 

Assumption 3. This is because the mother’s genotype is related to the offspring’s genotype (the 

instrument), and will influence her alcohol consumption throughout life, including when she was 

pregnant. If maternal prenatal alcohol intake affects liver development in utero and its functioning 

later in the child’s life, there is a link from the offspring’s genotype (IV) to the outcome via an 

intrauterine mechanism. Similarly, if one is interested in the effect of adiposity (fat) on education, as 
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we are below, parents who carry ‘fat’ alleles may be discriminated against in the labour market 

because of their higher weights. If this affects their behaviour or preferences for her child’s 

education, Assumption 3 may be violated. The extent of this potential violation will depend on the 

effect sizes of the variants. In other words, if the variants shift the fat mass distribution by a modest 

amount, it may be unlikely to lead to strong (parental) responses. 

A second situation relates to the mechanisms through which genetic variants affect the modifiable 

risk factor. These are often unknown. If the mechanism involves changes in behaviour or preferences 

that in addition to affecting the treatment also directly affect the outcome, Assumption 3 will be 

violated. If the mechanism only results in changes to the risk factor (i.e. they do not directly affect 

the outcome), Assumption 3 will not be violated. 

Thirdly, the genetic instrument may be related to other genetic variants that affect the outcome of 

interest. Mendel’s second law states that the inheritance of one trait is independent of the 

inheritance of another. However, it has been shown that this does not always hold and that some 

variants are likely to be co-inherited. This so-called ‘Linkage Disequilibrium’ (LD) does not occur for 

genetic variants on different (non-homologous) chromosomes, and the degree of LD is partly a 

function of the distance between the loci (see Appendix A for some of the genetic terms used here). 

Depending on the effects of the co-inherited variant, LD can bias the estimates. If our instrument 𝑍 

is in LD with another polymorphic locus that affects only the modifiable risk factor 𝐴, the IV 

estimates remain consistent. However, if 𝑍 is in LD with a polymorphic locus that directly affects the 

outcome 𝑆, Assumption 3 is violated and the estimate will be biased and inconsistent. Relatedly, 

there is the situation of pleiotropy, where one genetic variant has multiple functions. The case is 

similar to that of LD, and will invalidate the IV approach if the pleiotropic effect influences the 

outcomes 𝑆 directly, but not if it affects only other characteristics that are unrelated to the outcome 

of interest.  

Fourth, a biological process that may bias causal estimates in Mendelian randomization studies is 

canalisation. This refers to a situation by which potentially disruptive influences of the risk factor on 

the outcome are buffered by foetal or post-natal developmental processes. For example, if an 

individual has a genetic variant associated with higher blood pressure, their arteries may develop to 

become resistant to the adverse effects of high blood pressure. This is difficult to test for, as the 

genetic variant may still be related to blood pressure, but any adverse health outcomes normally 

caused by higher blood pressure would not occur. Hence, canalisation can alter the association 

between genotype and outcome, without any change in the genotype-risk factor relationship. In 

other words, canalisation results in an indirect ‘effect’ of the genotype on the outcome of interest, 

violating the exclusion restriction. 
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Assumption 4 – Non-zero effect of 𝑍 on 𝐴  

Mendelian randomization can only be used with genetic variants that have been robustly shown to 

affect the risk factor of interest. This means it relies on prior knowledge about the association 

between genotype and phenotype, as shown in a large number of independent studies. This latter 

point is especially important, as many initial genetic associations fail to replicate (Colhoun, McKeigue 

and Davey Smith, 2003). Without a robust and consistent population association, even if a significant 

sample correlation exists, Assumption 4 may be violated. Any correlation may simply be due to 

factors such as biased measurement (in genotype or phenotype) or chance.  

However, even if a suitable and robust genetic instrument is available, it may explain little of the 

variation in observed phenotype. A weak association could result in a biased IV estimate and has 

implications for statistical power. If the alleles shift the distribution of 𝐴 by a very small amount, the 

effect of 𝐴 on 𝑆 is identified only by this small difference in mean treatment, emphasizing the need 

for very large sample sizes, especially when the average causal effect of the risk factor on the 

outcome could be small. This, of course, is not a problem specific to Mendelian randomization, but 

refers to a more general problem of weak instruments, often encountered in IV studies (e.g. Angrist 

and Krueger, 1991).  

 

Assumption 5 – Monotonicity 

With random allocation of genetic variants and the fact that individuals do not know their 

genotypes, we assume that an individual who carries the risk allele is at least as heavy as the same 

individual, had she not carried the risk allele, satisfying the monotonicity Assumption 5. As this relies 

on knowing each individual’s counterfactual adiposity, this remains an assumption. The literature 

only tells us that, at a group or population level, those who possess the genetic variant are heavier 

than those who do not. The monotonicity assumption could for example be violated in the presence 

of gene-environment interactions (i.e. when the effect of the environment on weight differs 

depending on the individuals’ genetic predisposition, or when individuals’ genetic predispositions 

are expressed differently in different environments).  

 

2.4  The Role of Covariates in Mendelian Randomization Experiments 

There is a large literature on the use of covariates in IV. Social and economics applications of IV 

generally include a wide set of control variables; the main motivation being that the conditional 
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independence and exclusion restriction are more likely to be valid. A second reason for including 

covariates in many social and economics applications of IV is that it may reduce the variability in the 

dependent variable, leading to more precise estimates. Most IV models that include covariates use 

parametric specifications, but a causal interpretation of the IV estimate usually requires the 

assumptions of additive separability and constant treatment effects to hold. There are ways to relax 

these assumptions though, using non-parametric specifications (see e.g. Fröhlich (2007) for a 

review). 

The situation is somewhat different, however, in RCTs/encouragement designs, and Mendelian 

randomization studies. When covariates enter the assignment mechanism in RCTs/encouragement 

designs, such as when randomization takes place within certain strata, these covariates should be 

controlled for, relying on the conditional independence assumption. The inclusion of further baseline 

covariates may in addition increase the precision of the estimates. In Mendelian randomization 

studies however, there are no baseline covariates. In addition, as covariates do not enter the 

assignment mechanism, assignment is independent of covariates, and we can rely on the 

(unconditional) independence assumption. Only in the presence of population stratification should 

the analyses be done within population subgroups, or should we be adjusting for principal 

components from genome wide data that function as ancestry markers, i.e. relying on the 

conditional independence assumption. Therefore, conditioning on covariates in not necessary in 

Mendelian randomization experiments. 

Although one may choose to adjust for covariates to increase precision, this raises the issue of which 

covariates to include in a Mendelian randomization study, as any characteristic is, in principle, a 

post-treatment variable with respect to the instrument, and – with that – may be affected by the 

instrument. If the instrumented risk factor has multiple causal effects, or if the outcome of interest 

has a causal effect of its own, adjusting for such post-treatment variables may lead to biased 

estimates of the causal effect of interest. Indeed, we should not control for any ‘downstream’ 

behavioural covariates that are potentially affected by the treatment or outcome. Hence, although 

our application is in the context of a social study, we do not control for covariates, though we report 

the estimates that adjust for covariates in the text. Under the independence assumption, and in a 

situation where the instrumented risk factor and outcome do not (directly or indirectly) affect these 

covariates, the unadjusted and adjusted IV estimates should be similar, though the latter may be 

more precise. 

 

2.5  Testing the Exclusion Restriction 
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There is no direct test for the validity of the exclusion restriction (Assumption 3). In other words, its 

validity will never be known with complete certainty and can only be examined indirectly or falsified 

by the data. To this end, however, Mendelian Randomization is no different from any other (non-

genetic) IV study; the exclusion restriction always remains an assumption. Similar to other IV studies 

that use multiple instruments however, Mendelian randomization allows for potential violations 

through pleiotropy or LD (though not necessarily canalisation) to be tested when data is available on 

a large number of genetic instruments. More specifically, if multiple IV models - each using different 

combinations of these variants - predict the same causal effect, this is very unlikely to be due to 

some common pleiotropy or LD across the different sets of variants, assuming that the different 

variants are located on different chromosomes and affect the trait via different pathways (Davey 

Smith, 2011; Palmer et al., 2011). However, obtaining different causal effects with different 

combinations of variants does not necessarily point to a violation of the exclusion restriction, as 

variability in treatment effects may occur due to different compliant subpopulations for the different 

instrument sets (also known as different Local Average Treatment Effects, or LATEs). 

In a constant effects model, one can indirectly test whether the exclusion restriction holds using an 

‘over-identification’ test, provided there are more instruments than ‘endogenous’ variables (i.e. 

variables confounded by unobserved factors). Note, however, that this is not a test that the 

instruments are indeed valid. A problem with the over-identification test is that it has low power, 

especially when the underlying IV estimates are imprecise. In our framework of heterogeneous 

treatment effects however, over-identification tests are inappropriate, even when the underlying 

estimates are precise, as a rejection of the test need not imply a violation of the exclusion 

restriction. As discussed above, it may point to treatment effect heterogeneity, as different valid 

instruments for the same causal effect may estimate different parameters, with the final IV estimate 

being a weighted average of the different treatment effects (Angrist, Graddy and Imbens, 2000; 

Angrist and Pischke, 2009). Hence, although we report the test below, we cannot necessarily 

interpret it in a heterogeneous treatment effects framework.  

Note that, although canalisation refers to a violation of the exclusion restriction, it cannot 

necessarily be tested (either directly or indirectly) using over-identification tests. Similar to the 

above, a rejection of the test cannot distinguish between treatment effect heterogeneity and 

canalisation. In fact, there is no (clear) way of testing or correcting for canalisation. However, for the 

complex traits that are largely of interest as causal risk factors in Mendelian randomization studies, 

there is no evidence that canalisation occurs in humans (Davey Smith and Ebrahim, 2003). 
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2.6  The Genetic Variants in our Empirical Application 

We use two SNPs that have been consistently shown to relate to Body Mass Index (BMI, defined as 

weight in kg divided by height in metres squared) and adiposity in children and adults. Using a total 

of 38,759 individuals aged between 7 and 80 from 13 different cohorts of European ancestry, 

Frayling et al. (2007) explore the association between FTO and BMI, fat mass, the risk of being 

overweight and the risk of being obese. They find a positive association between the risk allele (A) 

and all measures of adiposity for individuals in all cohorts, in all countries, of all ages and of both 

sexes, with no difference between males and females. They show that FTO is specifically associated 

with fat mass, with weaker associations with lean mass. In addition, there is no association between 

FTO and birth weight, or FTO and height, suggesting that the relationship with BMI is largely driven 

by individuals’ adiposity. They find that each copy of the risk allele is associated with an average 

increase in BMI of 0.2 units at age 7, to 0.4 units at age 11. For the average age-specific height, this 

refers to a weight increase of 0.3 and 0.9 kg respectively. As the genetic model for FTO is additive, 

meaning that each risk allele affects the phenotype by a similar amount, 11-year-olds who are 

homozygous for the rare allele (AA) are on average 1.8 kg heavier compared to those carrying no 

rare alleles. Using age-specific growth charts of weight, this corresponds to an increase from the 

median to the 58th percentile. However, there is much variation around this mean effect; the R2 of a 

(linear) regression of adiposity on FTO is less than 1%.  

Several different SNPs near MC4R have been associated with adiposity. We use the SNP identified by 

Loos et al. (2008). In addition to replicating the FTO findings, they find a positive relationship 

between rare allele (C) of MC4R and adiposity in genome-wide association data from 16,876 

individuals and confirm this relationship in an additional 60,352 adults and 5,988 children. They find 

no differences by gender, and no effects on birth weight or children’s height, again suggesting the 

association is mediated largely through an effect on adiposity. The genetic model for MC4R is 

dominant, meaning that the presence of any risk allele – either one or two – is associated with a 

similar increase in adiposity (Timpson et al., 2009). The findings on both FTO and MC4R have since 

been replicated in a vast number of other studies (see e.g. Hinney et al., 2007; Hunt et al., 2008; 

Willer et al., 2009; Thorleifsson et al., 2009; Meyre et al., 2009; Speliotes et al., 2010).  

Our specific choice of genetic variants can be related to the assumptions for suitable use of genetic 

variants as instruments discussed in Section 2.1 and 2.3. First, population stratification due to 

ethnicity may violate the independence assumption, as FTO-allele frequencies are known to vary by 

ethnic group (Frayling et al., 2007). However, it is not likely to be a problem here, as our cohort is 

recruited from a specific geographically defined region with a predominantly white population. In 

addition, our analysis only includes children whose mother describes herself and the child’s father as 
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white. 

Second, note that those who carry the rare allele of FTO and/or MC4R do not all become obese; the 

variants increase the average body weight by a modest amount. Hence, it is unlikely to observe any 

strong (parental) responses to increased body weight, such as changing children’s diets.  

Third, we rely on the theory of random allocation of genetic variants (independence) and on the 

empirical evidence that shows that genetic variants are unlikely to be related to unmeasured 

confounders (exclusion). Pleiotropy or LD would bias the IV estimates if the variant affects the 

outcome directly or if the linkage is with another variant that directly affects educational 

attainment.  

Fourth, the possible mechanisms through which FTO and MC4R affect adiposity are increasingly 

studied in the medical literature. Although this work is ongoing, there is substantial evidence that 

the variants are associated with an increased consumption of fat and energy (see e.g. Timpson et al., 

2008; Cecil et al., 2008). The literature suggests that the SNPs increase food intake due to diminished 

satiety (Wardle et al., 2008), rather than through pathways that affect our schooling outcome of 

interest, suggesting that Assumption 3 is satisfied. 

Fifth, as noted above, the biological mechanisms through which FTO and MC4R affect adiposity are 

unknown, but the evidence to date suggests that size at birth is not affected by these variants. 

Therefore, canalisation during the foetal period is unlikely to be a problem. 

Sixth, the prior findings of robust associations between the genetic variants and individual adiposity 

justify their use as instruments (Assumption 4). Each FTO risk allele leads to an average increase of 

0.9 kg; carrying one or two MC4R risk alleles is related to an average increase of 0.6 kg. As 

mentioned above however, with much variation around this mean effect, our two genetic variants 

explain little of the total variation in adiposity: R2 < 1%. Using the standard statistical tests, we will 

examine the strength of our instruments in the application below.  

Finally, as monotonicity (Assumption 5) can be violated by gene-environment interactions, we 

examine this indirectly, testing whether the association between adiposity, FTO and MC4R differs by 

‘environment’, as defined by gender, social class, mother’s education, and income. The results 

(available from the authors on request) show no significant differences, suggesting that these 

interactions do not play an important role for the genetic variants used here.  

 

2.7  Main Advantages Relative to Previous Studies that use Genetic Variants 

The existing economics literature includes three studies that exploit genetic variation to identify the 
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effects of BMI on economic outcomes. Ding et al. (2009) examine the effects of several health 

conditions, one of which is BMI, on adolescent’s academic achievement. Their IV results show large 

and significant negative effects on female’s Grade Point Average (GPA), but not for males. GPAs for 

obese girls are on average 0.8 points lower than those for non-obese girls. They use four genetic 

variants as instrumental variables: the dopamine transporter (DAT1), the dopamine D2 receptor 

(DRD2), tryptophan hydroxylase (TPH) and cytochrome P4502B6 (CYP2B6). Fletcher and Lehrer 

(2011) take a similar approach to Ding et al. (2009), but use a different dataset (the Add Health data) 

to exploit within-family genetic inheritance. They find no evidence that obesity affects academic 

achievement. In addition to DAT1 and DRD2, their instruments include the dopamine D4 receptor 

(DRD4), the serotonin transporter (5HTT), monoamine oxidase (MAOA) and cytochrome P4502A6 

(CYP2A6). Finally, Norton and Han (2008) examine the effects of BMI on labour market outcomes 

using DAT1 and DRD4 as instrumental variables for BMI and find no evidence of a causal association.  

The discussion in Section 2.3 above highlights the importance of the choice of genetic variants in 

Mendelian randomization experiments. Although the validity of the exclusion restriction can never 

be tested directly, it is very unlikely that genes related to neurotransmitters, such as those used in 

the three studies described above, are valid instruments. The inherent problem is that 

neurotransmitters are implicated in many different neurological processes. Hence, it is difficult to 

argue that they can be used as valid instruments for one specific risk factor without being associated 

with others that could plausibly influence the outcome of interest (Cawley et al., 2011; von Hinke 

Kessler Scholder et al., 2011). 

In addition, Assumption 4 states that consistent and robust associations should have been shown 

between the genotype and phenotype in a large number of independent studies. The three studies 

cited above do not appear to have taken this approach (Lawlor, Windmeijer and Davey Smith, 2008). 

Rather than basing their selection of genetic variants on associations that are robustly shown in the 

literature, their choice of instruments seems to be data-derived: using either forward stepwise 

estimation (Ding et al., 2009) or selecting those SNPs that have nominally statistically significant 

sample correlations in the first stage (Fletcher and Lehrer, 2011). In fact, both Ding et al. (2009) and 

Fletcher and Lehrer (2011) acknowledge that there is weak and inconsistent evidence in the medical 

literature, based on very small unrepresentative clinical samples, of the association between their 

genetic variants and health status or behaviours. Indeed, the IV strategy is invalid when relying only 

on these sample associations, as the absence of a robust population association violates Assumption 

4. Norton and Han (2008) base their selection of SNPs on a study by Guo et al. (2006), who argue 

that there is a negative association between the D4.7/D4.7 genotype of DRD4 and obesity. This 

relationship, however, has not been replicated in other independent studies (see for example 
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Hinney et al. (1999), or Fletcher and Lehrer (2011) who find an insignificant but positive association).  

In addition, these studies are unable to replicate various associations they note are reported in the 

literature. For example, Ding et al. (2009) find no association between the number of 10-repeat 

alleles of the DAT1 gene and obesity, whilst they note the literature reports a positive relationship, 

and Norton and Han (2008) find a negative correlation. Fletcher and Lehrer (2011) fail to show any 

correlation between the A1A1 variant of DRD2 and obesity. But given that the evidence of a robust 

association for these variants is lacking, this is not surprising (Lawlor, Windmeijer and Davey Smith, 

2008). Furthermore, Norton and Han (2008) argue that the effects of the genetic variants differ by 

gender, while Patsopoulos et al. (2007) note that most claims of gender differences are spurious. 

Finally, Norton and Han (2008) use several variants as additional controls rather than instruments, as 

they fail the over-identification tests (SLC6A4, MAOA, DRD2 and CYP2A6). Fletcher and Lehrer (2011) 

and Ding et al. (2009) use several of these as their instruments.  

 

3.  Data 

Our data are from a cohort of children born in one geographic area (Avon) of England. Women 

eligible for enrolment in the population-based Avon Longitudinal Study of Parents and Children 

(ALSPAC) had an expected delivery date between 1 April 1991 and 31 December 1992. 

Approximately 85% of these mothers enrolled, leading to about 14,000 pregnancies. The Avon area 

has approximately 1 million inhabitants and is broadly representative of the UK as a whole, though 

slightly more affluent than the general population (Golding et al. 2001; see www.bristol.ac.uk/alspac 

for more a detailed description of the representativeness of the sample, its enrolment, and response 

rates). Detailed information on the study children and their families has been collected using a 

variety of sources, including self-completed questionnaires, data extraction from medical and 

educational records, in-depth interviews, and biological samples. Note however, that ALSPAC is a 

cohort; there is no systematic data collection on siblings that we can exploit. 

A total of 12,620 children survived past the age of 1 and returned at least one questionnaire. Of 

these, 642 were excluded because either their mother or father is of non-white ethnic origin, leaving 

11,978 potential participants. Our sample selection process is as follows. First, we select those 

children for whom we observe their genotypes, leaving us with 7,368 children. Second, we drop 

children with missing data on fat mass. Children were invited to attend research clinics, where their 

anthropometric measures were recorded. As not all children attended these clinics, our sample sizes 

reduce to just over 4,500. We further restrict the sample to those children for whom we observe 

their educational outcomes, leading to a final sample size of 3,729 children. T-tests of mean equality 

http://www.bristol.ac.uk/alspac�
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show the final sample to be slightly wealthier than the original ALSPAC sample, with mothers being 

somewhat older and having fewer mental health problems. The probability of being in the final 

sample however, is unrelated to FTO and MC4R, suggesting that sample selection is unrelated to the 

genotypes used here.  

 

3.1  Measures of Academic Achievement 

Our main outcome measure is the child’s Key Stage 3 (KS3) score. The KS3 exam is a nationally set 

exam, taken by all 14-year-olds in English state schools. This measure of children’s performance is 

therefore objective and comparable across all children. Children’s scores for three subjects (English, 

maths and science) are obtained from the National Pupil Database, a census of all pupils in England 

within the state school system, which is matched into ALSPAC. We use an average score for the 

three subjects, standardised on the full sample of children for whom data is available, with mean 

100 and standard deviation 10.  

 

3.2  Measures of Child Adiposity and the Genetic Variants 

Our main measure for child adiposity is the child’s body fat mass (adjusted for age in months, height 

and height squared), as measured by a dual-energy X-ray absorptiometry scan (DXA) at age 11. This 

method scans the whole body, dividing it into body fat, lean tissue mass, and bone density. We 

standardise fat mass on the full sample of children for whom data are available, with mean 100 and 

standard deviation 10. For the genetic variants, we use two SNPs that have been consistently found 

to relate to weight: FTO (rs9939609) and MC4R (rs17782313; the rs-number is an identification tag 

that uniquely positions the polymorphism in the genome). Due to the nature of the association 

between MC4R and adiposity (a dominant genetic model), we group individuals who carry one or 

more risk alleles (C) together. Hence, we observe children in two groups based on their genotype: TT 

vs. CT/CC. FTO is specified as having three categories: no risk alleles (homozygous TT), one risk allele 

(heterozygous AT) and two risk alleles (homozygous AA).  

 

3.3  Descriptive Statistics 

As discussed in section 2.1, we observe six mutually exclusive instrumental variables, as defined by 

the combination of the number of rare alleles in FTO and MC4R. We begin by showing their 

frequencies. Without loss of generality, we order the instruments by their mean fat mass, as 

presented in Table 1. Hence, our instrument contains the following combinations of the genetic 
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variants: (𝐹𝑇𝑂,𝑀𝐶4𝑅) ∈ {(𝑇𝑇,𝑇𝑇), � (𝑇𝑇,𝐶𝑇/𝐶𝐶), (𝑇𝐴,𝑇𝑇), (𝑇𝐴,𝐶𝑇/𝐶𝐶), (𝐴𝐴,𝑇𝑇), �(𝐴𝐴,𝐶𝑇/𝐶𝐶)}. 

We refer to these as 𝑍 = 1, … , 6 respectively. Table 1 shows that the first group defined by the 

instrument (𝑍 = 1, i.e. those homozygous for the common allele of both FTO and MC4R) has a mean 

(standardised) adiposity of 98.4, with the last group (𝑍 = 6) having a mean (standardised) adiposity 

of 102.4. 

We can further examine the adiposity distribution for individuals within each of the six groups by 

plotting the empirical fat mass distribution functions (as in Angrist, Graddy and Imbens, 2000). 

Figure 1 shows large differences, with the adiposity distribution of the (𝐴𝐴,𝐶𝑇/𝐶𝐶) group (i.e. 

𝑍 = 6; those homozygous for the rare allele of FTO, and heterozygous or homozygous for the rare 

allele of MC4R) lying to the right of all others for most values of adiposity.  

Figure 2 presents the differences between these distribution functions, plotting the unnormalised 

weight functions. As discussed in section 2.1, the IV approach estimates the coefficient of interest (2) 

as the average causal derivative for the shift in adiposity at each value of the instrument. We 

therefore show the weight functions for those combinations of 𝑍 used in the final IV estimate.  

The figures show slightly different weight functions for different instrument values. In the left figure 

for example, taking the difference between the distribution function of 𝑍 = 1 and  𝑍 = 2, more 

weight is given to the higher end of the fat mass distribution, whereas the difference between 𝑍 = 2 

and 𝑍 = 3 gives more weight to the lower end of the adiposity distribution. The other weight 

functions, shown in the figure on the right, show similar weights for the different instrument values, 

mainly affecting the middle of the adiposity distribution. The smallest weights in the IV estimation 

are given for the difference between the distribution functions of 𝑍 = 4 vs. 𝑍 = 5, the largest 

weights are for 𝑍 = 5 vs. 𝑍 = 6. 

Finally, Appendix B indirectly tests the independence assumption by exploring whether the 

distribution of covariates is the same in different groups defined by the value of the instrument. 

Although there are no actual pre-treatment variables with respect to the instrument, and significant 

differences do not necessarily indicate violation of independence (see also section 2.3), we find no 

evidence of systematic differences for the different covariates, providing at least suggestive 

evidence of randomization of the genetic variants. 

 

4.  Results 

Table 2 presents the results. Column 1 shows the association between the KS3 score at age 14 and 

fat mass at age 11. This estimate is similar to the adiposity-coefficient of an OLS regression of KS3 on 
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fat mass. The (unadjusted) relationship between fat mass and educational attainment is negative, 

with a one standard deviation increase in fat mass associated with a 0.1 standard deviation decrease 

in test scores.  

Column 2 presents the first-stage regression results, showing a strong positive relationship between 

the different instrument values and child fat mass. The estimates increase with the instrument 

values, as expected by construction of the instrument. The strength of the relationship between the 

instruments and fat mass is shown by the first stage F-statistic; with a value of 9.4, it is relatively 

weak. However, if we were to use 𝑍 as one instrument, rather than five separate dummies, the F-

statistic rises to over 45, confirming the strength of our genetic variants. 

The second stage IV results are presented in column 3, showing no effects of fat mass on educational 

performance. Although the IV estimate is of similar magnitude but opposite sign to that in column 1, 

the large standard errors preclude us from rejecting the null of no effect. However, with a p-value of 

0.053 for the Hausman test, there is some support for the IV estimate as opposed to the OLS 

estimate, though any such judgement should be based on a synthesis of all the evidence, rather than 

on this one test alone. Appendix C presents the IV estimates that distinguish between the different 

values of the instrument 𝑍 that are shown in Table 1. As discussed in section 2.1, the final IV 

estimate in Table 2, column 3, is a weighted average of these separate regressions. The over-

identification (Hansen J) test does not reject the null although, as discussed above, it is difficult to 

interpret this test in a heterogeneous treatment effects framework. Even when we control for the 

set of background characteristics mentioned in Appendix B, the IV estimate remains very similar to 

the unadjusted results (0.111 vs. 0.140 in Table 2), with a slightly smaller standard error (0.111 vs. 

0.131), though the p-value remains large (0.315 vs. 0.282). 

 

5.  Conclusion and Discussion 

The increasing availability of biomedical data, in combination with a growing medical literature on 

the effects of carrying specific genetic variants, introduces a different approach to the examination 

of certain risk factors on different outcomes. This paper discusses the method of instrumental 

variables using Mendelian randomization, and relates this to the statistical framework of potential 

outcomes. 

We discuss the specific conditions that need to be met for genetic variants to be used as 

instruments, and relate these to the statistical assumptions necessary for identification of the 

average causal response using instrumental variables. These conditions have not been well defined 

in the current social science literature, but the increasing availability of biomedical data makes 
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understanding of these conditions crucial to the successful use of genotypes as instruments for 

modifiable risk factors. To clearly communicate best practice in genetic epidemiology to a wider 

social science audience, we review these conditions in the context of an empirical social science 

application. Specifically, we examine whether child adiposity causally affects academic achievement, 

using recently identified genetic variants as instrumental variables for adiposity. 

We argue that these variants are the best current candidates for use as genetic markers: they have 

been shown to be associated with adiposity in large population samples and we argue that they are 

likely to meet the conditions required for suitable instruments. We also use direct measures of body 

fat mass, rather than the generally used BMI. OLS shows that leaner children perform better in 

school tests compared to their more adipose counterparts. Our genetic IV analysis, however, shows 

no evidence that children’s fat mass affects their academic performance, although the estimates are 

imprecise. Based on our robust IV approach though, we conclude that adiposity is not a major 

determinant of educational outcomes. 

Our discussion of the conditions for the suitability of genetic variants as instruments and our 

application raise a more general issue of the use of genetic variants as instrumental variables. In our 

case, while our instruments are not overly weak in a statistical sense, their effects may be too small 

to impact on the possible pathways to academic performance. In other words, a two kilogram 

increase in adiposity may not lead to a large drop in self-esteem or an increase in absenteeism. To 

that end, it is perhaps not surprising that we do not find a significant effect on academic 

performance. That said, FTO is the strongest adiposity-marker yet identified. It is relatively unlikely 

that common variants will be found with larger adiposity-effects, as those with larger effects tend to 

be discovered before smaller ones (though rare variants with stronger effects may be identified).  

This illustrates the more general question of whether genetic variants are powerful enough to 

identify causal effects in studies examining economics or social science outcomes. The answer to this 

question will depend on the variant, the risk factor and the outcome of interest. With a rapidly 

growing medical literature on the effects of carrying specific genetic variants, one option is to wait 

for more variants to be identified and to combine these into one or more instrumental variables, 

such as a (weighted) count of the number of risk alleles (see e.g. von Hinke Kessler Scholder et al., 

2010). This could increase the explained phenotypic variation and with that, the precision of the 

estimates. But as noted, in the case of adiposity - and other physical attributes that economists have 

been interested in, such as height - any additional variants are likely to have even smaller effects 

than those already identified.  

In conclusion, we argue that genetic instruments need to be used with care. Their appropriate use 
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requires that several conditions, which have not hitherto been spelt out in the social science 

literature, are met. But even if these conditions are met, the sample sizes in data sets that contain 

both genetic markers and outcomes of interest to social scientists may be too small to obtain 

definitive results. Indeed, even with almost 4000 observations, our standard errors are relatively 

large. With a rapid increase in the number of genome wide association studies being done, and with 

a decrease in their costs however, this may change. With that, we believe that Mendelian 

randomization presents a promising approach to estimate the causal effect of a modifiable risk 

factor on one or more outcomes of interest, though we reiterate that this hinges on the correct 

selection of genotypes as instruments for risk factors. 
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Appendix A: A Brief Introduction to Genetics 

Each cell in the human body contains a nucleus in which most DNA (99.9995%) is kept. DNA is stored 

in structures called chromosomes, where each chromosome contains a single continuous piece of 

DNA. All cells in the human body apart from gametes (i.e. germ cells) contain 46 chromosomes, 

organised into 23 chromosome pairs: one copy of chromosome 1-22 from each parent, plus an X-

chromosome from the mother and either an X or a Y chromosome from the father.  

Locations (or loci) where DNA varies between people are called polymorphisms. The most commonly 

studied form of polymorphism is a Single Nucleotide Polymorphism (SNP): a single base-pair 

variation in a DNA locus. As chromosomes come in pairs, humans have two base-pairs at each locus, 

called alleles. These alleles can either be the same or different. The term genotype is used to 

describe the specific set of alleles inherited at a particular chromosome locus. For example, 

individuals can have one of three genotypes of FTO: they can be homozygous for the common allele 

(TT), heterozygous (AT), and homozygous for the rare allele of FTO (AA). The visible or measurable 

effect of a particular genotype is called the phenotype.  

The phenotype we examine is fat mass. Many studies have examined the heritability of adiposity, 

where heritability is defined as the proportion of the total variance that is explained by genetic 

factors; most commonly calculated from twin studies by comparing intra-pair correlations for a 

characteristic in monozygotic twins with that in dizygotic twins. These studies generally report large 

heritability estimates: between 0.4 and 0.7. A high heritability however, does not imply that any 

individual genetic variant has large phenotypic effects. For example, there are many different SNPs 

that affect human weight, though all with small effects: so-called ‘polygenes’. Together, these 

variants may have a large phenotypic effect. 

Until recently, researchers mainly used a ‘candidate gene approach’ to examine associations 

between individual genetic variants and a phenotype. This approach consists of testing a specific 

hypothesis: based on biological knowledge, researchers examine the association between one 

particular variant (the candidate genetic variant) and a phenotype. These studies produced many 

false-positive findings (Colhoun et al., 2003) and were inefficient. Genome wide association studies 

(GWAS) followed, genotyping 500,000 to over 1,000,000 SNPs in one go and relating all SNPs to the 

phenotype of interest in a hypothesis-free way. Stringent criteria are used for GWAS p-values to take 

account of this hypothesis-free approach. Studies are either two-stage studies, where one or more 

GWAS is performed, after which the small number of SNPs that reach GWAS levels of statistical 

significance are typed in other independent samples to examine the robustness. Alternatively, 

studies consist of a number of independent GWAS containing a large total sample size, where only 

those SNPs that have consistent associations across all studies are interpreted as robust.  
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Appendix B: Indirect Test of Independence of Covariates and Genetic Variants 

Table B1 presents the coefficients (standard errors) of a regression of the covariate presented in the 

first column on the five values of the instrument (𝑍 = 2,3,4,5,6). The final column shows the p-value 

of an F-statistic testing whether the coefficients jointly equal zero. With random assignment of the 

genetic variants, there should be no systematic variation in the covariates by genotype. Although 

some p-values are lower than the commonly used 0.01 or 0.05, we find no evidence of systematic 

differences for the different covariates, providing at least suggestive evidence of randomization of 

genetic variants. 

 

Table B1: An indirect test of independence: regressing the covariate on the instrument-dummies. 

  
𝑍 = 2 

 
𝑍 = 3 

 
𝑍 = 4 

 
𝑍 = 5 

 
𝑍 = 6 

p-value of F-test: 
instrument-coefficients 

jointly equal to zero 
Girl -0.043 -0.024 -0.010 0.062* 0.010 0.045 
 (0.03) (0.02) (0.03) (0.032) (0.037)  
Birth weight (g) -38.58 5.43 -17.79 8.76 -15.48 0.685 
 (30.70) (25.90) (27.12) (35.60) (40.96)  
Age at KS3 (in months) 0.22 0.09 0.14 0.02 0.38 0.737 
 (0.20) (0.18) (0.19) (0.24) (0.27)  
Ln(income) -0.02 0.02 -0.01 0.02 0.01 0.716 
 (0.02) (0.02) (0.02) (0.03) (0.04)  
Mother’s education 0.05 0.04 0.02 0.05 -0.02 0.779 
 (0.05) (0.04) (0.05) (0.06) (0.06)  
Raised by natural father -0.01 0.01 -0.01 0.00 -0.00 0.600 
 (0.01) (0.01) (0.01) (0.02) (0.02)  
Social class at birth -0.06 -0.06 -0.03 -0.18** -0.19** 0.157 
 (0.07) (0.06) (0.07) (0.08) (0.09)  
Mum works part-time 0.00 -0.01 0.02 0.01 -0.02 0.901 
 (0.03) (0.02) (0.03) (0.03) (0.04)  
Mum works full-time 0.00 0.00 -0.02 0.02 -0.02 0.210 
 (0.02) (0.01) (0.01) (0.02) (0.02)  
Partner employed -0.02 0.01 -0.01 -0.01 -0.02 0.618 
 (0.02) (0.02) (0.02) (0.02) (0.03)  
Index of Multiple  -0.93 0.59 0.06 0.26 0.55 0.437 
      Deprivation (0.75) (0.67) (0.70) (0.90) (1.01)  
Alcohol during pregnancy -0.02 0.04 0.01 -0.02 0.04 0.161 
 (0.03) (0.02) (0.03) (0.03) (0.04)  
Smoke during pregnancy  0.01 0.01 0.01 -0.03 -0.01 0.615 
 (0.02) (0.02) (0.02) (0.02) (0.03)  
Breastfeeding 0.10 0.06 0.12** -0.03 0.22** 0.053 
 (0.07) (0.06) (0.06) (0.08) (0.09)  
Mother’s age at birth -0.01 0.03 0.01 -0.03 -0.13* 0.265 
    (0.05) (0.04) (0.05) (0.06) (0.06)  
Notes: The p-value in the last column corresponds to an F-test of the coefficients on the five instrumental variables jointly 
equalling zero. * p<0.1; ** p<0.05; *** p<0.01; Ln(income) is measured when the child is aged 3-4 as is in 1995 prices; 
mother’s educational level is a categorical variable with four values (less than ordinary (O) level, O-level, advanced (A) 
level, and university degree); social class is measured using the standard UK classification of class based on occupation 
(professional (I), managerial and technical (II), non-manual skilled (IIInm), manual skilled (IIIm), semi-skilled (IV) and 
unskilled (V)); the Index of Multiple Deprivation (IMD) is a measure of local area deprivation, referring to areas containing 
about 8000 persons; breastfeeding is a categorical variable (never, <1 month, 1-3 months and 3+ months). 
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Appendix C: IV Estimation using Different Instrument Sets  

Table C1 presents the IV results using different instrument sets. As discussed in section 2.1, we 

recode our multiple multi-valued instruments to a set of mutually exclusive dummy variables, 

resulting in six binary instrumental variables. Here we show the IV estimates using each of these 

distinct values.  

Column (1) replicates the IV estimate from Table 2, using the five dummies simultaneously. Column 

2 shows the IV estimate when using only those observations with the instrument 𝑍 equal to 1 or 2. 

Column 3 includes those with 𝑍 = 2 or 3; column 4 uses those with 𝑍 = 3 or 4; column 5 includes 

those with 𝑍 = 4 or 5; and column 6 uses those with 𝑍 = 5 or 6. Finally, column 7 shows the IV 

estimate using a linear specification of the instrument. 

This shows that, for low values of the instrument (𝑍 = 1,2,3), the IV estimate is negative, though 

always with large confidence intervals. Higher values of 𝑍 give positive estimates, with a very large 

estimate for 𝑍 ∈ {4,5} in column 5, but it is very imprecisely estimated. Note also that, as shown in 

Figure 2, this estimate gets the lowest weights over the distribution of fat mass, and hence the final 

IV estimate in Table 2 is not driven by this large estimate. In contrast, the largest weights shown in 

Figure 2 are for the specification with 𝑍 ∈ {5,6} (column 6 below), which is indeed closest to our 

final IV estimate. 

 

Table C1.  IV estimates of the average response in standardised KS3 to a 1 standard deviation change in fat 
mass, different instrument sets 
 (1)  (2) (3) (4) (5) (6) (7) 
Instruments: Full sample, 

five 
instruments 

  
𝑍 ∈ {1,2}  

 
𝑍 ∈ {2,3}  

 
𝑍 ∈ {3,4}  

 
𝑍 ∈ {4,5}  

 
𝑍 ∈ {5,6}  

Linear 
specification 

of 𝑍 
         
Fat Mass 0.140  -0.204 -0.107 0.131 1.876 0.139 0.136 
 p=0.282  p=0.801 p=0.821 p=0.836 p=0.660 p=0.785 p=0.305 
 [-0.12, 0.40]  [-1.79, 1.38] [-1.03, 0.82] [-1.11, 1.37] [-6.48, 10.2] [-0.86, 1.13] [-0.12, 0.40] 
N 3729  1356 1604 1784 1103 589 3729 
         
Notes: Column 1 is the specification as in Table 2, column 3: using the five instruments 𝑍 ∈ {2,3,4,5,6}. Column 2 only uses 
(𝑇𝑇,𝑇𝑇) and (𝑇𝐴,𝑇𝑇) (i.e. 𝑍 equalling 1 or 2); Column 3 only uses observations with 𝑍 equalling 2 or 3. Column 4 includes 
those with 𝑍 = 3 or 4; Column 5 includes those with 𝑍 = 4 or 5; Column 6 includes those with 𝑍 = 5 or 6. Column 7 
shows the IV estimate using a linear specification of the instrument. 95% confidence intervals in square brackets; p is p-
value for standard t-ratio. 
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Figures 
 
 
Figure 1: Fat Mass Distribution Functions by the Instrumental Variable  

 

 

 
 
 
Figure 2: Unnormalised Weight Functions for the Different Instrument Values 
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Tables 
 
Table 1: The six values of the instrumental variable 

Z FTO MC4R (FTO, MC4R) Frequency Mean fat mass 
1 TT TT (TT,TT) 0.208 98.398 
2 TT CT/CC (TT,CT/CC) 0.156 98.998 
3 TA TT (TA,TT) 0.274 99.963 
4 TA CT/CC (TA,CT/CC) 0.204 100.654 
5 AA TT (AA,TT) 0.092 100.990 
6 AA CT/CC (AA,CT/CC) 0.066 102.378 

 
 
 
 
 
 
 
 
 
Table 2. OLS and IV estimates of the average response in standardised KS3  
 
Dependent variable: 

 (1) – OLS 
 

KS3 

 (2) – First stage IV 
 

Fat Mass 

 (3) – Second stage IV 
 

KS3 
 Coeff p-value Coeff p-value Coeff p-value 

Fat Mass       
   Estimate and p-value -0.099 <0.001   0.140 0.282 
   95% confidence interval [-0.128, -0.070]  [-0.115, 0.396] 
    
Instrument     
   Z=2: (TT,CT/CC)  0.600 0.247  
  [-0.416, 1.616]  
   Z=3: (TA,TT)  1.564 <0.001  
  [0.687, 2.441]  
   Z=4: (TA,CT/CC)  2.256 <0.001  
  [1.301, 3.210]  
   Z=5: (AA,TT)  2.591 <0.001  
  [1.326, 3.857]  
   Z=6: (AA,CT/CC)  3.980 <0.001  
  [2.477, 5.482]  
    
       
    
First stage F-statistic  9.365  
p-value, Hansen J-test   0.631 
p-value, Hausman test   0.053 
R-squared 0.01 0.014  
Number of children 3729 3729 3729 
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