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Abstract 
This research analyses the magnitude of the intergenerational correlation in worklessness in the UK 
using the two British birth cohorts. By using the British Cohort Study of those born in 1970, the 
magnitude of the intergenerational correlation of worklessness can be assessed for a new cohort for the 
first time in the UK and the trend in intergenerational worklessness can be considered across time. Two 
empirical identification strategies commonly used in the literature are applied to UK data and a third 
empirical strategy, utilising the recession of 1981 is introduced to attempt to identify causality. The 
intergenerational correlation in worklessness in the UK is large and has increased across time, although 
the differences in the coefficients are not statistically significant. When a more restrictive measure of 
sons’ worklessness is introduced, this difference becomes statistically significant. This suggests 
supportive evidence of the intergenerational mobility literature for the UK. There are no statistically 
significant findings on causality in intergenerational worklessness, driven by either measurement issues 
or a lack of causality. 
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1. Introduction 
 
The level of intergenerational income mobility in a country can be thought of as the extent to 

which an individual coming from the poorest compared to the richest backgrounds have equal 

opportunities to succeed in life, given their ability. Previous estimates of intergenerational 

income mobility in the UK are often based on earnings in the sons’ generation measured at 

certain points in time as access to administrative data is limited. This puts constraints on the 

sample we are able to measure mobility for as to have earnings you have to be in 

employment. Therefore the majority of intergenerational income mobility measures capture 

the intergenerational correlation of the employed. This research aims to analyse the other side 

to this story by considering the intergenerational correlation of worklessness. In particular, it 

questions the scale of this correlation and to what extent the transmission of worklessness 

from one generation to the next is transmitted through observable confounding factors across 

families, unobservable heterogeneity or causal processes.  

 

The transmission of worklessness from one generation to the next can possibly work through 

a number of different channels, some causal and some non-causal. Corak (2004) cites 

research by Roemer (2004), stating that parents influence their children through three main 

channels; (1) Through connections to education and jobs; (2) Through parenting that 

encourages skills, motivation and belief; and (3) Through a transmission of innate ability. 

Becker and Tomes (1986) set out a theoretical framework for the intergenerational 

transmission of income based on an intergenerational transmission of endowments. They 

argue that some children have a distinct advantage over other children by coming from 

families where not only is there a genetic transmission of greater ability but also other 

favourable cultural attributes such as better attitudes to education and work. Characteristics 

and attributes of parents are therefore passed onto their children both genetically and 

environmentally through the behaviour, attitudes and preferences of the parents. If the parent 

is of low ability they will likely have an occupation that is less well paid and less secure than 

their higher ability counterparts. If the child is also low ability they will also find themselves 

in less secure jobs and a correlation between workless spells will arise across the generations. 

In this case however, the intergenerational correlation would not be causal. Schemes to 

change the employment status of the parent would have no direct impact on the likely 

employment status of the child as it is not the work, or lack of it, itself that is creating this 
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correlation across generations. It is the underlying confounding characteristics and attributes 

of the family, be it observable or unobservable.  

 

This chapter first aims to add to the current research in this area by analysing the magnitude 

of the correlation in worklessness across the two British birth cohorts. There have been 

questions raised over the validity of the income measures used to measure income mobility in 

this data and this will provide further analysis on the differences in mobility across time using 

measures less prone to reporting error. To then ascertain whether any of this correlation may 

be causal, two methods commonly used in this literature and the welfare dependency 

literature will be assessed using new data from the United Kingdom. In addition, a new 

method is introduced to the literature, utilising the recession of the early 1980’s as an external 

shock to the work status of the parents of the British Cohort Study cohort members, born in 

1970. I argue in the next section that worklessness could be causally transmitted from one 

generation to the next through four main channels; through changing tastes and attitudes of 

parents, the implicit poverty associated with being out of work, through the associated stress 

and depression from spells out of work and through ‘social capital’ or informal social 

networks. However, identifying which of these channels, if any, causality is flowing through 

is beyond the scope of this chapter, 

 

This is a timely addition to the literature on worklessness given the current economic 

downturn with the unemployment level at 2.22 million by March 2009 (ONS), the largest 

level and rate rise since 1981. If the recession hits the most vulnerable hardest in terms of 

their likelihood of experiencing spells out of work and there is a causal impact of 

worklessness across generations, the penalty of the rising unemployment we are witnessing 

today could be paid not only by the current generation in terms of scarring within this 

generation but also by the next generation. Previous literature by Gregg (2001) on the effects 

of unemployment on future unemployment within the same generation finds a causal impact 

of youth unemployment spells on the likelihood of unemployment later in adulthood. Johnson 

and Reed (1996) motivate the need for this research by arguing that the ‘exclusion from 

society’ of individuals who are from the poorest groups in society makes them of interest for 

a variety of economic, social and political reasons. An intergenerational transmission of 

worklessness may be of far more concern to policy makers than any movement or lack of 

movement around the middle or top parts of the mobility distribution. If the worklessness of 
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today’s parents also has a causal impact on workless spells in the child’s generation the 

causal scars measured previously could be the tip of the iceberg. 

 

Worklessness is considered here instead of unemployment as the definition of unemployment 

is very narrow, often defined as those who are actively seeking work. This therefore only 

captures a transitory state of being out of work but trying to get back into work. This is 

difficult to measure if we only observe individuals at a point in time and only captures part of 

the story for those who are out of work. Worklessness on the other hand captures a wider 

group of individuals; both those who are out of work and are not seeking to be in work as 

well as those in transitory unemployment. This work adds to a base of research which has 

been scarce over the past decade, particularly in the UK. O’Neill and Sweetman (1998) 

appear to be the last authors to consider the magnitude of the intergenerational transmission 

of worklessness in the UK with more recent work by Corak et. al. (2000), Beaulieu et. al. 

(2005) and Ekhaugen (2009) addressing this and similar issues of intergenerational welfare 

dependency for Finland, Canada and Norway. 

 

The next section will discuss in more detail the previous literature on this topic and the 

associated topic of intergenerational welfare dependency. Section 3 will then give a 

description of the empirical strategies used to answer the main questions asked and a 

summary of the data that will be used to implement these strategies will be provided in 

section 4. Section 5 will discuss the results of the empirical analysis and some robustness 

checks and section 6 will conclude.  
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2. Background literature 

 

Motivation 

 

As mentioned, the current literature in the UK in terms of intra-generational worklessness 

provides cause for concern given the rising levels of worklessness that we face today. Gregg 

(2001) finds evidence of structural dependence for those experiencing unemployment spells 

in early adulthood. Using local area unemployment rates to instrument for endogeneity, he 

finds causal impacts of early unemployment on later unemployment. In addition, in the UK 

this worklessness is becoming more polarised within certain specific groups of society. Gregg 

and Wadsworth (2001) find that ‘the current workless household rate is now more than 

double that of the late seventies’ and ‘more than 1 in 6 children are growing up in a 

household that does not work’.  If workless experiences of parents not only causally influence 

their own later workless experiences but also the workless experiences of their children, and 

this is becoming more restricted to a specific group of society, then the impact of rising 

unemployment in the UK at present will not be fully measurable in this generation. It will 

have scarring effects on the labour market experiences of the children of today. 

 

The previous literature on this topic gives a wide range of motivations as to why we might 

expect a positive causal relationship between the employment status of the parent and the 

child. If the parent has specific tastes to work or attitudes towards work, for example, a taste 

for leisure over work, and these tastes are transmitted through learnt behaviours to the child, 

an intergenerational correlation of worklessness will arise from this. If the action of getting 

the parent into work directly alters these tastes or attitudes for work, there will be a causal 

impact of changing the employment status of the parent on the future employment status of 

the child. Alternatively, if the poverty associated with workless spells experienced by the 

parent adversely affects the resources and education that the parent is able to provide for their 

child, the act of moving the parent to employment will alleviate some of these constraints and 

causally influence the likelihood of the child experiencing future workless spells1. It is 

important to note that this research does not seek to disentangle a separate ‘wealth effect’ but 

simply capture the entire causal process from a transition into work, be it through the impact 

of actually working or the increased income that work brings.  
                                                 
1 Benefit levels have remained constant in real terms across the period considered hence having a similar 
influence on the labour supply decisions of all cohorts considered 
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Alleviating poverty by moving parents into work and hence increasing resources and 

education is not the only channel that would causally influence the child’s probability of 

experiencing future worklessness. The ‘Family stress model’ (Conger et. al (2000)) suggests 

that parents who experience specific stresses such as spells out of work and the associated 

lack of income may disadvantage their children in their parenting behaviours towards them. 

The model implies that spells out of work can lead to dysfunction within the family between 

the adults, often caused by depression and feelings of worthlessness, that can have complex 

adverse affects on the children both directly and indirectly through reduced warmth and 

support, inconsistencies in parental behaviour and a lack of control over the child. The child 

is therefore more likely to act out at school and suffer behavioural problems leading to lower 

outcomes and a higher propensity towards unemployment themselves. The act of moving the 

parents into work may therefore reduce some of this stress within families and therefore 

increase the likelihood of more effective parenting hence increasing the child’s outcomes and 

reducing the likelihood of them experiencing unemployment in adulthood. 

 

O’Neill and Sweetman (1998) and Corak and Piraino (2008) frame the motivation for this 

causal link in the job-search theory literature. If job searching is costly and the likelihood of a 

child entering into a job is the multiplicative effect of their exposure to the job and the 

probability of choosing that specific job given that they have been exposed to it, children are 

likely to enter into the same occupations of their parents. If the child of a teacher is more 

likely to become a teacher, the child of a workless individual is likely to become workless 

themselves. Ioannides and Loury (2004) advise that the reason transactions in the labour 

market are not the same as transactions in the goods market is down to the fact that 

idiosyncrasies arise due to social networking. The information provided by family and close 

networks in searching for jobs has a huge influence on the outcome of search, particularly for 

those out of work.  The authors find, using the US PSID data that 15.5% of unemployed 

individuals in 1993 looked to ‘informal’ networks for information and contacts compared to 

only 8.5% of employed individuals. Corak and Piraino (2008) find that 40% of the sons they 

consider have worked at some point for the same employer as their father.  The direct action 

of changing the employment status of a parent in this context would alter the likely 

employment status, and occupation, of the child in the future and increase the information 

available to the child through informal networks. 
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Ekhaugen (2009) adds some scope for a negative causal relationship across generations. She 

argues that workless spells of the parents could conversely reduce the child’s likelihood of 

experiencing workless spells in the future by the parent having more time to invest in the 

human capital of the child hence reducing their probability of entering into less secure 

occupations in the future. Alternatively, the perceived ‘risky behaviours’ associated with long 

periods of worklessness such as poverty and depression could deter the child from wanting 

the same existence in adulthood. They could, in effect, learn from their parents mistakes. In 

both of these cases parents experiencing higher levels of worklessness could reduce the 

child’s likelihood of experiencing future worklessness.  

 

Previous findings and methodology 

 

As mentioned, there is very little previous literature on the intergenerational transmission of 

worklessness in the UK to date. Johnson and Reed (1996), in an attempt to quantify the scale 

of the links in unemployment across generations in the UK, found that 19.1% of sons in the 

National Child Development Study (NCDS) who experienced a year or more out of work 

between the ages of 23-33 had a father out of work at 16 compared to the sample average of 

9.9%. Similarly, O’Neill and Sweetman (1998) use the same data source and find that a 

father’s participation in unemployment has a significant effect on the probability that the son 

will become unemployed. Sons from fathers with some experience of unemployment when 

the son is 11 or 16 are twice as likely to experience their own unemployment spells as sons 

from fathers that were in work when observed. Ekhaugen (2009) uses Norwegian 

administrative data and finds that sons with parents who have experienced a spell of 

unemployment during the son’s teenage years face probabilities of experiencing 

unemployment themselves in their mid-20’s that are 8-13 percentage points higher than those 

sons with parents who do not experience any spells of unemployment. Once family 

observables such as parental income, parental education and region are controlled for, this 

difference falls by around 50%. 

 

Gottschalk’s (1996) much cited paper on the correlation of welfare participation between 

mothers and daughters across generations in the US offers two different methods for 

attempting to identify causality that will be analysed in this research, using UK data. The first 

is that used by Ekhaugen (2009) and Corak, Gustafsson and Osterberg (2000) utilising the 

timing of spells of welfare receipt or unemployment to identify unobserved family 
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heterogeneity. This method is based on a number of assumptions; that the parent cannot learn 

from the child, the child only learns from the parent, and that the child can only be causally 

affected by the parent’s experience in childhood. When the son becomes an adult he can no 

longer be causally affected. The correlation between parental worklessness in the son’s 

childhood and the son’s own workless experience is therefore composed of two parts; that 

which is causal and that which is reflecting some underlying heterogeneity common to both 

the parent and child. If parental worklessness is also observed when the son is an adult and 

parental worklessness can no longer causally affect the son’s own workless experiences, the 

correlation between this and the son’s worklessness would be capturing pure unobservable 

heterogeneity. By therefore including both the parents’ worklessness ‘before’ the son leaves 

home and the parental worklessness ‘after’ the son leaves home in a model, the causal impact 

can be identified as the difference between these two effects. This methodology will be 

assessed in greater detail in the next section.  

 

Corak, Gustafsson and Osterberg (2000) contrast the participation in Unemployment 

Insurance (UI) use in Canada and Sweden across generations. Identifying causality from 

parental future participation in UI they find that in Canada, 81% of sons whose fathers have 

ever used UI claim UI themselves at some point up to the age of 31, compared to 70% of sons 

whose fathers never used UI2. In Sweden the comparable figures were 68% and 57% 

respectively. All of this difference between these sons can be attributed to unobservable 

differences across families in Sweden whereas in Canada about half is attributable to 

observed and unobserved differences across families and half is estimated to be causal.  

 

A recent paper by Ekhaugen (2009) has asked similar questions on the intergenerational 

transmission of worklessness for the Norwegian population. This paper adds to the literature 

by using this methodology directly and a variation of this methodology using a siblings-

difference method to control for unobserved heterogeneity by measuring differences within 

families. The framework is based on the assumption that unobserved family heterogeneity is 

identical across siblings. By then examining siblings where only one of the siblings has been 

exposed to parental unemployment, the other having left the family home by the time the 

parents were made unemployed, the estimated differences in outcomes across the siblings 

will give the causal estimate of parental unemployment on the child’s unemployment. This is 
                                                 
2 Over 75% of Canadian men relied on UI at some stage before reaching the age of 31 compared to 60% of 
Swedish men 
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a desirable empirical strategy but very difficult to apply in the UK given the need for 

longitudinal data on siblings and their parents. There are some concerns with such a strategy 

in assuming identical unobservable characteristics between siblings as often they are not 

identical on observable characteristics. The author finds no significant causal effect. 

Ekhaugen speculates that this indicates that there is either no or a small insignificant causal 

relationship between parental unemployment and child unemployment or that there are both 

positive and negative causal effects and that the net of these effects is to cancel the other one 

out.  

 

The second method proposed by Gottschalk (1996) is that also used by O’Neill and 

Sweetman (1998), Beaulieu, Duclos, Fortin and Rouleau (2005), and Corak, Gustafsson and 

Osterberg (2000) to identify causality. In this empirical strategy, welfare participation or 

unemployment of the parent and son are both modelled jointly, allowing for a correlation 

between the two error terms to model any unobserved cross-family heterogeneity. Gottschalk 

(1996) and Corak, Gustafsson and Osterberg (2000) have panel data available and hence 

utilise a random effects logit model to capture causality in welfare dependence across 

generations. O’Neill and Sweetman (1998) and Beaulieu, Duclos, Fortin and Rouleau (2005) 

only have longitudinal data available and hence are restricted to using a bivariate probit 

model for identification. Given the data available in the UK, the bivariate probit model is the 

only available option for this research. However, this strategy is purely identified by its 

functional form without the use of an exclusion restriction. It also imposes some strict 

assumptions on the distribution of the error terms given that unobservable heterogeneity is 

explicitly modelled. This will also be discussed in greater detail in section 3.  

 

Beaulieu, Duclos, Fortin and Rouleau (2005) consider the intergenerational correlation of 

reliance on the Canadian social assistance program using administrative data from Quebec. 

They simultaneously model the welfare participation of parents and children to control for 

unobservable heterogeneity within families by allowing the error terms to be correlated. They 

argue that Wilde (2000) illustrates that the dichotomous and hence non-linear nature of the 

model means that this framework requires no exclusion restrictions. The ‘recursive structure’ 

of the model rules out the potential for reverse causality, given that parents can influence 

children but children can not influence parents, whilst the non-linearity means that no 

additional exogenous variation is required in the estimation of the parental worklessness 

model to identify the affect of prior parental worklessness on future son’s worklessness. The 
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entire non-causal element of worklessness is captured by the joint estimation of a parent and 

child’s workless model controlling for observables with controls and unobservables through 

the correlation across the two errors.  

 

The authors find a significant positive causal effect of parental participation on son’s future 

participation; a one percent increase in parental participation in the social assistance program 

during their son’s childhood increases the likelihood of the son participating in the social 

assistance program by 0.29%. These results are however conditional on the parent’s having 

some participation in social assistance and therefore difficult to generalise to the whole 

population if those who claim social assistance are thought to differ from the average non-

claiming individual.  

 

O’Neill and Sweetman (1998) used the NCDS to examine the intergenerational transmission 

of unemployment in the UK from 1974 to 1991. This is the only attempt to capture the 

causality in worklessness across generations in the UK given the need for longitudinal or 

preferably panel data sources for such tasks. They use a bivariate probit model to jointly 

estimate the father’s and the son’s unemployment probabilities but argue, in contrast to the 

argument by Beaulieu et. al. (2005), that the model is not identified unless there is either no 

correlation between the two error terms in the parent and son’s workless models or some 

exclusion restrictions are included.  

 

They attempt to identify causality by introducing additional exogenous variation to the model 

by including a number of exclusion restrictions. Father’s education, father’s social class and 

local unemployment rates when the son was aged 7 and 11 are included in the father’s 

workless model but not in the son’s. For these to be valid, there should be no significant 

effect of these variables on son’s worklessness other than through the father’s own 

employment experiences. They suggest that all three of their exclusion restrictions are 

questionable but do not present tests on this matter. They find that magnitude of the 

correlation remains but they find no significant causal impact of father’s unemployment on 

the son’s unemployment in adulthood.  

 

To summarise, previous literature on the intergenerational transmission of worklessness 

utilizes two empirical strategies to identify the causal impact of parental worklessness on the 

next generations’ worklessness. From the literature reviewed none of the research on the 
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intergenerational transmission of worklessness has been able to identify a causal impact of 

parental worklessness on their child’s own workless experiences despite all research finding 

large positive correlations across the generations. The literature on welfare dependency has 

been more successful in identifying a causal relationship across generations for Canada and 

the US but as yet no evidence has been found of a significant causal relationship in Europe. 

This leads to two possible conclusions a priori; the two estimation strategies used in all of 

these studies place strong assumptions on the data that may not hold, which will be assessed 

in greater detail in the following section, hence leading to imprecise estimations of causal 

effects. Alternatively, there is no causal relationship between parental and child worklessness 

with the large positive correlations being driven by unobservable or un-measurable family 

heterogeneity. 

 

This chapter adds a third methodological attempt to estimate a causal impact of worklessness 

across generations by utilising the hard-hitting recession of the early 1980’s. This 

methodology follows the lead of those who analyse the causal impact of income on child 

outcomes using father’s displacements due to plant closures as an exogenous shock 

(Oreopolous, Page and Stevens (2005), Bratberg, Nilsen and Vaage (2008) and Rege, Telle 

and Votruba (2007).  Utilising 3 digit industry level data from 1980 and 1983 on industries 

that were particularly hard hit during the recession in terms of employment loss, an 

instrument is created to extract exogenous variation in employment shocks in an attempt to 

identify a causal impact of fathers’ worklessness on their sons’ workless experiences.   

 

Oreopolous, Page and Stevens (2005) attempt to analyse the causal impact of family income 

on the earnings of the son in adulthood using a sample based on Canadian children of fathers 

who worked continuously for the same firm from 1978 to 1981, controlling for average 

family income, regional location, industry and firm size for the four years. The authors argue 

that this allows a comparison across outcomes of children who would have had the same 

level of permanent income if the treatment fathers had not been displaced with a sample size 

of over 60,000 observations. They do not instrument income but instead argue that income 

has a causal impact on the sons’ earnings by using a two-stage procedure. Firstly, they 

demonstrate that displacement has substantive long-lasting impact on family income to 

satisfy the relevance assumption and secondly they use this information to include 

displacement in an intergenerational regression including prior income, proving that once 

future income is included, all of the displacement effect is working through future income 
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levels. Bratberg, Nilsen and Vaage (2008) carry out a similar exercise using Norwegian 

administrative data and find the reduction in family resources due to fathers’ being displaced 

has a significant impact on the education of the child but not on the earnings of the child in 

adulthood. 

The crucial distinction between this attempt to identify causality and that within the job 

displacement literature is that Oreopolous, Page and Stevens (2005), Bratberg, Nilsen and 

Vaage (2008) and Rege, Telle and Votruba (2007) all have information on whole plant 

closures, or almost complete plant closures. They can all therefore argue that the shock was 

completely exogenous of any characteristics of the family, once industry, occupation and 

regional controls are included. With information on changes in employment at industry level 

being the only information available in this case, there is the potential that there is selection 

into those industries that are hardest hit by less productive or less able parents and through 

the genetic transmission, their sons’ are also likely to be less productive or less able and 

hence more likely to experience worklessness. The instrument in this case would not be truly 

exogenous. One way of dealing with this endogeneity is to select the sample of the ‘hit’ and 

‘non-hit’ group by matching their observable characteristics. This will all be discussed further 

in section 3.  
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3. Empirical strategy 

 

The relationship of interest in this research is that captured in equation (1) where  is a 

latent variable capturing the propensity of son i to experience a workless spell in adulthood 

and  is a binary variable indicating whether the head of the household i has 

experienced any workless spells during the son’s childhood. 

son
iy*

parent
iy

 

i
parent
i

son
i uyy ++= βα*  (1) 

 

The coefficient β  will capture the intergenerational correlation between parental 

worklessness and the son’s workless experiences in adulthood.  

 

Given that the dependent variable is a latent variable taking the value 

 

0=son
iy  if 0* ≤son

iy  

1=son
iy  if 0* >son

iy  

 

the OLS estimation technique can not be used here as taking conditional expectations of 

equation (1) gives the Linear Probability model (LPM) and β  therefore captures the 

marginal effects rather than the OLS coefficients. The predicted probabilities calculated from 

this model should be bound between zero and one; however this is difficult to ensure using 

the LPM, particularly as the number of explanatory variables increases.  

 

An index function model can instead be used, where taking conditional expectations of 

equation (1) gives us  where 

only takes values in the interval [0,1] and is continuously differentiable. Given the 

requirements on , a cumulative distribution function is chosen and in this case, the 

Standard normal distribution and therefore the probit model will be 

used to estimate this relationship. 

)()|1()|( parent
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The main estimation problem with this setup is that equation (1) only captures the 

intergenerational correlation of worklessness. If any policy conclusions about the impact of 

parental worklessness on the son’s own workless experiences are to be drawn from this 

research, an attempt must be made to identify any causal relationship that may exist. The 

problem with identifying the causal relationship between parental worklessness and the 

child’s own workless experiences is that there are many things that lead to the worklessness 

of the child, such as low innate ability, that are linked to but not caused by the parents’ 

workless experiences. In an ideal situation, a counterfactual would exist where the same 

family could be observed over the same period in two different states, in work and workless, 

so that the difference in outcomes between these two states would give a true causal 

relationship of worklessness. Arguably the most effective but also most difficult and costly 

alternative would be to run a randomised experiment, splitting a population of families 

randomly into a control and treatment group. By making one group work and one group not, 

the difference between the impacts on the children’s own employment experiences would 

identify the causal relationship between parent’s workless experiences and that of the child. 

The cost and moral issues associated with forcing one group into employment and one group 

out of employment prevent such an experiment becoming a reality.  

 

If all of the non-causal components that lead to worklessness of the child and are linked to 

worklessness of the parent were observable, these could be controlled for in a regression and 

the true causal effect of parental worklessness on child’s worklessness would be identified by 

the coefficientβ  in equation (2).  

 

ii
parent
i

son
i uyy +++= λβα x*  (2) 

 

If is a vector of family background characteristics and captures all of the components that 

lead to worklessness of the child and are linked to worklessness of the parent and given that 

everything is observable, the error term is uncorrelated with parental worklessness, 

, ,  is a consistent estimator of 

ix

|( iu 0) =parent
iyE ββ =ˆlimp β̂ β . However, if, as is often the 

case, there are components that are not observable and therefore not captured by , such as 

heterogeneity amongst the parents in the form of a lower emphasis on the importance of 

going to work. If these lead to worklessness of the child and are linked to the workless 

ix
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experiences of the parents, these would be captured in the error term, , violating the 

assumption . The coefficient  will therefore give a biased estimate of 

iu

0)|( =parent
ii yuE β̂ β  

due to omitted variable bias. The direction of this bias is dependent on the correlations 

between the unobserved components and the parental worklessness. If they are positively 

correlated, , the coefficient on parental worklessness is biased upwards.  0)( >parent
ii yuCov

)() λixΦ−

ii
parent
iy ++ λβ zx

ix

 

In an attempt then to capture the observed heterogeneity within families, equation (2) can be 

estimated including controls for observable family background characteristics. Given the 

previous discussion on the need to use an index function model, equation (2) will again be 

estimated using a probit model with the intergenerational correlation being captured by 

at the average values of the observable characteristics. An important 

note is that only observable confounding factors should be included in  as the inclusion of 

controls that any causal impact could be transmitted through would reduce the estimated 

causal impact of intergenerational worklessness.  

(β ix+Φ λ

+

son

ix

 

In an attempt to identify causality this research will firstly consider two methods used widely 

across the literature, introduced by Gottschalk (1996) to attempt to identify a causal 

relationship between mother and daughter’s welfare participation. The first method is also 

used by Corak et. al. (2000) and Ekhaugen (2009). The model I want to estimate is  

 

i
son

i uy += δα*  (3) 

 

where  represents the workless experiences of the child, captures the parental 

workless experience, is a vector of all observable confounding factors,  is a vector of all 

other unobserved components and is a random disturbance term. As  is unobservable, 

this model cannot be estimated and therefore an alternative strategy is needed. 

iy parent
iy

z

iziu

i

 

There may be something about the family that increases their risk of exposure to workless 

spells, such as having a low innate ability and therefore only being able to obtain work in 

low-pay less secure jobs. Parents from these families are more at risk to workless spells than 

those parents from higher ability families and through the intergenerational transmission of 

15 
 



ability, the same will be true of their children. This unobserved correlation in worklessness 

can therefore be used as a proxy for the unobserved components, . If the child can only be 

causally affected by the parent’s experience in childhood, the correlation between parental 

worklessness in the son’s childhood and the son’s own workless experience, controlling for 

observable confounders, contains two parts; that which is causal and that which is reflecting 

some unobservable confounding factors. If parental worklessness observed when the son is 

an adult can no longer causally affect the son’s own workless experiences then this 

component by assumption can only be capturing unobservable confounding factors. By 

therefore manipulating the timing of parental workless experiences using two periods of 

workless experiences of the parents, one ‘before’ the child leaves home and one ‘after’ the 

child leaves home, the causal impact of parental worklessness on the child’s workless 

experiences can be captured by

iz

δβ − from equation (4).  

 

i
parent
afterii

parent
beforei

son
i uyyy ++++= ,,
* δλβα x  (4) 

 

As mentioned previously, there are some assumptions that have to be made for this causal 

relationship to be identified. The first, most crucial, identifying assumption is that the child 

can only be causally affected by the parent’s experience before they leave home. Only the 

‘before’ period can therefore contain any causality. The ‘after’ period should only be 

measuring family specific heterogeneity. As Gottschalk points out, this assumption may be 

questionable if the observed ‘before’ and ‘after’ period are sufficiently close in time. With an 

outcome such as worklessness this is particularly problematic as the ‘after’ period is not 

clearly defined. If the outcome was instead education obtained at 16 for example, this 

methodology would be much cleaner as the ‘after’ period would be firmly defined as ‘after’ 

the exams took place. Robustness tests will be applied to the distance between the ‘before’ 

and ‘after’ period to address such concerns.  

 

In addition, it must be assumed that only children learn from their parents, the parents cannot 

learn from the child’s experiences to remove the concern of reverse causality.  It could be 

thought that in terms of worklessness, this assumption is likely to be valid as it is unlikely a 

parent would choose to leave employment if they see their child not working.  
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A further identifying assumption is that the relationship between the unobserved 

heterogeneity that this method attempts to proxy for and the parental workless spells in both 

the ‘before’ and ‘after’ period are equal. One problem with this assumption is the findings of 

Gregg (2001) that unemployment causally impacts future unemployment. This evidence 

indicates that there is likely to be an element of persistence in the ‘after’ period of the parent 

caused by the ‘before’ period, violating this assumption. This may bias the effect of the 

‘after’ period upwards and hence the causal impact downwards as a result of the timing.  

 

The second method often used in the literature to identify a causal relationship between 

parental worklessness and the workless experiences of their sons is a version of the 

alternative method used by Gottschalk (1996) and that used by Beaulieu et. al. (2005) and 

O’Neill and Sweetman (1998). This method utilises the fact that the relationship of interest 

can instead be thought of as  

 
parent
ii

parent
i uy ++= λα x*  (5) 

son
ii

parent
i

son
i uyy +++= λβα x*  (6) 

 

where the likelihood of sons experiencing workless spells in their own generation and the 

likelihood of parents experiencing workless spells are captured by the two equations (5) and 

(6). Note that the controls for observable heterogeneity are parental family background 

controls and the same set are used in both equations, hence there is no exclusion restriction 

for identification. This is consistent with Beaulieu et. al. (2005)3. The dependent variables are 

again latent variables of the form 

 

0=son
iy  if 0* ≤son

iy  

1=son
iy  if 0* >son

iy  

and 

0=parent
iy  if 0* ≤parent

iy  

1=parent
iy  if 0* >parent

iy  

 
                                                 
3 Child characteristics could instead be used in equation (6) as in O’Neill and Sweetman (1998) but these are 
viewed as a transmission mechanism through which parental worklessness could impact on child’s 
worklessness. Hence their inclusion in the model would reduce the estimate of the causal impact. 
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If the two equations are estimated together, there are now four possible outcomes of the 

model; head of the household workless, son workless; head of the household not workless, 

son workless; head of the household workless, son not workless; and head of the household 

not workless, son not workless. The main advantage of this new structure is that it gives a 

‘recursive’ simultaneous equations model which Wilde (2000) and Beaulieu et. al. (2005) 

argue allows for the endogeneity of parental worklessness in equation (6) to be ignored given 

the non-linear functional form. If the model was linear, adding (5) and (6) together would 

remove parental worklessness from the equation and the model would not be identified. 

However, given that the model is not estimated in a linear form, they argue that this problem 

is removed. The model is therefore only semi-parametrically identified; it relies on its non-

linear form for identification. The main issue with this identification strategy is that the non-

linear identification only holds at the tails of the distribution, where the CDF of the probit 

function deviates from a linear function. As will be seen in the following section, the levels of 

worklessness in the data used are not situated around the tails of the distribution but more 

central, around the area of the distribution where the probit distribution and a linear 

distribution would appear identical. It is therefore highly unlikely this model will identify 

causality in this data. However, for completeness, this will be estimated and the results 

analysed. The model is therefore 

 

),,()|1,1( 2 ρλλβ ii
parent
ii

parent
i

son
i yyyP xxx +Φ===  (7) 

 

where and is modelled explicitly to control for unobserved family level 

heterogeneity and is a vector of all observable components.  

),( son
i

parent
i uuCov=ρ

ix

 

This model is based on the important assumption that the child can only learn from the 

parent, the parent can not learn from the child and therefore this removes any concerns of 

reverse causality. In addition the two error terms  and  are assumed to be bivariate 

normal distributed. Any unobservable family specific components are common to both parent 

and son and hence captured in the error term in both equations by the correlation 

parent
iu son

iu

ρ .  The 

likelihood function to be maximised is then 
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Maximum likelihood estimation can then be used to attempt to identify any causal affect of 

parental worklessness on sons’ workless experiences. Therefore this process of jointly 

estimating equations (5) and (6) removes any of the family specific unobserved heterogeneity 

by modelling this explicitly with the correlation ρ  and the remainder of this is attempting to 

extract the causal estimate of parental worklessness on sons’ workless experiences.  

 

The third methodology that will be used in an attempt to estimate a causal relationship 

between father and sons’ worklessness will utilise the impact of the 1981 UK recession. The 

recession of the early 1980’s was widely unanticipated and hit certain sectors, such as 

manufacturing much harder than other sectors such as the public sector. The hard hit 

industries saw large falls in the proportions employed within that industry between 1980 and 

1983 (see figure 1). The detailed description of the instrument will follow in the data section 

but the methodology behind utilising the recession employment shock data is to create a 

dummy indicating fathers’ who were working in hard hit industries just before the recession. 

These fathers’, given that there was no selection into these industries, were at a higher risk of 

experiencing worklessness in 1986 than those in non-hit industries due to an exogenous 

shock to their specific industry. By definition, this therefore places a requirement on the data 

that the father was in work before the recession. This methodology therefore is attempting to 

capture causality in a less permanent form of worklessness than that of the rest of the analysis 

of this research.  

 

An instrumental variable technique is implemented to attempt to extract exogeneity in 

fathers’ worklessness through a first stage regression shown in equation (9) and this 
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exogenous variation is then used to estimate a causal relationship between father and sons 

worklessness as shown in equation (10).  

 
parent
ii

parent
i uhity +++= λγα x*  (9) 

son
ii

parent
i

son
i uyy +++= λβα xˆ*  (10) 

 

The crucial assumption for identifying any causality through an exogenous instrument is that 

those in the treatment group, or those defined as working in a hard hit industry in 1980 in this 

case, were not necessarily different in terms of observable and unobservable characteristics 

from those in the control group; those working in an industry that was not hit hard. This is the 

excludability restriction that the instrument should not be capturing something which would 

predict the probability of the sons’ workless status, apart from the impact that it has on the 

fathers’ workless status. There may be some concern that those who worked in hard hit 

industries in 1980 were more at risk to worklessness regardless of the industry that they 

worked in. In order to ensure that this crucial assumption holds, a form of propensity 

matching can be implemented by predicting the likelihood of working in a hard hit industry 

in 1980 based on a vector of observable characteristics.  

 
parent
ii

parent
i uhit ++= λα x  (11) 

 

The predicted probabilities from a probit model shown in equation (11) of working in a hard 

hit industry are used to match fathers in the treatment and control groups. By performing this 

sample selection on observable characteristics, it is assumed that any differences in 

underlying unobservable characteristics are minimized.  

 

A further assumption required for working in a hard hit industry in 1980 to be used as a valid 

instrument is the relevance assumption; working in these hard hit industries must predict the 

increased probability of the father becoming workless. An F-test on the instrument in 

equation (10) can clarify the relevance assumption but given that there is only one instrument 

and hence the model is exactly identified, tests can not be carried out to prove the exogeneity 

of the instrument. Therefore, for this methodology to be capturing any causality, the 

assumption must hold that the once the two samples are matched, those fathers’ working in 

those industries defined as ‘hit’ are identical to those fathers’ working in those industries 
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defined as ‘not-hit’ apart from that they are at a higher risk of worklessness, given the 

employment shock, to satisfy the exclusion restriction. Robustness tests will be carried out on 

the definition of industries that are hard hit. 

 

4. Data 

 

Three main sources of British data are used for this research. The two British cohort studies, 

the National Child Development Study (NCDS) of those born in 1958 and the British Cohort 

Study (BCS) of those born in 1970 with original samples of around 9,000 boys in each, and 

the British Household Panel Survey (BHPS), a panel survey of 10,000 representative 

households recorded annually from 1991.  

 

The three data sources all have strengths and weaknesses for this research and so each are 

used to their strengths. The cohort studies have detailed longitudinal information, following 

the child and parent from birth to 16. They have been the main source of data for analysing 

intergenerational mobility in the UK and are broadly comparable across time. However, they 

do not follow the parents after the child is 16 and hence can not be used for the first 

identification method which requires parental work history after the child has left home.  

 

The BHPS on the other hand does follow all members of the household so we have 

information on parents work history after the son has left the home. However, we have more 

limited work history data for the sons that are measured quite differently to that of the cohort 

studies. For this reason the use of the BHPS is restricted to illustrating the first methodology 

explored to ascertain causality in intergenerational worklessness and will not be used in any 

comparative manor. In addition, as it is a household panel survey the sample sizes for each 

age group are small which makes statistical inference difficult.  

 

All three surveys were nationally representative when the original sample was taken, 

eliminating the likely downward bias discussed by Solon (1992) caused by sample selection. 

There are attrition problems however, particularly in the cohort studies, as the final samples 

are reduced by about half to around 4,500 sons and therefore an external source will be used 

to validate the employment characteristics of the remaining fathers to assess the direction of 

any biases.  

 

21 
 



National Child Development Study 

 

The NCDS obtained data at birth and ages 7, 11, 16, 23, 33, 42 and 46 for children born in a 

week in March 1958. The employment measures of the father are available if present when 

the son is age 11 (1969) and age 16 (1974). Various different father and head of household 

(hoh) employment measures have been tested and will be discussed in the robustness section 

but the main focus of the analysis will be on the father and the son as employment patterns 

for women are subject to different participation decisions making them harder to measure 

precisely. The dichotomous variable indicating fathers’ worklessness is coded as 1 if the 

father is observed as workless at 11 (1969) or 16 (1974), or in both periods4.  The base 

category is that the father is observed as employed at 11 (1969) or 16 (1974), or in both 

periods. This stringent definition of worklessness was designed to capture a more persistent 

workless level rather than just a temporary shock.  

 

Table 1 indicates the samples of those fathers’ only ever seen as out of work when observed, 

2.2% of the total sample. Given that this definition of worklessness may be subject to 

measurement error as not all fathers’ are observed in both periods, the analysis of the is 

repeated for a more restrictive measure and sub-sample of the father being workless in both 

periods and observed in both periods respectively. The results will be discussed in the next 

section.  To assess whether the workless rates observed are nationally representative, given 

attrition, the first panel of table A1 compares the workless rates of both the father-son pair 

sample and the hoh-son pair sample to the workless rates from the Family Expenditure 

Survey (FES) in both 1969 and 1974 for fathers and head of households with sons aged 10-

16. The rates of worklessness are reassuringly very similar across the two surveys for the 

corresponding years suggesting that the attrition in the sample is not adversely affecting the 

observed levels of worklessness for fathers or head of households. As the fathers vary in age, 

quadratic age controls are included in all of the analysis to remove any life cycle bias of 

worklessness.  

 

For the sons, work history data is available for the cohort members for every month from 

ages 16 to 42 (Galindo-Rueda (2002)). From the measure of sons’ worklessness, varying 
                                                 
4 The NCDS ask about the father’s occupation at 11 and 16, requesting that if not currently working to put ‘not 
working’. These are coded as workless. For the mother, at 11 it asks the number of weeks worked in the past 
year and is coded workless if this is zero. At age 16 the question is ‘Does the mother do paid work’ and is coded 
workless if the answer is ‘no’. Father assumed head of the household unless missing.  
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intensities of binary employment variables are computed5 from leaving full time education to 

age 30 for comparability with the BCS. Leaving full time education was chosen as the 

starting point to observe workless spells rather than a fixed date so as to not bias upwards the 

predicted probabilities of experiencing worklessness for those entering into higher education. 

The focus of the main results will be on sons experiencing a year or more concurrent spells 

out of work but a more intense measure of worklessness will also be considered in the 

robustness section for those sons who have spent two years or more in concurrent workless 

spells. Table 2 clearly shows a distinction in sons’ workless levels by their father’s workless 

experiences. For sons from families where the father was observed only in employment, there 

was a 13.2% chance that they would experience a year or more in concurrent workless spells 

after leaving full time education. If the father was observed out of work at either 11 or 16, the 

chances of the son experiencing a year or more out of work increases to 21.6%. For sons 

from families where the father was only observed as workless throughout the son’s 

childhood, the corresponding percentage was 35%.  

 

To control for observable differences across families, information on parental education, 

father’s social class when the son is aged 116, the region the family live in at 11 and housing 

tenure at 11 are all available. The education and social class of the parents are likely to 

capture family heterogeneity in exposure to worklessness by the type of job that the parent 

obtains. They are also likely to capture the socio-economic status of the parent, as will the 

housing tenure of the family, which will be negatively associated with the likelihood of 

experiencing workless spells in both generations. The region controls are included to capture 

any region specific employment shocks that are likely to effect the correlation assuming 

children often stay in the same region as their parents’ in adulthood.  

 

British Cohort Study 

 

The BCS originally included all those born in Great Britain between 4th and 11th April 1970.  

Information was obtained about the sample members and their parents at birth and at ages 5, 

10 and 16 and then the sample members only at ages 26, 30 and 34. Employment measures 

are available for the parents at ages 10 (1980) and 16 (1986) and in a similar fashion to those 
                                                 
5 Binary outcomes were chosen to fit into the framework used in the literature on intergenerational worklessness 
and welfare dependency. O’Neill and Sweetman (1998) examine different methods by using the continuous 
truncated sons’ workless variable.  
6 36% of those defined as workless have missing social class information. 
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created in the NCDS, the employment experiences of the father at these two ages are used to 

create the explanatory variable of interest7. The dichotomous workless variable is coded as 1 

if the father is only ever observed as workless and 0 if the father is observed as in 

employment at 10 or 16.  

 

A can be seen from the second panel of table 1, 6.37% of fathers are considered workless in 

this sample. As in the NCDS, whilst the main focus will be on father-son pairs, the head of 

household-son pair is also considered for robustness in the next section. In addition, a more 

restrictive measure and sample of worklessness; those fathers observed workless at 10 and 16 

and observed in both periods will also be considered for robustness. The second panel of 

table A1 repeats the exercise of comparing the workless rates of father-son pairs and hoh-son 

pairs in 1980 and 1986 with a similar sample of fathers and head of households in the FES. 

The data on father-son pairs looks very similar for 1980 but there is slightly more fathers 

worklessness in the cohorts in 1986 compared to the FES. For head of household-son pairs, 

the opposite is true; the data from 1986 on head of household worklessness looks very similar 

but the cohorts seem to experience less worklessness in 1980. Although these differences are 

slightly concerning, the fact that these trends are different would suggest there is not any 

systematic bias in parental worklessness in the cohort study.   

 

For the employment shock analysis, the father must be in work at 10 to be working in a hard 

hit industry and so this is a minimum restriction placed on the explanatory variable (90% of 

previous sample). This moves the analysis from a more permanent form of worklessness, to 

attempting to capture any causal impact of worklessness in a shock to the fathers’ work 

status.  The fathers’ workless variable therefore becomes defined as 1 if the father was in 

work at 10 and is not observed in work at 16 and 0 if the father is observed as in work in both 

periods. A more restrictive version of this variable is also used in line with the previous 

definition of worklessness where the fathers workless variable is re-defined as 1 if the father 

is employed at 10 but then observed out of work at 16 and again 0 if the father is employed at 

10 and 16. 

 

                                                 
7 The questions about the employment status of the mother and the father are identical in the BCS at age 10 and 
16 with both asking the ‘current (present) employment situation’ of each the father and the mother. Both are 
coded as workless if the response is anything but ‘regular paid job’ or ‘works occasionally’. Father assumed 
head of household unless missing. 
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Work history information is available for the sons for every month between the ages of 16 

and 30 and so comparable outcome variables are created on whether the son has experienced 

one year or two years in concurrent spells out of work from leaving full time education to age 

30. The main focus will be on sons who spent a year or more out of work but the more 

restrictive measure will be considered in the robustness section. Comparable family 

background measures are available in the BCS in the form of parental education, father’s 

social class at age 108, region of residence at 10 and housing tenure at 10. Table 2 again 

indicates a large distinction in sons’ workless levels by their father’s workless experiences. 

For sons’ of fathers’ who were only ever observed out of work while the son was aged 10 and 

16, the percent experiencing a year or more in concurrent workless spells in adulthood is 

nearly 40%. For those whose father was observed out of work at either 10 or 16 this 

percentage falls to 20%. In contrast, those sons’ with a father observed as employed at 10 or 

16, only 13% experience a year or more out of work after leaving full time education. 

 

For the more restrictive employment shock methodology, the first row of table 3 summarises 

the rate of sons’ worklessness by fathers’ workless experience at 16 given that they are 

employed in 1980. As to be expected it is clear that the differential levels of sons’ 

worklessness by fathers’ worklessness are smaller than those seen in table 2. For those sons 

with fathers’ observed in work in both periods the proportion workless in adulthood is 10%. 

If the father isn’t observed in work the proportions of sons’ worklessness in adulthood are 19 

and 15% respectively for the father observed workless or not observed at age 16. This is in 

contrast to 40% of sons experiencing worklessness with fathers’ only ever observed as 

workless. The intergenerational correlation of worklessness for this specific analysis will 

therefore be around half the size of that analysed using a more permanent definition of 

fathers’ worklessness.  The bottom row of table 3 illustrates those fathers’ employed in 1980 

without an industry code. Given that the definition of the instrument is reliant on observing 

the industry of the father in 1980, these sons’ are dropped from this sample. Reassuringly, the 

rates of sons’ workless by each grouping of fathers’ work status are very similar to those in 

the entire sample; hence this selection is not likely to bias the results.  

 

The instrument for an exogenous shock to the father is defined based on industry level 

information from 1980 and 1983. Working in a ‘hit industry’ is defined as whether the 

                                                 
8 55% of those defined as workless have missing social class information 
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industry that the father worked in when observed in 1980 was in the top 40% of ‘hit 

industries'; defined as the proportion employment change using 3 digit industry level 

employment data from the Employment Gazette for 1980 and 19839. Rows 2 and 3 of table 3 

illustrate the differences in the percentage of sons’ experiencing worklessness by the fathers’ 

employment status in 1986 and the defined instrument. As can be seen, in all three outcomes 

of the father, those in the hard hit industries were more likely to have a son who experienced 

a year or more out of work in adulthood.  

 

As discussed in section 3, there may be some concern over selection into the hard hit 

industries. To address this problem, a form of propensity matching is introduced to ensure 

that the treatment and control group are similar based on observable characteristics. For this, 

the same family background controls discussed above are used to predict working in a hard 

hit industry. Those in the control group with predicted probabilities below the minimum 

observed in the treatment group are then dropped from the sample under the ‘no common 

support’ assumption10. The predicted probabilities of working in a hard hit industry were then 

standardised and those with particularly low probabilities of being in hit industries in the 

control group were dropped11 until the mean predicted probability of working in these 

industries based on observable characteristics was the same for the control group and the 

treatment group. This sample selection is carried out to ensure that the two samples appear 

similar and minimize the risk of unobservable differences across the treatment and control 

groups.  

 

British Household Panel Study 

 

The BHPS is a panel survey of households recorded from 1991 onwards. Given that the first 

methodology requires that sons be observed along with their parents at only a specific time 

during their lives (a window from late childhood until preferably late 20’s) the sample of 

individuals that the BHPS allows is limited. However, given the household nature of the 

survey, the parents of the sons are still observed once the son enters the survey at 16 and in 

subsequent periods of the son’s life. As noted, the definitions of worklessness are different 

from the cohort studies. A workless spell in the BHPS is defined as the main labour force 

                                                 
9 20% and 60% cut off points are also analysed for robustness 
10 28 observations dropped in main sample 
11 690 further observations dropped in main sample 
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status reported by the father or son in the given year of interview. The definition of a period 

out of work for the father and the son is reporting anything other than ‘employed’ as their 

main labour force status at the time of interview. The BHPS sample are interviewed in all but 

one survey in the same three months of each year (September to December) so there should 

be no concern over any seasonal variation affecting the reporting of the main economic 

status. 

 

Two distinct periods are defined for this analysis, a ‘before’ and ‘after’ period. The father’s 

worklessness in childhood is defined as the father experiencing any spell out of work in the 

‘before’ period which is from the first observation up until either the child is age 18 or the 

age the child leaves home if this happens first. The sons’ worklessness is defined as 

experiencing a spell out of work in the ‘after’ period which is the time from the end of the 

‘before’ period until the last observation. Parental worklessness after the child has left home 

is defined as the father experiencing any workless spell in the ‘after’ period. The length of the 

‘before’ and ‘after’ periods are not stable across the sample observed and so restrictions are 

placed on the minimum number of ‘before’ and ‘after’ periods required to enter into the 

sample. The parents and sons must therefore be observed for at least three periods in the 

‘before’ period and at least three periods in the ‘after’ period.  

 

To make the data as comparable as possible with the two earlier cohort studies information is 

used on boys who have parents in the survey from when the son is age 10/14 onwards. This 

allows fathers worklessness to be observed during the childhood of the son, along with family 

background measures in their first observed time period including parental education, the 

father’s social class, region of residence and housing tenure despite the son not entering the 

survey until the age of 16.  
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5. Results 

 

The unconditional intergenerational correlation 

 

To quantify the magnitude of the raw intergenerational correlation of worklessness, table 4 

shows the estimates from a probit model on equation 1. The table indicates that the predicted 

probability of a son whose father has not been observed in work during the son’s childhood 

spending a year or more out of work themselves between leaving full time education and age 

30 is 0.33 in the NCDS. This is in contrast to the predicted probability of a son from a family 

where the father is observed to be in work at least once at 11 or 16 spending a year or more 

out of work themselves between leaving full time education and age 30 of 0.14. The 

intergenerational correlation or difference between the predicted probabilities for the two 

different types of family is 0.196. 

 

In the BCS, the predicted probability of a son spending a year or more in concurrent spells 

out of work between leaving full time education and age 30 is 0.39 if they are from a family 

where the father has is not observed in work at 10 or 16 compared to 0.14 if they are from a 

family where the father is observed to be in work at least once in these two periods. This 

produces an intergenerational correlation of 0.25. This indicates that between the cohort born 

in 1958 and those born in 1970 there has been an increase in persistence in the 

intergenerational correlation in worklessness, in line with the findings on intergenerational 

mobility. The fathers’ employment status for those sons’ born in 1970 is a stronger predictor 

of their own workless status than the father’s employment status for those sons’ born in 1958 

although the difference between the two coefficients is not statistically significant.  

 

To begin to move towards a causal estimate in the intergenerational transmission of 

worklessness, equation (2) can be estimated, controlling for the observable family 

background characteristics. As discussed in the previous section, by controlling for all 

observable characteristics it is unlikely that the casual effect will be identified given the high 

likelihood of an unobserved family specific component remaining in the error term and hence 

biasing the estimates. However, this can be thought of as a first step in a movement towards a 

causal estimate. Column 4 of table 4 presents the intergenerational correlation of sons’ 

worklessness and fathers’ worklessness conditional on these parental background controls. In 

the NCDS, 31% of the unconditional correlation in sons’ experiencing at least a year out of 
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work can be accounted for by these observable differences across families. In the BCS 29% 

of the unconditional intergenerational correlation between fathers’ worklessness and their 

son’s experiencing at least a year out of work can be accounted for by these parental 

background controls.  

 

Table 5 repeats the analysis in table 4 for the BCS cohort for a restricted sample of fathers’ 

who are employed in 1980. As discussed, within the instrumental variable analysis there is a 

restriction on the data that the father must be employed in 1980 and hence the focus shifts 

from a more permanent form of fathers’ worklessness to a shock to the father’s work status. 

As predicted, the raw intergenerational correlation is almost four times smaller for this 

restricted sample of individuals. If the predicted probabilities are considered, the probability 

of the son being workless in adulthood given that his father was employed in both periods is 

very similar to that of the predicted probability from table 4 of a son with a father observed to 

be working in at least one period. The main difference across the two tables comes from the 

large fall in the predicted probability of the son experiencing a year or more out of work in 

adulthood given that the father is employed at 10 but not observed in work at 16. This 

probability is just 0.186 compared to 0.385 for those sons whose father is never observed as 

employed; over twice the size when the more permanent measure of fathers’ worklessness is 

used. 38% of this smaller unconditional correlation is accounted for by observable 

characteristics across families. 

 

Before moving on to examine the causal impact of parental worklessness, appendix tables 

A2, A3 and A4 examine further the correlation across the cohorts considering different levels 

of fathers’ worklessness and sons’ worklessness intensities. Table A2 repeats the correlations 

in table 4 using instead a more restrictive measure of fathers’ worklessness. In this case the 

sample is restricted to individuals observed at both 11(10) and 16 and the workless measure 

is defined as 1 for those fathers observed out of work in both periods to reduce any 

measurement error brought about by including those not observed in both periods. There is 

very little difference in the unconditional predicted probabilities and intergenerational 

correlations in either cohort. In the NCDS the intergenerational correlation is slightly higher, 

driven by an increase in the predicted probability of sons’ experiencing worklessness in 

adulthood with fathers’ observed as workless in both periods. In the BCS the correlation is 

marginally higher and this is instead driven by a decrease in the predicted probability of the 

sons’ experiencing worklessness from fathers’ who are employed at either 10 or 16.  
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There are some noticeable differences however in both cohorts in the amount of the 

correlation that can be accounted for by the same set of observable characteristics when this 

more restrictive fathers’ workless measure is used. The observable family characteristics can 

now account for 42% of the intergenerational correlation in the NCDS and 48% in the BCS, 

an improvement from that accounted for with the less restrictive measure. This is reassuring 

as it suggests that this more restrictive measure and the observable characteristics are both 

capturing something permanent about the families. 

 

Table A3 repeats table 5 for the instrumental variable analysis sample, restricting the measure 

of fathers’ worklessness as in table A2 to only those fathers’ observed workless in 1986. 

Again, there is very little difference in the predicted probabilities and the unconditional 

intergenerational correlation. The correlation is slightly higher due to a slight increase in the 

predicted probability of sons from fathers’ observed not in work at 16 experiencing 

worklessness in adulthood and a slight decrease in the probability of sons from fathers 

employed at 10 and 16 experiencing worklessness in adulthood. The magnitude of the 

unconditional correlation remains significantly smaller than that of the more permanent 

workless measure used in table A2. The conditional correlation is almost identical to that 

from the less restrictive measure of worklessness for this sample seen in table 5 with a larger 

proportion, 55% for this measure, of the unconditional correlation being accounted for by 

observable characteristics. 

 

Appendix table A4 instead places restrictions on the intensity of worklessness of the son so 

that the dependent variable is now defined as 1 if the son spends 2 or more years in 

concurrent spells out of work from leaving full time education until the age of 30. In the 

NCDS, the unconditional correlation is around half the size of that from table 4 but for the 

BCS the correlation remains of a similar magnitude. The underlying predicted probabilities of 

experiencing these spells out of work are lower in all cases as would be expected but the 

probability of experiencing two or more years out of work for sons’ with fathers’ who were 

only observed workless remains high in the BCS with a predicted probability of 0.31. The 

corresponding probability in the NCDS has almost halved which is driving the substantial 

differences in the intergenerational correlation. The unconditional and conditional 

correlations are now twice the size in the later cohort, again, consistent with the literature on 

intergenerational mobility that finds an increase in persistence in family background in 
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predicting child outcomes across time. The increase in persistence in this case is statistically 

significant. When family background characteristics are controlled for, there remains a 

significant correlation in the NCDS, with 38% of the unconditional correlation accounted for 

and in the BCS, with 43% of the unconditional correlation being accounted for by 

observables.  

 

Table A5 assesses the issue of selecting father-son pairs rather than head of household-son 

pairs for this analysis by repeating table 4 for the head of household sample rather than 

fathers alone. The results indicate that for the NCDS, the head of household measure 

generates an intergenerational correlation around 25% lower than that found for the father 

sample. In the BCS however, the results are very similar to those found in the analysis on 

fathers’ only. The difference in the results in the NCDS appears to be driven by the decrease 

in the predicted probability of sons’ from households’ where the head of household was only 

observed workless being 0.05 lower than for sons’ from the fathers sample. All other 

coefficients remain very stable to those of the sample of fathers only. This result could be 

driven by the fact that being brought up without a father was less common for those born in 

1958 and mothers’ in general tended to work less and hence were more likely to be observed 

workless, without necessarily impacting on their sons’ future workless experiences.  

 

The causal impact of intergenerational worklessness 

 

To estimate the causal impact of fathers’ worklessness on son’s worklessness using the first 

identification strategy discussed in section 3 requires observing fathers’ worklessness both 

during the sons’ childhood, or ‘before’ the son leaves home and once the son is in adulthood, 

or ‘after’ the son leaves home. Given that observations of the fathers’ are only available in 

the birth cohorts up until age 16, there is no observable ‘after’ period for these two cohorts. 

However, the BHPS allows us to observe the father in both periods. Table 6 gives results 

from this identification strategy starting in column (1) with the raw intergenerational 

correlation as discussed for the cohorts in table 4, and introducing the ‘after’ period of 

fathers’ worklessness to control for unobserved heterogeneity in column (2).  As can be seen 

from table 6, while the addition of the ‘after’ period reduces the coefficient on the ‘before’ 

period, there is no significant difference between the two coefficients indicating that there is 

no causal relationship between fathers’ worklessness and sons’ worklessness. The p-value on 
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the test of equality of the two coefficients of 0.7342 indicates that the null that the two 

coefficients are statistically equal can not be rejected.  

 

Columns 3 and 4 of table 6 repeat this procedure for the regressions conditional on parental 

background controls. Column 3 shows the conditional intergenerational correlation (as 

observed for the cohorts in column 4 of table 4) with the ‘after’ period of parental 

worklessness included in column 4. The coefficient on fathers’ worklessness in the sons’ 

childhood in the conditional regression has increased compared to the coefficient in the 

unconditional regression, indicating some negative correlation between the controls, the sons’ 

worklessness measure and the fathers’ worklessness measure. The coefficient on fathers’ 

worklessness after the son has left home has diminished slightly. This is reassuring given that 

the ‘after’ period is used to control for unobserved heterogeneity and therefore is likely to be 

correlated with any observable heterogeneity that is controlled for in column 4. There is now 

a larger difference between the ‘before’ and ‘after’ coefficients indicating a positive causal 

impact of parental worklessness on son’s worklessness but this is not statistically significant. 

The p-value from the test of equality of the coefficients of 0.5181 again infers that we can not 

reject the null that the two coefficients are equal and hence there is no causal relationship.  

 

Gottschalk (1996) suggested that this method may be subject to bias if the ‘before’ and ‘after’ 

periods are close together as the assumption that children only learn from their parents in the 

‘before’ period could be invalid. The ‘after’ period could also therefore contain both 

heterogeneity and some additional causal element, biasing up the ‘after’ period and down the 

true causal estimate. Tables 7 considers this issue by restricting the ‘after’ period to three 

years after the ‘before’ period ends. As the ‘after’ period moves further away from the 

‘before’ period, this increases the chances that there is no causal element of worklessness 

remaining in the ‘after’ period, moving to a cleaner measure of heterogeneity. The coefficient 

on the ‘after’ period should therefore decrease the further away from the ‘before’ period this 

becomes and hence the estimated causal impact should increase. Given the additional 

restrictions on the data the sample is reduced but comparing table 6 to table 7, the coefficients 

on the ‘before’ period remain remarkably stable. What is noticeable by comparing the second 

and fourth column in each table is the dramatic reduction in the coefficient of parents’ 

worklessness ‘after’ the child leaves home along with the p-value on the test for equity of the 

coefficients. Although in table 7 there is still no significance in causality, the direction of the 

coefficients are certainly working towards a significant positive causal effect. Further 
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movement of the ‘after’ period would reduce the samples further but given the scope for 

further years of data in the future there may be a suggestion of positive causality with 

additional sample members.  

 

Moving onto the second identification strategy discussed, this strategy does not place as 

many constraints on the data as the first and can therefore be used to attempt to estimate 

causality within the cohort studies. As discussed in the methodology section, given the levels 

of worklessness observed in the data for the cohorts, this methodology is highly unlikely to 

be identified as the part of the distribution that it is working from is likely to be linear and 

this methodology is only identified by its non-linearity in the absence of an exclusion 

restriction. Table 8 shows the coefficients from the conditional univariate probit model used 

to calculate the conditional marginal effects, or intergenerational correlation, in column 4 of 

table 4. In both cohorts the Wald test statistic indicates that the null that rho is equal to zero 

cannot be rejected. However, the standard errors and confidence intervals on rho are very 

large; suggesting as expected that this model is not well identified. No further conclusions 

can be drawn about the causality in intergenerational worklessness using this methodology. 

 

The third strategy used to identify causality in intergenerational worklessness shifts the focus 

from permanent worklessness to a shock to the work status of fathers’ and the impact this has 

on the sons’ workless experiences in adulthood. As seen from table 5, this less permanent 

form of worklessness is predicting a smaller unconditional and conditional intergenerational 

correlation in worklessness as would be expected. As discussed in the previous sections, the 

two identifying assumptions behind this methodology are firstly that the instrument is 

relevant, which can be tested, and secondly that the instrument is excludable, which, given 

that the model is exactly identified, is not testable as there are not enough degrees of freedom.  

 

A method of matching can be applied to the control and treatment groups to attempt to 

minimize differences in the predicted probability of the fathers’ being in a hit industry as 

opposed to a non-hit industry based on their observable characteristics. This works toward the 

assumption that the only distinction between being in the hit group as apposed to the non-hit 

group is the exogenous increased risk of being made workless associated with the 

employment change in the fathers’ industry. Table 9 repeats the analysis of table 5 for the 

unmatched and matched sample of fathers. As can be seen, the predicted probabilities of 

sons’ experiencing worklessness in adulthood and the unconditional and conditional 
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correlations are all very similar for the matched and unmatched samples. This suggests that 

there may not be an endogeneity problem with the instrument given the small differences 

between the matched and unmatched sample. 

 

Table 10 presents the first and second stage results, unconditional and conditional from an 

instrumental variable regression using an indicator for working in a hit industry in 1980 to 

instrument the father’s employment status at 16 for the unmatched sample. In the 

unconditional first stage regressions the  probability of the father being observed workless in 

1986 increases 12% if they work in a hit industry as apposed to a non-hit industry. In the 

conditional regression this is reduced to 8%. The corresponding F statistics are 49 and 21 

respectively, suggesting that the instrument is relevant. The second stage result for the 

unconditional regression is a large increase in the intergenerational correlation of 

worklessness, significant at a 99% level of confidence.  For the conditional regression, the 

coefficient is half the size and not significantly different from zero given the large standard 

error, but still 5 times the magnitude of the conditional correlation.  

 

If the main concern in measuring causality in intergenerational worklessness is omitted 

variable bias, a priori the second stage effects should be lower than the unconditional and 

conditional correlations seen in table 9 given the assumption of a positive correlation between 

the unobservable heterogeneity and endogenous variable, father’s worklessness. The second 

stage results are, however, five to six times the size of the estimated intergenerational 

correlation in worklessness. 

 

Table 11 repeats the analysis in table 10 for the sample of matched fathers’. The first and 

third columns of table 11 indicate that the instrument again satisfies the relevance assumption 

with an F statistic of 16.04 and 15.06 in the unconditional and conditional first stage 

regressions respectively. The marginal effect of being in a hit industry predicts fathers’ 

worklessness to be 8% higher than if the father is not in a hit industry, very similar to that of 

the unmatched conditional regression in column 3 of table 10. The two effects are stable 

despite the addition of background controls, indicating that once a matched sample is used 

this instrument is indeed measuring something exogenous rather than any confounding 

factors across families. As in table 10, the coefficients from the second stage regression are 

much larger than the intergenerational correlations from table 9. Both the unconditional and 
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conditional effects are statistically insignificant but this is again due to the large robust 

standard errors rather than the point estimate.  

 

One possible explanation for this is that given the nature of the selection of the workless 

variables to include those not observed in work at 16, measurement error could be present in 

the data leading to attenuation bias, biasing the correlations towards zero. By using an 

exogenous instrument, this could be removing any such error from the data. To check as to 

whether this may be driving the results, a more restrictive measure of fathers’ worklessness, 

having to be observed out of work at 16, can be used to replicate this methodology. If the 

instrument is dealing with any error in the data, the more restricted fathers’ workless variable 

would be subject to less measurement error and hence the estimated second stage effect 

should be higher in the more restricted data as it is subject to less attenuation bias.  

 

Table 12 replicates table 10 using the more restricted sample. For the unconditional 

regression the first stage marginal effect is around half the size of that seen in table 10 with 

an F statistic of 15.25, suggesting the instrument is still relevant. The second stage coefficient 

is larger than that seen in table 10 as would be expected given less error. The conditional 

regression has a lower effect in the first stage regression and a lower F statistic of 4.23 

suggesting the instrument is now becoming less effective at predicting fathers’ workless 

status. This could be driven by the sample size as the degrees of freedom on the F statistic are 

more constrained. The second stage coefficient however has a point estimate very close to the 

conditional point estimate from table 10 and 11. Although none of the conditional point 

estimates are statistically significantly different from zero, they are all in the same range and 

it is only the large standard errors that prevent significance. 

 

A number of robustness tests were carried out on the definition of the instrument to ensure 

that the instrument is exogenous. One robustness check is to test different definitions of the 

cut off point for being in a ‘hit industry’. If the cut off point is too low, the instrument will 

fail the relevance assumption by not predicting enough variation in fathers’ worklessness. If 

the cut off point is too high, the instrument will be endogenous as it won’t be selective 

enough. Tables A6 and A7 consider both of these points by reducing the cut off point to the 

worst 20% hit industries in table A6 and the worst 60% industries in table A7. In table A6, as 

expected, the marginal effect of being in a hit industry does not predict fathers’ workless 

status. The marginal effect is not statistically significantly different from zero in either the 
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unconditional or conditional regressions. The F statistics are therefore very low at 2.37 and 

1.95 respectively. In table A7, the instruments are statistically significantly predicting the 

endogenous variable but the F statistics are also very low, at 3.88 and 4.52 in the 

unconditional and conditional regression respectively. This is likely to be driven by the fact 

that the instrument is not selective enough and is therefore endogenous. The 60% cut off is 

therefore suffering from weak instrument specification and the results are unreliable.  

.  
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6. Conclusions 

 

This research adds to the currently sparse literature on the intergenerational transmission of 

worklessness in the UK in a number of ways. By introducing new data, the magnitude of the 

intergenerational correlation of worklessness can be assessed for a new cohort born in 1970 

and the intergenerational correlation in worklessness can be compared across time in the UK 

for the first time. In addition, this research replicates two commonly used methods of 

identifying causality in the literature identifying the strengths and weaknesses in each, often 

not observed in other research. Finally, this research adds a third methodology to the 

literature by introducing an exogenous shock to fathers’ employment utilising the recession 

of 1981 to capture causality in the intergenerational transmission of worklessness.  

 

The results indicate that there is a large correlation in workless experiences between fathers’ 

and sons’ in the UK. Son’s from both cohorts are over twice as likely to experience workless 

spells themselves if they come from a family where the father was not observed in work 

throughout childhood compared to a father observed as employed at either 11(10) or 16. 

Across time, this correlation has increased from those born in 1958 to those born in 1970. 

The intergenerational correlation is 5% higher in the BCS than the NCDS; the difference in 

the probability of experiencing worklessness between sons’ from families with workless 

fathers’ as apposed to sons from families with a father employed at 11(10) or 16 has widened 

across time although the difference is not statistically significant in this case. Increasing the 

intensity of the sons’ workless measures leads to an even larger increase across cohorts with 

the intergenerational correlation doubling from the NCDS to the BCS with the difference 

becoming significant across time.  This is consistent with an increase in persistence of the 

impact of family income on sons’ adult earnings predicted in the mobility literature. 

Controlling for observable characteristics accounts for 30% of the intergenerational 

correlation in the two cohorts and the use of more intensive workless measures of the father 

increases this percentage to 42% and 48% in the NCDS and BCS respectively.  

 

The first empirical strategy used to estimate causality in the BHPS finds no significant causal 

relationship between father’s worklessness and son’s worklessness. It is likely, given 

evidence provided using a more restrictive method, that this result may be driven by a lack of 

data. Creating a sizeable gap between the two periods defined produces remarkably stable 

coefficients for the ‘before’ period and pushes the ‘after’ period towards zero. Given the 
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sample sizes are decreasing with the increasing demand on the data this method can not be 

explored further until further data becomes available. The second empirical strategy often 

used in the literature to explore causality is shown here to be not well identified. Despite the 

use of this strategy without any exclusion restriction in other research, the levels of 

worklessness in the cohort data violate the non-linearity identification strategy. These results 

can not therefore be used to infer any additional information about intergenerational 

worklessness. 

 

The new strategy introduced by this research utilises the recession of the 1980’s to attempt to 

identify causality in intergenerational worklessness. The instrument is defined as the father 

working in the bottom 40% of hit industries in 1980, based on the proportion change in 3 

digit industry level employment from 1980 to 1983. Given that the father must be employed 

in 1980 a less permanent measure of worklessness is examined with an intergenerational 

correlation around 1/5 of the size of that found using the more permanent measure of fathers’ 

worklessness. The evidence from an instrumental variable regression using this instrument 

suggests that whilst there is not a statistically significant causal impact of intergenerational 

worklessness, the point estimates from the conditional regressions are very stable across the 

unmatched, matched and restrictive sample and are as large as those predicted using a more 

permanent measure of worklessness. The standard errors however are also very large.  

 

To conclude, whilst not being able to make any strong statement about causality in the 

intergenerational transmission of worklessness, this research has been informative on the 

trends in the correlation of worklessness across time, the role of observable characteristics, 

the strengths and weaknesses of the methodologies commonly used in the literature and 

finally it has introduced a new attempt at identifying causality. Despite not finding statistical 

significant results in these point estimates, the instrument appears valid and the point 

estimates large.  
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Table 1 Sample composition of fathers’ defined as workless in the NCDS and the BCS 

cohorts 
 
NCDS 

16 
11 

Father 
employed 

Father  
workless 

 
Missing 

 
TOTAL 

Father 
employed 

2932 
(63.20) 

123 
(2.65) 

1032 
(22.25) 

4087 
(88.10) 

Father 
workless 

39 
(0.84) 

41 
(0.88) 

35 
(0.75) 

115 
(2.48) 

 
Missing 

410 
(8.84) 

27 
(0.58) 

0 
(0.00) 

437 
(9.42) 

TOTAL 3381 
(72.88) 

191 
(4.12) 

1067 
(23.00) 4639 

Shaded region represents those counted as workless. Actual figures reported. Percentage of total sample in parenthesis. 
 
BCS 

16 
10 

Father 
employed 

Father 
workless 

 
Missing 

 
TOTAL 

Father 
employed 

1855 
(39.93) 

213 
(4.58) 

2100 
(45.20) 

4168 
(89.71) 

Father 
workless 

27 
(0.58) 

39 
(0.84) 

213 
(4.58) 

189 
(4.07) 

 
Missing 

245 
(5.27) 

44 
(0.95) 

0 
(0.00) 

289 
(6.22) 

TOTAL 2127 
(45.78) 

296 
(6.37) 

2223 
(47.85) 4646 

Shaded region represents those counted as workless. Actual figures reported. Percentage of total sample in parenthesis. 

  Main sample workless 
  Restricted sample workless 

 
 

 
 

Table 2 Descriptive statistics of sons’ workless rates in adulthood by fathers’ workless 
experience in childhood in the NCDS and BCS cohorts 

 
 Percentage son’s workless by father’s employment status 

Cohort (year son born) Father only 
observed workless

Father 
employed and 
workless 

Father only 
observed employed 

NCDS (1958) 34.95 21.60 13.19 

BCS (1970) 39.21 20.42 12.86 
Sons workless defined as cohort members observed as out of work for 12 or month consecutive months from leaving full time education to 
age 30 
Fathers’ employment status defined from measures of employment at cohort members age 11(10) and 16. 

  

39 
 



Table 3 Descriptive statistics of sons’ workless rates in adulthood by father’s workless 
experience in childhood for fathers’ employed in 1980 in the BCS cohort 

 
 Percentage son’s workless by father’s 

employment status 
16 

10 
Father 
employed 

Father 
workless 

 
Missing 

Father 
employed 

10.35 
[1855] 

19.25 
[213] 

15.38 
[2100] 

No hit  9.29 
[936] 

17.04 
[88] 

14.42 
[853] 

Hit  
 

12.78 
[485] 

21.74 
[92] 

17.47 
[727] 

No ind at 10 9.91 
[434] 

18.18 
[33] 

14.04 
[520] 

Sample size in parenthesis – Total N – 4168. Father must be employed at 10. 
Sons workless defined as cohort members observed as out of work for 12 or month consecutive months from leaving full time education to 
age 30 
Fathers’ employment status defined from measures of employment at cohort members age 10 and 16. 
Hit - fathers’ working in hard hit industries in 1980 defined as the bottom 30% of industries by employment change 1980-1983 

  Main sample workless 
  Restricted sample workless 
  Dropped from analysis 

 
 
 

Table 4 Predicted probabilities of sons experiencing a year or more concurrent spells out of 
work in adulthood by fathers’ workless experience in childhood for the NCDS and BCS 

cohorts 
 

 Unconditional Conditional 

Cohort (year son born) 
Father only 
observed 
workless 

Father 
employed at 
11 (10) or 16 

Difference in predicted 
probabilities by worklessness 

 Predicted probabilities Intergenerational Correlation 

NCDS (1958) 0.3330 0.1369 0.1961 
[0.046]*** 

0.1351 
[0.043]*** 

BCS (1970) 0.3854 0.1402 0.2452 
[0.035]*** 

0.1752 
[0.033]*** 

Age, age squared √ √ √ √ 
Parent background 
controls 

   √ 

Robust standard errors in parenthesis, *significant at 10%, ** significant at 5%, ***significant at 1% 
Sample sizes 4639 and 4646 in the NCDS and BCS respectively 
Intergenerational correlations = predicted probability of ‘any workless’ – predicted probability of ‘no workless’. 
Conditional controls include parental education, fathers’ social class, housing tenure and region at age 11 (10) in the NCDS (BCS) 
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Table 5 Predicted probabilities of sons experiencing a year or more concurrent spells out of 
work in adulthood by fathers’ workless experience in childhood in the BCS given that the 

father is in work in 1980  
 

 Unconditional Conditional 

Cohort (year son born) 
Father not 
observed in 
work at 16 

Father 
employed at 
10 & 16 

Difference in predicted 
probabilities by worklessness 

 Predicted probabilities Intergenerational Correlation 

BCS (1970) 0.1864 0.1336 0.0528 
[0.012]*** 

0.0329 
[0.012]*** 

Age, age squared √ √ √ √ 
Parent background 
controls 

   √ 

Robust standard errors in parenthesis, *significant at 10%, ** significant at 5%, ***significant at 1% 
Sample size 3181 
Intergenerational correlations = predicted prob of ‘father workless at 16’ – predicted prob of ‘father not workless at 16’ 
Conditional controls include parental education, fathers’ social class, housing tenure and region at age 10 in the BCS 

 
 
Table 6 Probit estimates of sons’ worklessness and fathers’ worklessness in the BHPS using 

both ‘before’ and ‘after’ the son leaves the household 
 

 (1) (2) (3) (4) 
Father workless before     
Marginal effects 0.2030 

(0.053)*** 
0.1552 
(0.056)*** 

0.2093 
(0.071)*** 

0.1760 
(0.073)** 

Coefficient 0.5745 
(0.143)***

0.4445 
(0.155)***

0.6003 
(0.195)*** 

0.5093 
(0.202)**

Father workless after     
Marginal effects  0.1231 

(0.056)*** 
 0.1086 

(0.058)* 
Coefficient  0.3569 

(0.157)***
 0.3217 

(0.167)**
P test for equality (causality)  0.7342  0.5181 
Age, age squared √ √ √ √ 
Parent background controls   √ √ 
N 454 454 454 454 
Marginal effects reported. Robust standard errors in parenthesis. Coefficients in italic , *significant at 10%, ** significant at 5%, 
***significant at 1% 
P-test for equality is a test for equality of regression coefficients, not marginal effects.  
Parental background controls: parental education, fathers’ social class, housing tenure and region when household first observed (child age 
10-14) 
Sample: Boys only.  ‘Before’ – child age 10 or when first observed until age 18 or when left home if left home 16/17. Must be observed for 
at least 3 ‘before’ periods.  ‘After’ – year after before period ends until up to 9 yrs later. Must be observed for at least 3 ‘after’ periods. 
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Table 7 Probit estimates of sons’ worklessness and fathers’ worklessness in the BHPS using 
both ‘before’ and ‘after’ the son leaves the household – moving ‘after’ period to three years 

from ‘before’ period 
 

 (1) (2) (3) (4) 
Father workless before     
Marginal effects 0.2006 

(0.060)*** 
0.1744 
(0.064)** 

0.1915 
(0.082)** 

0.1743 
(0.085)** 

Coefficient 0.5376 
(0.158)***

0.4690 
(0.169)***

0.5188 
(0.218)** 

0.4734 
(0.226)**

Father workless after     
Marginal effects  0.0756 

(0.066) 
 0.0553 

(0.069) 
Coefficient  0.2068 

(0.178)
 0.1540 

(0.190)
P test for equality (causality)  0.3577  0.3310 
Age, age squared √ √ √ √ 
Parent background controls   √ √ 
N 350 350 350 350 
Marginal effects reported. robust standard errors in parenthesis. Coefficients in italic , *significant at 10%, ** significant at 5%, 
***significant at 1% 
P-test for equality is a test for equality of regression coefficients, not marginal effects.  
Parental background controls: Parental education, fathers’ social class, housing tenure and region when household first observed (child age 
10-14) 
Sample: Boys only.  ‘Before’ – child age 10 or when first observed until age 18 or when left home if left home 16/17. Must be observed for 
at least 3 ‘before’ periods.  ‘After’ – three years after before period ends until up to 6 yrs later. Must be observed for at least 3 ‘after’ 
periods. 
 
 

 

Table 8 Bivariate probit estimates of sons worklessness on fathers worklessness in the NCDS 
and BCS cohorts 

 
Cohort (year son 
born) 

Univariate 
model 

Bivariate 
model  

ρ  

NCDS (1958) 0.5444 
[0.135]*** 

-0.3620 
[0.922] 

0.4066 
[0.415] 

BCS (1970) 0.6233 
[0.099]*** 

0.7167 
[0.459] 

-0.0480 
[0.226] 

Age, age squared √ √ √ 
Parent background  √ √ √ 

Coefficients reported, robust standard errors in parenthesis, *significant at 10%, ** significant at 5%, ***significant at 1% 
Sample sizes 4639 and 4646 in the NCDS and BCS respectively 
Conditional controls include parental education, fathers’ social class, housing tenure and region at age 11 (10) in the NCDS (BCS) 
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Table 9 Predicted probabilities of sons experiencing a year or more concurrent spells out of 
work in adulthood by fathers’ workless experience in childhood given that the father was in 

work in 1980 in the BCS cohort 
 

 Unconditional Conditional 

Cohort (year son born) 
Father not 
observed in 
work at 16 

Father 
employed at 
10 & 16 

Difference in predicted 
probabilities by worklessness 

 Predicted probabilities Intergenerational Correlation 

Unmatched sample 0.1864 0.1336 0.0528 
[0.012]*** 

0.0329 
[0.012]*** 

Matched sample 0.1929 0.1492 0.0437 
[0.014]*** 

0.0282 
[0.015]* 

Age, age squared √ √ √ √ 
Parent background 
controls 

   √ 

Robust standard errors in parenthesis, *significant at 10%, ** significant at 5%, ***significant at 1% 
Sample size 3181 unmatched and 2463 matched 
Intergenerational correlations = predicted prob of ‘father workless at 16’ – predicted prob of ‘father not workless at 16’ 
Conditional controls include parental education, fathers’ social class, housing tenure and region at age 10 in the BCS 
 
 
 
 

Table 10 Instrumental variables regression of sons experiencing a year or more concurrent 
spells out of work in adulthood by fathers’ workless experience in childhood given that the 

father was in work in 1980 in the BCS cohort instrumented by father working in a ‘hit 
industry’ in 1980 

 

 Unconditional Conditional 

Dependent variable First stage – 
Hit industry 

Second stage First stage – 
Hit industry 

Second stage 

Father not observed in 
work at 16 

0.1229 
[0.018]*** 

 0.0828 
[0.018]*** 

 

Son workless for a year 
or more  

 0.3142 
[0.109]*** 

 0.1501 
[0.160] 

F-test 48.96  20.61  
Age, age squared √ √ √ √ 
Parent background 
controls 

  √ √ 

Robust standard errors in parenthesis, *significant at 10%, ** significant at 5%, ***significant at 1% 
Sample size 3181  
Hit - fathers’ working in hard hit industries in 1980 defined as the bottom 30% of industries by employment change 1980-1983 
Conditional controls include parental education, fathers’ social class, housing tenure and region at age 10 in the BCS 
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Table 11 Instrumental variables regression of sons experiencing a year or more concurrent 
spells out of work in adulthood by fathers’ workless experience in childhood given that the 

father was in work in 1980 in the BCS cohort instrumented by father working in a ‘hit 
industry’ in 1980 for a matched sample of fathers. 

 
 Unconditional Conditional 

Dependent variable First stage – 
Hit industry 

Second stage First stage – 
Hit industry 

Second stage 

Father not observed in 
work at 16 

0.0788 
[0.020]*** 

 0.0759 
[0.020]*** 

 

Son workless for a year 
or more  

 0.2268 
[0.188] 

 0.1986 
[0.194] 

F-test 16.04  15.06  
Age, age squared √ √ √ √ 
Parent background 
controls 

  √ √ 

Robust standard errors in parenthesis, *significant at 10%, ** significant at 5%, ***significant at 1% 
Sample size 2463  
Hit - fathers’ working in hard hit industries in 1980 defined as the bottom 30% of industries by employment change 1980-1983 
Conditional controls include parental education, fathers’ social class, housing tenure and region at age 10 in the BCS 
 

 
 
 
 

Table 12 Instrumental variables regression of sons experiencing a year or more concurrent 
spells out of work in adulthood by fathers’ workless experience in childhood given that the 

father was in work in 1980 in the BCS cohort instrumented by father working in a ‘hit 
industry’ in 1980 for a more restrictive sample of fathers’ 

 
 Unconditional Conditional 

Dependent variable First stage – 
Hit industry 

Second stage First stage – 
Hit industry 

Second stage 

Father not observed in 
work at 16 

0.0675 
[0.017]*** 

 0.0360 
[0.017]*** 

 

Son workless for a year 
or more  

 0.5932 
[0.286]** 

 0.2192 
[0.503] 

F-test 15.25  4.23  
Age, age squared √ √ √ √ 
Parent background 
controls 

  √ √ 

Robust standard errors in parenthesis, *significant at 10%, ** significant at 5%, ***significant at 1% 
Sample size 1601  
Hit - fathers’ working in hard hit industries in 1980 defined as the bottom 30% of industries by employment change 1980-1983 
Conditional controls include parental education, fathers’ social class, housing tenure and region at age 10 in the BCS 
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Figure 1 Variation in the proportion change in employment by 3 digit industry code from 

1980 to 1983 
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Appendix 
 

Table A1 Attrition analysis for the cohorts - workless rates from the cohorts and FES 
 Cohorts FES Cohorts FES 
 Father-son pairs  HOH-son pairs 
NCDS     
1969  2.74 2.90 4.01 5.41 
1974 5.35 3.70 6.96 7.14 
BCS     
1980 4.34 4.18 6.99 10.98 
1986 12.22 9.36 14.97 15.59 

FES rate for Fathers / HOH with a son aged 10-16 in the household 
 
 
Table A2 Predicted probabilities of sons experiencing a year or more concurrent spells out of 

work in adulthood by fathers’ workless experience in childhood for the NCDS and BCS 
cohorts for more restrictive measures of fathers’ worklessness 

 

 Unconditional Conditional 

Cohort (year son born) 
Father 
observed as 
workless at 11 
(10) and (16) 

Father 
employed at 
11 (10) or 16 

Difference in predicted 
probabilities by worklessness 

 Predicted probabilities Intergenerational Correlation 

NCDS (1958) 0.3728 0.1320 0.2408 
[0.075]*** 

0.1403 
[0.068]** 

BCS (1970) 0.3705 0.1178 0.2527 
[0.078]*** 

0.1330 
[0.069]** 

Age, age squared √ √ √ √ 
Parent background 
controls 

   √ 

Robust standard errors in parenthesis, *significant at 10%, ** significant at 5%, ***significant at 1% 
Sample sizes 3,135 and 2,134 in the NCDS and BCS respectively 
Conditional controls include parental education, fathers’ social class, housing tenure and region at age 11 (10) in the NCDS (BCS) 
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Table A3 Predicted probabilities of sons experiencing a year or more concurrent spells out of 
work in adulthood by fathers’ workless experience in childhood in the BCS given that the 

father was in work in 1980 for more restrictive measures of fathers’ worklessness  
 

 Unconditional Conditional 

Cohort (year son born) 
Father 
observed as 
workless at 16

Father 
employed at 
10 & 16 

Difference in predicted 
probabilities by worklessness 

 Predicted probabilities Intergenerational Correlation 

BCS (1970) 0.1954 0.1124 0.0830 
[0.031]*** 

0.0359 
[0.026] 

Age, age squared √ √ √ √ 
Parent background 
controls 

   √ 

Robust standard errors in parenthesis, *significant at 10%, ** significant at 5%, ***significant at 1% 
Sample size 1601 
Intergenerational correlations = predicted prob of ‘father workless at 16’ – predicted prob of ‘father not workless at 16’ 
Conditional controls include parental education, fathers’ social class, housing tenure and region at age 11 (10) in the NCDS (BCS) 

 
 

Table A4 Predicted probabilities of sons experiencing a year or more concurrent spells out of 
work in adulthood by fathers’ workless experience in childhood for the NCDS and BCS 

cohorts for more restrictive measures of sons’ worklessness 
 

 Unconditional Conditional 

Cohort (year son born) 
Father only 
observed 
workless 

Father 
employed at 
11 (10) or 16 

Difference in predicted 
probabilities by worklessness 

 Predicted probabilities Intergenerational Correlation 

NCDS (1958) 0.1825 0.0630 0.1195 
[0.038]*** 

0.0656 
[0.029]*** 

BCS (1970) 0.3069 0.0825 0.2245 
[0.033]*** 

0.1395 
[0.029]*** 

Age, age squared √ √ √ √ 
Parent background 
controls 

   √ 

Robust standard errors in parenthesis, *significant at 10%, ** significant at 5%, ***significant at 1% 
Sample sizes 4639 and 4646 in the NCDS and BCS respectively 
Sons’ worklessness defined as at least two years out of work  
Intergenerational correlations = predicted probability of ‘any workless’ – predicted probability of ‘no workless’ 
Conditional controls include parental education, fathers’ social class, housing tenure and region at age 11 (10) in the NCDS (BCS) 
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Table A5 Predicted probabilities of sons experiencing a year or more concurrent spells out of 

work in adulthood by the head of households’ workless experience in childhood for the 
NCDS and BCS cohorts 

 

 Unconditional Conditional 

Cohort (year son born) 
HOH only 
observed 
workless 

HOH 
employed at 
11 (10) or 16 

Difference in predicted 
probabilities by worklessness 

 Predicted probabilities Intergenerational Correlation 

NCDS (1958) 0.2772 0.1372 0.1400 
[0.038]*** 

0.0989 
[0.036]*** 

BCS (1970) 0.3636 0.1454 0.2282 
[0.028]*** 

0.1629 
[0.028]*** 

Age, age squared √ √ √ √ 
Parent background 
controls 

   √ 

Robust standard errors in parenthesis, *significant at 10%, ** significant at 5%, ***significant at 1% 
Sample sizes 4812 and 4930 in the NCDS and BCS respectively 
Intergenerational correlations = predicted probability of ‘any workless’ – predicted probability of ‘no workless’ 
Conditional controls include parental education, fathers’ social class, housing tenure and region at age 11 (10) in the NCDS (BCS) 
 
 

 
 

Table A6 Instrumental variables regression of sons experiencing a year or more concurrent 
spells out of work in adulthood by fathers’ workless experience in childhood given that the 

father was in work in 1980 in the BCS cohort instrumented by father working in a ‘hit 
industry’ in 1980 defined as the worst 20% of industries in terms of employment change 

 

 Unconditional Conditional 

Dependent variable First stage – 
Hit industry 

Second stage First stage – 
Hit industry 

Second stage 

Father not observed in 
work at 16 

0.0362 
[0.022] 

 0.0307 
[0.022] 

 

Son workless for a year 
or more  

 0.5347 
[0.547] 

 0.7217 
[0.735] 

F-test 2.73  1.95  
Age, age squared √ √ √ √ 
Parent background 
controls 

  √ √ 

Robust standard errors in parenthesis, *significant at 10%, ** significant at 5%, ***significant at 1% 
Sample size 3181 unmatched and 2269 matched 
Hit - fathers’ working in hard hit industries in 1980 defined as the bottom 20% of industries by employment change 1980-1983 
Conditional controls include parental education, fathers’ social class, housing tenure and region at age 10 in the BCS 
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Table A7 Instrumental variables regression of sons experiencing a year or more concurrent 
spells out of work in adulthood by fathers’ workless experience in childhood given that the 

father was in work in 1980 in the BCS cohort instrumented by father working in a ‘hit 
industry’ in 1980 defined as the worst 60% of industries in terms of employment change 

 
 Unconditional Conditional 

Dependent variable First stage – 
Hit industry 

Second stage First stage – 
Hit industry 

Second stage 

Father not observed in 
work at 16 

0.0422 
[0.021]*** 

 0.0453 
[0.021]*** 

 

Son workless for a year 
or more  

 0.2777 
[0.378] 

 0.3022 
[0.0361] 

F-test 3.88  4.52  
Age, age squared √ √ √ √ 
Parent background 
controls 

  √ √ 

Robust standard errors in parenthesis, *significan %, ** significant at 5%, ***significant at 1% t at 10
Sample size  3181 unmatched and 2634 matched 
Hit - fathers’ working in hard hit industries in 1980 defined as the bottom 60% of industries by employment change 1980-1983 
Conditional controls include parental education, fathers’ social class, housing tenure and region at age 10 in the BCS 
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