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1. Introduction

Segregation remains a major topic of research mu@ber of contexts such as
neighbourhoods, workplaces and schools. Researshaity segregation by poverty
status, by gender and by ethnicity among otheracharistics. Almost always, these
studies are comparative in some way: for examptgjiag that ethnic segregation in
neighbourhoods is higher in one city than anotleerthat gender segregation by
occupation has changed over time. There is ofteo ah implicit or explicit causal
model in mind, and the difference in segregatioasisociated with some behavioural
process. However, the inferential framework for reggtion indices is under-
developed, limiting the progress that can be m@des paper proposes an approach to

strengthen this framework.

It is central to our approach to think of segregatas the outcome of a process of
assignment. This includes the assignment of petpleeighbourhoods, workers to
jobs, or pupils to schools. In general, this altmrais likely to be the result of the
inter-locking decisions of different agents rathiwan a dictator model. This
perspective offers a number of advantages. Fitsties the outcome to a set of
processes that can be analysed and estimated. dGatamakes it clear that the
observed outcome is one of a set of possible owtspand so naturally leads on to a
framework for statistical inference. Third, the pention with the underlying
processes makes explicit that it is this systenwtioehaviour-based segregation that

is the object of interest in terms of analysingdhases of segregation.

There is a large literature concerning the measen¢mf segregation, with a number
of indices in use, all with differing propertieshd most widely used measure of
segregation is the dissimilarity indel,, defined below (Duncan and Duncan, 1955).
It is now widely understood this measure also o$leandomness in the allocation of
individuals to units; that is, it measures deviasidrom evenness not deviations from
randomness. Furthermore, the impact of randomned3 @lepends on the nature of
the context (made precise below). This makes ditfione of the prime tasks of the
measurement of segregation — to make statementai@mifferences in segregation
between cities, school districts, industries oretiperiods. For example, the overall
proportion of the minority group influences thischase a very small minority group
is more likely to be unevenly distributed acrosgauhy chance, compared to a larger

minority group. This problem is particularly acwi#h small unit sizes. This is easy



to see in the following example. Consider a largpytation, half male and half
female. Suppose they are assigned to work in twy lerge firms. A random
assignment process would produce an outcome aboaes0:50 gender split in each
firm and an estimated of about zero. However, if they were allocatedmrtany
firms of size 2, then a random assignment procedwnald lead to many all-female
firms, many all-male firms and many mixed firms amdhigh value foD. The high
value reflects a strong deviation from evennesgpitiepure randomness. Others have
noted the problem of small unit size in the meave® of segregation, see e.g.
Carrington and Troske (1997). They proposed ansamjent to segregation indices
that has since been used by researchers measuwoikplace segregation where small
units are particularly likely (e.g. Hellerstein ardeumark, 2008) and school
segregation (e.g. Soderstrom and Uusitalo, 2005).

Comparing segregation across areas or time, smélbias should be of concern to
researchers for two reasons. First, the size obthg will differ across comparison
areas, potentially leading to an incorrect ranlohtevels of segregation across areas.
Second, the presence of small unit bias makes eelatbon between measured
segregation index values and a potentially causalable, say X, difficult to
interpret. It will impact on the estimated effe€tX¥ on measured segregation, even if
the parameters of the problem (unit size, mindragtion and populationjo not vary
across areas. More challengingly, it is likely tilag¢ bias as a function of these
parameters will be correlated witk , making the true relationship betweeh and

D difficult to identify.

In this paper we propose an inferential framewark the canonical segregation
measureD, based on an underlying statistical model. Thisisés related to, but
different from, that used by Ransom (2000). He \a=ri (asymptotic) inference
procedures foD by specifying the sampling variation of a multinahdistribution.
We specify the assignment problem in a very geneagl, and set out the difference
in assignment probabilities that underlies the Itegy segregation; this is Section 2.
From this we derive a likelihood test for the preseof any systematic segregation
and a bootstrap bias adjustment to the stanBaid sections 3 and 4. Following
Ransom (2000), we further develop the asymptotstridution theory for testing
hypotheses concerning the magnitude of the segoegadex and show that use of

bootstrap methods can improve the size and powapepties of test procedures



considerably; this is in section 5. In section 6illuestrate the methods in an example

of social segregation in schools in England. Sacficoncludes.

2. Statistical Framework

Underlying an assignment of individuals to unit@msallocation process. This might
be purely random, or it may be influenced by thgoas of agents, including those
whose allocation we are studying, as well as othiérs systematic allocation process
will in general reflect the preferences and comstsaof both the individual (such as
preferences for racial composition of neighbourhoodbility to pay for houses in a
particular neighbourhood) and of the unit to matath particular individuals (such as
a firm’s desire for highly educated workers or smhadmissions procedures that
favour children of particular religious denominafioTypically the research question

is about characterising segregation arising frotiehaviour.

Our notation is as follows. There are unijs=1,...,.J nested within an area.
Individuals i =1,...,n either have, or do not have, a characteristic oraht on a

dichotomous scale; ={0,1} . This could be black ethnicity, female or povestgtus.

The number of individuals in the area with status1 is denotedn®, andn® denotes

the number of individuals with staties=0. Individuals are assigned to units and we

observe the resulting allocations;

; individuals in unitj having statug = 1 and n?

individuals in unitj having statug = 0. The total number of individuals in units

—pnl a0
n, =n+n;.

There are many indices used to measure segregagenDuncan and Duncan, 1955,
Massey and Denton, 1988, and White, 1986 for amvees®). The formula for each
provides an implicit definition of segregatidassey and Denton (1988) characterise
segregation along five dimensions: evenness (dilsgity), exposure (isolation),
concentration (the amount of physical space occupig the minority group),
clustering (the extent to which minority neighboawds abut one another), and
centralisation (proximity to the centre of the gityhroughout this paper we use the
index of dissimilarity (denoted), the most popular unevenness index in the
literature. However, our analysis can be extenadedther unevenness segregation

indices.



The formula for the index of dissimilariy in the area, which is bounded by 0 (no

segregation) and 1, is given by (see Duncan and@®yri 955}

The basis for an allocation procedure is a set nflitmnal probabilities that assigns

an individuali to unitj, given the individual's status
p’=P(unit=jlc=a), j=1..Ja=01
We define systematic segregation as being preseeh w
Oj: p#p).

We can see the relationship betwdenand the conditional probabilities of the

underlying allocation process by noting that thecfion n;/n' and n?/n° are

estimates of these conditional probabilities:

and therefore the index of dissimilarity is equal t
1 J
D==

Formalising the allocation process, an area pojpulaif n individuals with a given

a1l A0
Pi ~ Bjl-

proportion p=n*/n with statusc=1, is allocated toJ units according to the
population conditional probability rules. Each wmdual is allocated independently,

for ¢=1 individuals according to the probabilitiep}, j=1,...J, and forc=0
individuals according to the probabilitiegf, j=1,....J. The outcomes of this

process are the aIIocatiom$ and n?. Clearly, unit sizes are not fixed in this setgp a

! D measures the share of either group that must mewed, without replacement, to achieve zero
segregation (Cortese et al.,, 1976; Massey and Derit®88). It can be shown to be equal to the
maximum distance between the line of equality arsegregation curve that sorts units py, then

plots the cumulative share af=1 individuals against the cumulative share @£ 0 individuals
(Duncan and Duncan, 1955).



they are equal to, = n} +n? and therefore determined by the stochastic allmcat
The expected unit sizes are given by

E(nj ) =n'p; +n°p;.
We can now interpret the index of dissimilarity @s estimator for the population

guantity
1 J
Do ZE;‘ p? a p?‘ .

Itis clear thatD,, =0 if pj=p] forall j=1,....J.

From the allocation process described above, we estimate the conditional
probabilities by maximum likelihood. As the allocats are two independent

multinomial distributions the log-likelihood funota, given the observed allocations

is given by
logL =1 LI UG S Ey (p)+37 0 log pY)
0gL=log| [ *109 1oy [+ 21 lod pi)+ Xn lod 7).
. . . . i N n]_- o n(?
Clearly, the maximum likelihood estimates are givan b, :_Jl and P =
n n

] =1,..,J, i.e. exactly the same as the estimates ent&ing

Ransom (2000) proposed the use of the followingissizal model for a random

sample of sizen:

n¢
o)
- ]C
P(nf,ng,...,nj) ninl,..nt 7ch) =n r' HT
J=1 c= J
where 77, is the joint probability of observing an individuaith statusc and in unit

j in the sample, i.esr, = P(unit=j,c=a). Mora and Ruiz-Castillo (2007), and

references therein, consider a similar setup fomé&rmation index of multi-group
segregation. Ramsom (2000, p. 458) notes thatitbdel is not appropriate when the

population is observed as then thg are known. The parameters, are not those

that enter the segregation inde® which are the conditional probabilities

pop ?
p¢ =P(unit=j|c)=r, /ZizlﬂSC .

Our model is applicable even when we observe tmeptete, finite population, but

randomness is achieved by the random allocatiogegsto units. Our statistical



model is for a finite population of size=n°+n", with parametersp;, j=1,...,.J,

c=0,1, and is given by

n¢
31 ‘p.c !

P(Rf.ng. . ko ' p) =] [ ) -
j: c= J

In the remainder of the paper we will focus on thaticular model. A different
model applies where unit sizes are assumed fixed, in addition to our assumptions
that the population size and minority fractiorp are fixed. In this case, the allocation

mechanism is determined by the conditional proliiais'IP(c =a|unit = j). As

P(unit=j|c=a)=P(unit=j)P(c=alunit=j)/P(c=a)

D, can equivalently be written as

1<, _ |P(c=1unit=]) 1-P(c=1pnit= j)|
D ==»P = _
pop 2; (Unlt J)‘ P(Czl) 1_P( 2]) ‘
—liﬂ“’(c 1|unit = J) 1-P(c=1unit = j) |
294 n‘ P(C—l) 1_p( ]) ‘

Finally, if instead of the full population we oliaia random sample from the

population,D will still be an estimator oD___, in both cases of random or fixed unit

pop ?

sizes.

2.1 Bias

As D is an estimator foD we define the bias dD as

pop ?
bias=E(D)-D,,.
where the expectation is taken over the independherdtinomial distributions with

probabilities pf, j=1,...J.c= 0,1 for given population sizen and minority

proportion p:

The value of E(D) is a function of the underlying conditional probiies,

summarised byD and of unevenness generated by the randomnegbeof

pop ’



allocation process. As has been well documentédaniterature (see e.g. Carrington

and Troske (1997))DP can be severely upward biased when unit sizesraedl and
allocation is ‘random’, meaning that there is ngteynatic segregatiorp} = pf’ for

all j, and henceD,, =0. For small number of unit§ and small unit sizes, we can
calculate the expected value &f analytically. The figure below graphs the bias
E(D)-D,, for J=4, n={20,40,69, p=0.1 and for various values oD, .
These values oD, are obtained by setting the according to a scheme discussed

in Section 5 below. The expected unit sizes aresémee for the 4 units, i.e. 5 when
n=20, 10 whenn=40 and 15 whem =60.

©
o

B ---- n=20
n=40
n=60

0.5
7/
\

bias

0.9

Figurel. Bias E(D)-D,,,, J =4, p=0.1, equal expected unit sizes

pop

The small-unit bias is apparent in the figure. We&pected unit sizes are equal to 5,

E(D) is equal to 0.56 wherD,, =0. The graph also shows that the bias is a

decreasing function of increasing systematic segi@g (D ) and a decreasing

pop

function of expected unit size.

3. Bootstrap Bias Correction
The purpose of our adjustment B is to reduce the upward bias on the estimate of

D, as highlighted in Figure 1. Our proposal is te ws bootstrap type bias



correction, as described in e.g. Hall (1992) andi§&mn and Hinkley (1997). Given an

observed allocation, a new sample is generated thghsame sample size and

minority proportion p, but using the observed conditional probabilitiﬁf]s: njlln1
and p? =n?/n° for the allocation process. The value rin this bootstrap sample

is denotedD, . Repeating thiB times, we can calculate

_ o1&
D,=—)>D,.
=520
The population value of the segregation measuthdrbootstrap sample B itself,

and so a measure of the biasDfis given by D, —D. A bootstrap bias corrected

estimate ofD ,,, is then obtained as

D, =D-(D,-D)=2D-0,.
This type of bias correction works well if the bigsconstant for different values of

D, - This is clearly not the case here, as the biasessplayed in Figure 1 are much

larger for smaller values dD . This bias correction is therefore not expectedaook

well for small unit sizes combined with small vaduef D,,,. We show in the next

sections that this bootstrap procedure reducesgenofithe bias to make inferences
about levels of segregation, provided unit sizesnat too small. Where unit sizes are
very small, we show in section 4 that the obsenea@l| of segregation can rarely
statistically be distinguished from evenness. Thues suggest that in these cases the
data is inappropriate for making inferences abegtegation.

3.1 Monte Carlo Simulations

This section evaluates the performance of the baptdias adjustment for estimating
levels of segregation. To do this we follow Duneaydl Duncan’s (1955) approach of
generating a level of unevenness between no sdgrnegand complete segregation

using a single paramet@rs q < 1. This parameter maps a set of parabolic segragatio

curves via the formula:

2 Although this set of segregation curves cannotesgnt all distributions of segregation, it is a
sufficient set to examine different levels of sysédic segregation for the purposes of this paper.



(1-q)P(unit< j|c=0)
1—qEP(units j|c=0)

P(units j|c=1):

This formula, combined with the constraint of eqeapected unit sizes, fixes the

conditional allocation probabilities for both graupAn allocation is then generated by

assigningn® and n° individuals to theJ units using these calculated conditional
probabilities.

For eachD, D,is calculated from 100 bootstrap samples. This gs8ds repeated
1,000 times for eaclm, p and D, combinations over the following parameter
space:

* Number of units), is fixed at 50;

+ Unit sizesn,; are equal in expectation, with expected unit seging from 6

to 200;
» Proportion ofc =1 individuals,p, varies from 0.01 to 0.5;

» Systematic segregation generatprvaries from 0 to 0.99.

The biases oD and D, are presented in Table 1. It shows that wherertimerity
proportion is very small tiny (e.gp =0.05), unit sizes are small (e.gE(nj) =10)

and systematic segregation is very low (eld,, =0.056), observed segregation

incorrectly suggests a highly segregating processledies the allocation,
D =0.55+ 0.056= 0.60, and the bootstrap correction does little to amrthis bias
D,. =0.43+ 0.056= 0.48. At the other extreme, where the minority propmortis

large (e.g.p=0.3), unit sizes are large (em=200) and systematic segregation is
high (e.g. D, =0.818), no correction is needed because the expectast va
observed segregation is not different frdm,,. However, in much social science

data, the phenomenon of interest tends to have med¢@_ _ around 0.1 to 0.4)

pop
rather than very high levels of segregation. Irs trange, the proposed bootstrap

correction tends to work well and is necessaryyipied that p and E(nj) are not

both simultaneously very small. For example, whenrhinority proportion is 10%

10



Table1l: Biasof D and D, for J =50 and combinationsof p, E(nj) and D, .

D
p E (nj) 0 0.056 0.127 0.225
D-Dyp  Dx~Dyy D-Dyyy De=Dyy D-Dyyy DDy DDy Dy =Dy
0.01 6 0.94 0.92 0.89 0.87 0.81 0.80 0.72 0.70
10 0.90 0.87 0.85 0.82 0.78 0.75 0.68 0.65
20 0.82 0.76 0.76 0.70 0.69 0.63 0.60 0.54
30 0.74 0.65 0.68 0.60 0.61 0.53 0.52 0.44
40 0.67 0.56 0.61 0.51 0.55 0.44 0.46 0.36
50 0.60 0.48 0.55 0.43 0.48 0.37 0.40 0.29
100 0.38 0.22 0.33 0.17 0.27 0.12 0.20 0.063
200 0.28 0.16 0.22 0.11 0.17 0.064 0.12 0.025
0.05 6 0.74 0.65 0.68 0.60 0.61 0.53 0.52 0.45
10 0.60 0.48 0.55 0.43 0.48 0.36 0.40 0.29
20 0.30 0.24 0.35 0.19 0.29 0.14 0.22 0.079
30 0.33 0.21 0.28 0.16 0.22 0.10 0.16 0.056
40 0.29 0.17 0.24 0.13 0.18 0.073 0.13 0.032
50 0.26 0.16 0.21 0.11 0.16 0.061 0.10 0.024
100 0.18 0.11 0.13 0.062 0.089 0.026 0.054 0.005
200 0.13 0.074 0.082 0.033 0.048 0.007 0.027 -0.000
0.10 6 0.55 0.41 0.49 0.36 0.43 0.30 0.35 0.23
10 0.41 0.26 0.36 0.21 0.30 0.15 0.23 0.094
20 0.29 0.18 0.24 0.13 0.19 0.079 0.13 0.037
30 0.24 0.14 0.19 0.095 0.14 0.050 0.091 0.016
40 0.21 0.12 0.16 0.077 0.11 0.037 0.071 0.010
50 0.19 0.11 0.14 0.065 0.093 0.027 0.057 0.006
100 0.13 0.078 0.085 0.034 0.051 0.008 0.029 0.000
200 0.093 0.055 0.051 0.016 0.027 0.002 0.015 0.000
0.30 6 0.35 0.22 0.30 0.17 0.24 0.12 0.18 0.066
10 0.27 0.16 0.22 0.12 0.17 0.068 0.12 0.028
20 0.19 0.11 0.14 0.067 0.10 0.03 0.061 0.006
30 0.16 0.092 0.11 0.048 0.070 0.016 0.041 0.002
40 0.14 0.08 0.089 0.036 0.053 0.009 0.030 0.000
50 0.12 0.071 0.076 0.029 0.044 0.006 0.024 -0.001
100 0.086 0.051 0.045 0.014 0.023 0.001 0.013 0.000
200 0.061 0.036 0.025 0.005 0.011 0.000 0.006 0.000
0.50 6 0.32 0.19 0.26 0.14 0.21 0.091 0.15 0.048
10 0.25 0.15 0.20 0.098 0.15 0.055 0.098 0.020
20 0.18 0.10 0.13 0.058 0.086 0.024 0.051 0.004
30 0.14 0.083 0.097 0.041 0.059 0.012 0.034 0.001
40 0.12 0.072 0.079 0.030 0.046 0.007 0.025 0.000
50 0.11 0.07 0.07 0.024 0.037 0.004 0.020 -0.001
100 0.079 0.046 0.039 0.011 0.019 0.001 0.011 0.001
200 0.056 0.033 0.021 0.003 0.009 -0.000 0.005 -0.000

Notes: Mean bias reported for 1000 replicationaner of bootstrap replications 100.
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Table 1 continued

D
p E (nj) 0.292 0.382 0.634 0.818
D-Duy Dx=Dpy D-Dyy  De=Dpy D-=Dyyy De=Dpyy DDy D =Dy
0.01 6 0.65 0.63 0.56 0.54 0.31 0.30 0.15 0.14
10 0.61 0.58 0.53 0.50 0.29 0.27 0.14 0.13
20 0.53 0.48 0.45 0.40 0.24 0.21 0.11 0.10
30 0.46 0.39 0.39 0.32 0.20 0.16 0.095 0.076
40 0.40 0.31 0.33 0.25 0.18 0.13 0.081 0.059
50 0.35 0.24 0.28 0.19 0.15 0.097 0.069 0.045
100 0.16 0.035 0.13 0.014 0.058 -0.007 0.025 -0.006
200 0.094 0.011 0.069 -0.000 0.029 -0.007 0.011 -0.006
0.05 6 0.47 0.39 0.39 0.32 0.21 0.17 0.099 0.079
10 0.34 0.24 0.29 0.19 0.15 0.096 0.070 0.045
20 0.18 0.056 0.14 0.030 0.066 0.003 0.030 0.000
30 0.13 0.032 0.10 0.014 0.043 -0.004 0.019 -0.004
40 0.10 0.018 0.075 0.005 0.032 -0.005 0.013 -0.004
50 0.083 0.013 0.061 0.004 0.026 -0.003 0.012 -0.001
100 0.040 -0.000 0.029 -0.002 0.012 -0.002 0.005 -0.001
200 0.020 -0.001 0.014 -0.001 0.0057 -0.001 0.002 @.00
0.10 6 0.31 0.19 0.25 0.15 0.13 0.069 0.061 0.031
10 0.19 0.065 0.15 0.040 0.069 0.006 0.031 0.000
20 0.11 0.021 0.079 0.007 0.034 -0.003 0.015 -0.003
30 0.070 0.006 0.051 0.000 0.022 -0.003 0.010 -0.001
40 0.054 0.003 0.04 -0.001 0.016 -0.002 0.007 -0.001
50 0.043 0.001 0.031 -0.002 0.013 -0.001 0.005 -0.001
100 0.021 -0.001 0.015 -0.001 0.006 -0.000 0.003 -0.000
200 0.011 0.000 0.008 0.000 0.003 -0.000 0.001 -0.000
0.30 6 0.14 0.043 0.11 0.022 0.050 0.001 0.023 -0.001
10 0.091 0.014 0.067 0.003 0.028 -0.003 0.012 -0.002
20 0.047 0.002 0.034 0.000 0.014 -0.001 0.006 -0.001
30 0.031 0.000 0.022 -0.001 0.009 0.000 0.004 -0.001
40 0.022 -0.002 0.015 -0.002 0.006 -0.002 0.002 -0.001
50 0.018 -0.001 0.013 -0.001 0.005 -0.001 0.002 -0.001
100 0.001 0.000 0.006 -0.000 0.003 0.000 0.002 -0.000
200 0.005 0.000 0.003 0.000 0.001 -0.000 0.000 -0.000
0.50 6 0.12 0.028 0.092 0.011 0.041 -0.002 0.018 -0.002
10 0.075 0.008 0.055 0.000 0.021 -0.005 0.009 -0.003
20 0.038 0.000 0.028 0.000 0.011 -0.001 0.004 -0.001
30 0.025 -0.001 0.019 -0.001 0.008 0.000 0.003 -0.001
40 0.019 0.000 0.013 -0.001 0.005 -0.001 0.001 -0.001
50 0.015 0.000 0.010 -0.001 0.004 -0.001 0.002 -0.000
100 0.008 0.001 0.006 0.000 0.002 0.000 0.001 -0.000
200 0.004 -0.000 0.003 -0.000 0.001 -0.000 -0.000 0.00

Notes: Mean bias reported for 1000 replicationanNer of bootstrap replications 100.
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and unit sizes are expected to be 30, if underlgmgregation is 0.225, the observed
index of segregation would be upward biased by D.0$hereas the bootstrap

correction would successfully reduce this biasisi P.016.

Figure 2 illustrates the pattern of results for expected unit size of 30. For a
reasonably large minority proportion of 20% and\ahaD,, succeeds in removing
most of the bias oD, provided underlying segregation levels are noy \@v. Once

the size of the minority proportion falls below %5 the bias correction is poor,

except whereD , is high.

I I
0 10 20 30 40 50
minority proportion %

< 40% of bias corrected || 40-60% of bias corrected
I 60-90% of bias corrected [ > 90% of bias corrected

Figure 2. Performance of bootstrap bias correction for E (nj ) =30

4. Tests of no systematic segregation

To complement this bootstrap bias correction, wavigie a test for no systematic
segregation. We consider two alternative method®g4b whether we can reject the
hypothesis that the level of segregation observasl generated by randomness alone,

D,,, =0. It is common in the literature to run a randortiaprocedure to generate

13



the distribution ofD under the null of no systematic segregation (sgeBoisso et
al., 1994), andD is compared to this distribution. Here, we gereethe distribution

of D under the null of no systematic segregation bwtang B samples generated

using the restricted conditional probabilities{)?: P =, =(nj°+nj1)/n and

calculating D in each sample, which we denot®’. The null hypothesis
B

H,:D,, =0 is then rejected at levet if %Z‘;(Db > D)<a, where1(.) is the
b=1

indicator function
Alternatively, following the statistical model ddgped in Section 2, we can employ a
likelihood ratio test for the hypothesis

Ho:p =p;=p O],

which is given by
R=-2[3) 0, toa( )~ .ot ool ) 3. o))

and which follows an asymptotig’_, distribution. This asymptotic distribution is for

largen and fixed J, and therefore for large unit sizes. For ladyend/or small unit
sizes, the asymptotic approximation can be expetdelde poor, as we originally
found in our simulation results discussed below. W&xefore also utilise a bootstrap

procedure to improve the size properties of the test LR be the value of the

likelihood ratio test in a sample generated fr@?n= ijl =p = (njo+nj1)/n. Then the

null hypothesis of no systematic segregation iseated at level a if
B

121(LF{>LR)<a.

B =

Table 2 presents the test results tb=50 and E(nj) =30, for various values of

D, and minority proportiongp. The size and power properties of the two tests ar
virtually identical. They have good size properfi@sall minority proportionsp . The
tests fail to reject the null for small values Bf,,, combined with small minority

proportions p, exactly the circumstances where the bootstrapdwarection does not

remove much of the bias d, as indicated in Figure 2. Clearly, any calculatad

14



D and D,, should be accompanied by tie and/or bootstrappetiR tests. If these

tests fail to reject, no further inference shoutdplirsued.

Table 2. Regection frequencies of D randomisation and Likelihood Ratio tests,
3=50, E(n;)=30, level @=0.05.

p Test Dpop
0 0.056 0.127 0.225 0.292 0.382 0.634 0.818
0.01 D 0.062 0.069 0.086 0.136 0.196 0.356 0.96 1.000
LR 0.056 0.059 0.076 0.124 0.188 0.360 0.97 1.000
0.05 D’ 0.068 0.073 0.162 0.527 0.849 0.991 1.000 1.000
LR 0.056 0.073 0.161 0.538 0.861 0.995 1.000 1.000
0.15 D 0.053 0.100 0.429 0984 1.000 1.000 1.000 1.000
LR 0.044 0.084 0.416 0.984 1.000 1.000 1.000 1.000
0.30 D’ 0.046 0.141 0.735 1.000 1.000 1.000 1.000 1.000
LR 0.045 0.136 0.740 1.000 1.000 1.000 1.000 1.000
0.50 D’ 0.050 0.160 0.812 1.000 1.000 1.000 1.000 1.000
LR 0.049 0.161 0.828 1.000 1.000 1.000 1.000 1.000
5. I nference

Having established that the bootstrap bias cooeatiorks well for a large part of the
parameter space, the next step is to develop leliaterence procedures such as 95%
confidence intervals and Wald test statistics fouiealence of segregation in

different areas. We start by deriving the asymptdalistribution of D given our

statistical framework, following the proceduresdaseloped in Ransom (2000).

The estimated conditional probabilitiqﬁ;, for c :{O,]} , are asymptotically normally

distributed, as

\/F

Ol
s~ P;

P5 — p;

0% N

(1)
-prp;

~ Py p;

ol U
P (1- pS)

~P3P;
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As n'=pn andn’ = (1— p)n, the limiting distribution ofD can then be obtained via

the delta method:
Jn(D-D,,) 0% N(04'(p 0! +(1-p) %) 4)
where A is a J -vector withrth elementA, = sign( p; - pr°)/2, Wheresign(q) =1 if

q>0 andsign(q) =-1 if q<0.° This follows from

oD
= —a—pr—Zl\p, pj| =sign(p - p?)/2;

oD

_ P Y

apr apr

o

Z\p, pj| =-sign(p’ - p°)/2.
j=1

Clearly, this derivation is only valid whep' # p’.

The asymptotic distribution dD is then given by
DiN( oop 1N A’ (p‘lQl+(1— p)_lﬂo)/]),
or, equivalently,

D=N(Dyy. A (@1 /0t +0°/0%) 1)
which can form the basis for constructing confidemtervals and Wald test statistics

for hypotheses of the fornH,:D,, =J. Denoting A and Q° the estimated

counterparts ofA and Q° substituting the observed fractiorg for pf, the Wald
test is then computed as

(D-o)

W= 2 _
A'(Qlln1+Q°/n°))l

and converges in distribution toyd distributed random variable under the null.

Clearly, we don’t expect this approximation to wev&ll when d, group sizes and/or
minority proportions are small, if only due to thpward bias ofD as established in

the previous sections. However, the Wald 143t asymptotically pivotal in the sense

3 Although Q°is singular becaus{j p; =1, exactly the same results are obtained by recefi

as a function of2(J -1) probabilities only.
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that its limiting distribution is not a function afiisance parameters. We can therefore
use bootstrap p-values which may result in an iwvgment of the finite sample
behaviour of the test (see Hall (1992) and Davisoa Hinkley (1997)). Denoting the
Wald statistic in thé-th bootstrap sample &4, calculated as

(Db_D)2
jb'(leb/nl+fz§/n°)jb

va=

the bootstrap p-value is then given J%Byzs:ll(vvb >W).

This bootstrap procedure is equivalent to a symmeatio-tailed test for the t-statistic.
Let 7 denote the t-test
D-J
[=— = =,
\/A'(Qllnl+§2°/n°)/1

then a test that does not assume symmetry candeel lom the equal-tail bootstrap p-

value

2min(%gl(rb <7) %g 1z, > r)j :

Alternatively, we can base the inference directly the bootstrap bias corrected

estimator ofD .. In order to estimate the variance of the biasemted estimator, we

perform a double bootstrap procedure. For everytdb@p sample we generate

another set of bootstrap samples, enabling usnergee a bootstrap estimate of the

variance of D,.. Denoting this estimat&/ar, (D, ), the Wald test statistic is then
calculated as

— ( Dbc - 5)2
var, (D)

be

and this is again compared to t€ distribution.

Figure 3 shows p-value plots for testing the trypdthesisH,: D, =0.2922, for
E(nj):SO, J =50 and p=0.3. The Wald test based on the asymptotic normal

distribution of D and using thex? critical values is denoted/, whereas the Wald

test using the bootstrap critical values is dend&d The test based on the equal tail
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bootstrap p-value for the t-test is denofeg. The Wald statistic using the double

bootstrap variance estimate for the bias correesitmator is denote®\ . The

results shown are for 10,000 Monte Carlo replicetidPer replication 599 bootstrap

samples are drawn for the calculation Bf. and the bootstrap distribution of the
Wald test. Per bootstrap sample we draw a furtBetduble bootstrap samples for the
calculation ofVar, (D, ).

The mean ofD is equal to 0.323, whereas that Bf. is equal to 0.292. There is
therefore a 10% upward bias i, but D, is unbiased. The standard deviationDbf

is equal to 0.023, that dD,. is equal to 0.027, and their root mean squareatare
given by 0.039 and 0.027 respectively. As is cfe@n Figure 3, the asymptotic Wald
test,W, using they; critical values does not have good size propertiggjects the

true null too often, for example at 5% nominal sizeejects the null in 18.5% of the
replications. In contrast, using the p-values frim bootstrap distribution of the
Wald statistic improves the size behaviour consibigt At the 5% level, the rejection
frequency is now reduced to 7.3%. Using the ecaibdd bootstrap p-values for the t-
test also improves on the size performance of #yenptotic Wald statistic, but it
performs less well thaW, . However, the best size performance in this case i

obtained by using\,, with x? critical values. At the 5% level, it only reje&st% of

the time.

Figure 4 shows the p-value plot for a similar desigut now for smaller expected

group sizesE(Nj) =20 and a smaller minority proportiorp =0.10. The bias ofD

in this case is 0.106, or 36%, whereas thaDgf is 0.020, or 6.5%. The standard
deviation of D is equal to 0.037, that dD,. is equal to 0.048, and their root mean
squared errors are given by 0.111 and 0.051 resphct

The size distortions of all test statistics are noare severe. The asymptotic Wald
test is severely size distorted, with a 68% repectate at the 5% level. The Wald and
asymmetric t-test using the bootstrapped p-valuelBake best, with their size

properties being very similar. At the 5% level, thgction frequencies for these tests

are 9.4% and 9.5% respectively. has only a slightly worse size performance than

these two bootstrap tests, it rejects the trueXlf% of the time at the 5% level.
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Figure 3. P-value plot, : D, =0.292, E(n,) =30, J =50, p=0.30.
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Figure 4. P-value plotH, : D, =0.292, E(n,) =20, J =50, p=0.10.
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Clearly, in general, inference can only be basedhese latter three tests when the

sample size,D__ and/or the minority proportion are small, althoughthe figures

pop

show, some size distortions occur also for thests te

There is a one-to-one correspondence between viakup-plots as depicted in figures
3 and 4 and the coverage properties of the confel@mervals associated with the

particular test statistics. Using the normal appration, (1—a)% confidence

intervals associated with the asymptotic Wald ¥jdtests are constructed as

D- 2(1—01/2)\/\/ér (D) <D <D+ Ao-ar) ar (D)

and

Dbc B Z(l—a/z)\/ ;érb(DDC) < Dpop < Dbc + Z(1—0//2) érb (DbC)

respectively, where(l_ ) 5 thelOO*(l—a /2) percentile of the normal distribution.

al?2

For the bootstrap Wald test the associated condelenterval is given by

D _\/V\/El—a)\/ér (D) < Dpop <D +\[V\€1—H)Vér (D)’
where vvzl_a) is the 100*(1-a) percentile of the distribution of the bootstrap

replicationsW,. The equal-tailed bootstrap t-test has the coomdipng confidence
interval given by

D_T(*l—a/Z)\/Vér(D) < DPOP < D+T€a/2) ér(D)’

*

where 7, and 7,

1-a/2)

are the100*(1-a /2) and 100*(a/2) percentiles of the

distribution of the bootstrap replicatian.

For the example withE(nj) =20 and p=0.10 as described above, the observed

rejection frequencies of 68%, 10.7%, 9.4% and 9t6fthe W, W, W, and T,

tests respectively translate into coverage prohsilof 32%, 89.3%, 91.6% and
91.5% of the associated 95% confidence intervaigerGthe upward bias oD this
leads to an interesting observation concerningcthridence interval based on the

bootstrap Wald testV, . As the size and associated coverage properti¢isiotest

are reasonably good, but as the confidence intesvsymmetric around the upward

biasedD, this suggest that thé/, based confidence interval will be quite large.
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Table 3. Average lower and upper limitsof 95% confidenceintervals

Test Lower limit Upper limit
W, 0.227 0.395
W, 0.226 0.569
T 0.209 0.376

Table 3 shows the averages of the lower and uppets|of the 95% confidence

intervals based associated with,, W, and T, respectively. This confirms that the
W, based confidence interval is on average indeechrfarger than those based on
W, and T, . Whereas the lower limit is quite similar to thoskthe other two

confidence intervals, its upper limit is much highes expected due to the symmetry

around the upward biasdd . Clearly, W, can therefore have poor power properties

when D has substantial bias.

A researcher will in general be interested in deiteing whether segregation has
changed significantly within an area over timewdrether segregation in one area is
significantly different from that in another, si@uilor perhaps neighbouring area. We

consider the performances of the test statisticscéonparing the two hypothetical

areas for which the results were simulated aboveaA has] =50, E(nj) =30 and

p=0.30, whereas Area 2 ha3 =50, E(nj) =20 and p=0.10. To study the size

properties of the tests for the null hypothesis

Ho: Dy =D

pop,1 pop ,2

we set the two area population segregation meashrgs =D, ,=0.2922 as

pop,2
before. Given the area specific conditional allaaprobabilities, the allocations in
the areas are determined independently and thertdferWwald test
2
- (D, -D,)
Var (D,)+Var (D,)

is asymptoticallyx; distributed. The Wald test based on the bootdiiap corrected

estimates is defined as
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2

— (Dbc,l - Dbc,z)
Vérb (Dbc,l) +Vérb (Dbc,z) ’

W

whereas the bootstrap p-values for ihg test are based on the distribution of the

bootstrap replications of

- (Db,l - Db,2 _(Dl_ Dz))2
Vér (D,, ) +Var (D, ,)

b

where D,, and D,, are calculated from independent bootstrap repdioat The

bootstrap p-values for thE,, test are obtained in an equivalent way.

Figure 5 depicts the p-value plots for the truel mlilequal population segregation

measuresD,, in the two areas. The asymptotic Wald test agarmr-cejects

substantially, 27.3% at the 5% level. TW&, test displays the best size properties in
this case, followed by, and thenW,, . The rejection probabilities for these tests at

the 5% level are 8.8%, 9.2% and 10.9% respectively.

We next turn to evaluate the power properties e$¢htests when the two population

segregation measurdéy,, , and D are not equal. We keep equal to 0.2922,

op,1 pop,2 pop,2

but increaseD_, to 0.3819. As discussed above, becabDgas substantially biased

pop,1

upwards, we expect th&/, test to have low power. This is confirmed by theafue

plots in Figure 6. The standard Wald test has pob&ow nominal size, but

especially the bootstrap based Wald t&g}, fails to reject the null of equal
segregation completely. In contrast, bdfy, and T, show reasonable power
properties, with T, having most power to detect this deviation frone thull,

although it has not been size adjusted. The p-vaots, not shown here, for the true

null that D D__,=0.0897 are very similar to those in Figure 5. Clearlyedt

pop.l "~ pop,2

results combined together show that for simple Hygsis testingV,, and T, are the

test procedures with reasonably good size and p@nagerties in the settings we

considered.
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Figure6. P-valueplot, H,: D ,=D power properties
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6. Social segregation in schools

In this section we illustrate our inference proaeduwith an empirical application
relating to social segregation in primary schoais England. The dichotomous
measure is an indicator of poverty based on eliyifior free school meals (FSM).
This context is useful as it naturally produces Ismnat sizes, and shows a range of
minority proportions and overall populations acrdgterent Local Authorities (LAS).
We use administrative data collected by the Depamtnfior Children, Families and
Schools and made available to researchers as fptimé dNational Pupil Database on
pupils aged 10/11 in English primary schools in 00leasurement of school
segregation in using this dataset has been castiely many researchers (e.g. Allen
and Vignoles, 2006; Burgess et al., 2006; GibbartsEelhaj, 2006). Using the tools
developed above, we can assess whether the snitaBizes and/or small minority

populations lead to incorrect inferences aboueddfices in segregation across areas.

We provide two cases. First, we compare two sinuérs of LAs, showing that quite

small differences in their characteristics impl¥felient outcomes of inference; these
are North-East Lincolnshire and North Lincolnshieend Blackburn and Oldham.

Second, we compare all the different LAs in innigy-tondon, and consider which

pair-wise comparisons yield significant differenc@sble 4 shows the descriptive
statistics and the dissimilarity indices of the LAs

North-East Lincolnshire and North Lincolnshire hawwe same number of pupils,
2005 and 2011 respectively, but differ in the numioé schools, 46 vs. 57
respectively, and therefore the average cohort sizé also differ in the percentages
of children eligible for free-school meals, 21% 8%. The dissimilarity index for
North-East Lincolnshire is 0.43, higher than thiaNorth Lincolnshire, which has an
index of 0.36. Blackburn and Oldham differ ratheorenin size, but have closer
average unit sizes, and slightly higher percentagesildren eligible for free-school

meals.
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Table 4. Key parameters of primary schools acr oss English local authorities

Number  Number Average %

LA name of pupils of schools cohortsize FSM D
North-East Lincolnshire 2005 46 44 21 0.43
North Lincolnshire 2011 57 35 13 0.36
Blackburn 2105 51 41 26 0.34
Oldham 2990 86 35 21 0.47
Camden 1394 41 34 42 0.23
Greenwich 2666 66 40 36 0.29
Hackney 2194 54 41 43 0.22
Hammersmith & Fulham 1177 39 30 45 0.30
Islington 1845 48 38 41 0.26
Kensinton & Chelsea 881 27 33 36 0.32
Lambeth 2428 60 40 40 0.24
Lewisham 2833 70 40 29 0.30
Southwark 2929 72 41 36 0.21
Tower Hamlets 2703 68 40 61 0.20
Wandsworth 2124 60 35 27 0.29
Westminster 1336 39 34 39 0.33

Are the school allocations in North-East Lincolmshinore segregated than those in
North Lincolnshire? Table 5 shows that the obseriednarginally overstates the
level of segregation in each local authority, Ing bootstrap correction tD does not
alter the ranking. The table further presents @@wus test procedures and confidence
intervals as described in the previous sectionehiar generate 999 bootstrap samples

with a further 100 samples for the double bootstrapance estimate ob,.. The LR

test for no systematic segregation is clearly tepéor both LAs, with both bootstrap
p-values equal to 0. The rejection of the null gu@& segregation in North-East

Lincolnshire and North Lincolnshire depends on tb&t statistics employed. Using

the preferred test statistiéy,, and T, we reject the null of equal segregation in the

two LAs at the 5% and 1% level respectively.

Table 6 shows the test statistics for Blackburn @uaham. In this example, we can
reject, with a high degree of confidence, the ofilequal segregation in these areas.
This greater confidence than in the Lincolnshiraregle is possible, despite similar

segregation levels, because the local authoritiessightly larger and the minority
proportion is higher.
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Table 5. Bias corrected dissimilarity indices, confidence intervals and test
statisticsfor North-East and North Lincolnshire

North-East Lincolnshire North Lincolnshire

D 0.433 0.364

D,. 0.419 0.322

LR-test, boot. p-value 0 0

Cl-w [0.386-0.481] [0.306-0.421]

CI-W,, [0.369-0.469] [0.264-0.379]

Cl-wW, [0.377-0.490] [0.271-0.456]

CI-T,, [0.370-0.462] [0.261-0.373]
Ho :Doopner = Dpopar » P-Values

w 0.067

W, 0.011

W, 0.121

T 0.004

Table 6. Bias corrected dissimilarity indices, confidence intervals and test
statistics for Blackburn and Oldham

Blackburn Oldham
D 0.342 0.472
D, 0.325 0.454
LR-test, boot. p-value 0 0
CI-W,, [0.282-0.368] [0.418-0.490]
CI-T,, [0.287-0.360] [0.420-0.486]

HO : Dpop,BIackburn = Dpop,oldham’ p-Va'UeS

W, 0.000
T 0

pb

For our second illustration, Table 7 compares ofexktrand bootstrap corrected
segregation levels across the 12 local authoriietnner London. The bootstrap
correction makes little differences to the rankioigsegregation levels, with just
Wandsworth and Greenwich switching positions. st statistics show that the LAs
can be approximately divided into three groupshwaitssible multiple membership,
where the tests do not reject the null of equatesgagion. These groups are: Tower
Hamlets, Southwark and Hackney, with the lowesellesf segregation; Hackney,
Camden and Lambeth, with medium level of segregatiand Wandsworth,

Greenwich, Hammersmith & Fulham, Lewisham, Kengingt& Chelsea and
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Westminster with the highest level of segregatishington is a medium segregation

LA with some overlap with the group of highest sggtion LAs.

7. Conclusions

To make statements about the true underlying degfresgregation, or understand
the processes causing segregation, it is desitabieeasure the level of systematic
segregation. However, where minority proportiond anit sizes are small, the level
of segregation observed by researchers in thea daknown to be significantly

greater than systematic segregation. Furthermareause the size of the bias of
observed segregation over systematic segregatiomasvn to be a function of

minority proportion, unit sizes and systematic segtion, differences in any of these

parameters between areas or over time may leatoorect inferences.

In this paper we have proposed and tested a baptgirocedure for adjusting
segregation indices for this bias. Our bootstrapeotion works well provided both
the minority proportion and unit size are not vergall. Where very small minority
proportions and unit sizes render our correctionlass, we show that levels of
segregation are often not statistically distingatde from zero. We have developed
and tested our statistical framework using thexnofedissimilarity, D, but it can, in
principle, be applied to other segregation indices.

From our statistical framework we have developddrance tests for a null of no

systematic segregation; a null of equal segregatiotwo areas; and establishing
confidence intervals for levels of systematic sggt®n. In tests using unit sizes,
minority proportions and underlying segregationelsvsimilar to those encountered
by social scientists, the Wald statistic usingdbable bootstrap variance estimate for

the bias corrected estimatdh() and the test based on the equal tail bootstrap p-
value for the t-testT,,) are found to perform best. The methods proposethis

paper provide a framework for more reliable infeeeras to levels of segregation,

which will aid the further investigation of the cms of segregation.
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Table 7: Bias corrected dissimilarity indices, confidence intervals and test statisticsfor Inner L ondon

LR Cl-W, Sout Hack Camd Lamb Idi Wand Gree Hamm Lewi Kens West
b D, ®  ciT,
Tower 197 161 0 [.123-.199] .764 .291 .289 .088 .032 .001 .000 .001 .000 .000 .000
Hamlets [.127-.193] .695 .176 .208 .036 .012 .000 .000 .000 .000 .002 .000
Southwark 206  .169 0 [.132-.206] 435 300 .151 .058 .003 .001 .001 .000 .001 .000
[.137-.200] 330 412 096 .042 .000 .000 .000 .000 .000 .000
Hackney 219 191 0 [.151-.231] .888 542 267 .030 .013 .013 .002 .007 .001
[.156-.224] .881 476 .208 .014 .000 .000 .000 .004 .002
Camden 231 .196 0 [.144-.247] .698 .398 .077 .044 .035 .011 .017 .004
[.152-.239] .633 .322 .046 .020 .016 .004 .010 .000
Lambeth 240 .208 0 [.170-.247] 581 .106 .056 .047 .011 .022 .005
[.175-.241] 484 .052 .020 .020  .002 .010 .000
Islington 257 .225 0 [.181-.269] 327 .220 157 .071  .077 .027
[.184-262] 272 178 .086 .028 .062 .018
Wandsworth  .290 .255 0 [.213-.298] .821  .582 430  .311  .169
[.219-.291] .833 519 380 .262 .126
Greenwich 286 .262 0 [.223-.300] 701 547 .381 .216
[.226-.297] .641 511 312 148
Hammersmith .303 .274 0 [.222-.327] 910 .627  .450
& Fulham [.226-.318] .899 579 .358
Lewisham 304 278 0 [.241-.315] .656  .449
[.247-.310] .641  .402
Kensington & .317 .295 0 [.231-.358] .843
Chelsea [.232-.350] .833
Westminster  .328 .303 [.250-.357]
[.253-.352]
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