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Abstract 
The most widely used measure of segregation is the dissimilarity index, D. It is now well understood 
that this measure also reflects randomness in the allocation of individuals to units; that is, it measures 
deviations from evenness not deviations from randomness. This leads to potentially large values of the 
segregation index when unit sizes and/or minority proportions are small, even if there is no underlying 
systematic segregation. Our response to this is to produce an adjustment to the index, based on an 
underlying statistical model. We specify the assignment problem in a very general way, with 
differences in conditional assignment probabilities underlying the resulting segregation. From this we 
derive a likelihood ratio test for the presence of any systematic segregation and a bootstrap bias 
adjustment to the dissimilarity index. We further develop the asymptotic distribution theory for testing 
hypotheses concerning the magnitude of the segregation index and show that use of bootstrap methods 
can improve the size and power properties of test procedures considerably. We illustrate these methods 
by comparing dissimilarity indices across school districts in England to measure social segregation. 
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1. Introduction 

Segregation remains a major topic of research in a number of contexts such as 

neighbourhoods, workplaces and schools. Researchers study segregation by poverty 

status, by gender and by ethnicity among other characteristics. Almost always, these 

studies are comparative in some way: for example, arguing that ethnic segregation in 

neighbourhoods is higher in one city than another, or that gender segregation by 

occupation has changed over time. There is often also an implicit or explicit causal 

model in mind, and the difference in segregation is associated with some behavioural 

process. However, the inferential framework for segregation indices is under-

developed, limiting the progress that can be made. This paper proposes an approach to 

strengthen this framework. 

It is central to our approach to think of segregation as the outcome of a process of 

assignment. This includes the assignment of people to neighbourhoods, workers to 

jobs, or pupils to schools. In general, this allocation is likely to be the result of the 

inter-locking decisions of different agents rather than a dictator model. This 

perspective offers a number of advantages. First, it ties the outcome to a set of 

processes that can be analysed and estimated. Second, it makes it clear that the 

observed outcome is one of a set of possible outcomes, and so naturally leads on to a 

framework for statistical inference. Third, the connection with the underlying 

processes makes explicit that it is this systematic or behaviour-based segregation that 

is the object of interest in terms of analysing the causes of segregation.  

There is a large literature concerning the measurement of segregation, with a number 

of indices in use, all with differing properties. The most widely used measure of 

segregation is the dissimilarity index, D , defined below (Duncan and Duncan, 1955). 

It is now widely understood this measure also reflects randomness in the allocation of 

individuals to units; that is, it measures deviations from evenness not deviations from 

randomness. Furthermore, the impact of randomness on D  depends on the nature of 

the context (made precise below). This makes difficult one of the prime tasks of the 

measurement of segregation – to make statements on true differences in segregation 

between cities, school districts, industries or time periods. For example, the overall 

proportion of the minority group influences this because a very small minority group 

is more likely to be unevenly distributed across units by chance, compared to a larger 

minority group. This problem is particularly acute with small unit sizes. This is easy 
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to see in the following example. Consider a large population, half male and half 

female. Suppose they are assigned to work in two very large firms. A random 

assignment process would produce an outcome close to a 50:50 gender split in each 

firm and an estimated D  of about zero. However, if they were allocated to many 

firms of size 2, then a random assignment procedure would lead to many all-female 

firms, many all-male firms and many mixed firms and a high value for D. The high 

value reflects a strong deviation from evenness despite pure randomness. Others have 

noted the problem of small unit size in the measurement of segregation, see e.g. 

Carrington and Troske (1997). They proposed an adjustment to segregation indices 

that has since been used by researchers measuring workplace segregation where small 

units are particularly likely (e.g. Hellerstein and Neumark, 2008) and school 

segregation (e.g. Söderström and Uusitalo, 2005). 

Comparing segregation across areas or time, small unit bias should be of concern to 

researchers for two reasons. First, the size of the bias will differ across comparison 

areas, potentially leading to an incorrect ranking of levels of segregation across areas. 

Second, the presence of small unit bias makes a correlation between measured 

segregation index values and a potentially causal variable, say X , difficult to 

interpret. It will impact on the estimated effect of X  on measured segregation, even if 

the parameters of the problem (unit size, minority fraction and population) do not vary 

across areas. More challengingly, it is likely that the bias as a function of these 

parameters will be correlated with X , making the true relationship between X  and 

D  difficult to identify.  

In this paper we propose an inferential framework for the canonical segregation 

measure, D, based on an underlying statistical model. This setup is related to, but 

different from, that used by Ransom (2000). He derives (asymptotic) inference 

procedures for D  by specifying the sampling variation of a multinomial distribution. 

We specify the assignment problem in a very general way, and set out the difference 

in assignment probabilities that underlies the resulting segregation; this is Section 2. 

From this we derive a likelihood test for the presence of any systematic segregation 

and a bootstrap bias adjustment to the standard D in sections 3 and 4. Following 

Ransom (2000), we further develop the asymptotic distribution theory for testing 

hypotheses concerning the magnitude of the segregation index and show that use of 

bootstrap methods can improve the size and power properties of test procedures 



 4 

considerably; this is in section 5. In section 6 we illustrate the methods in an example 

of social segregation in schools in England. Section 7 concludes. 

 

2. Statistical Framework 

Underlying an assignment of individuals to units is an allocation process. This might 

be purely random, or it may be influenced by the actions of agents, including those 

whose allocation we are studying, as well as others. This systematic allocation process 

will in general reflect the preferences and constraints of both the individual (such as 

preferences for racial composition of neighbourhood or ability to pay for houses in a 

particular neighbourhood) and of the unit to match with particular individuals (such as 

a firm’s desire for highly educated workers or school admissions procedures that 

favour children of particular religious denomination). Typically the research question 

is about characterising segregation arising from this behaviour.  

Our notation is as follows. There are units 1,...,j J=  nested within an area. 

Individuals 1,...,i n=  either have, or do not have, a characteristic measurable on a 

dichotomous scale, {0,1}c = . This could be black ethnicity, female or poverty status. 

The number of individuals in the area with status 1c =  is denoted 1n , and 0n  denotes 

the number of individuals with status 0c = . Individuals are assigned to units and we 

observe the resulting allocations, 1
jn  individuals in unit j having status c = 1 and 0

jn  

individuals in unit j having status c = 0. The total number of individuals in unit j is 

1 0
j j jn n n= + . 

There are many indices used to measure segregation (see Duncan and Duncan, 1955, 

Massey and Denton, 1988, and White, 1986 for an overview). The formula for each 

provides an implicit definition of segregation. Massey and Denton (1988) characterise 

segregation along five dimensions: evenness (dissimilarity), exposure (isolation), 

concentration (the amount of physical space occupied by the minority group), 

clustering (the extent to which minority neighbourhoods abut one another), and 

centralisation (proximity to the centre of the city). Throughout this paper we use the 

index of dissimilarity (denoted D), the most popular unevenness index in the 

literature. However, our analysis can be extended to other unevenness segregation 

indices. 
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The formula for the index of dissimilarity D in the area, which is bounded by 0 (no 

segregation) and 1, is given by (see Duncan and Duncan, 1955)1: 

 
1 0

1 0
1

1

2

J
j j

j

n n
D

n n=
= −∑ .  

The basis for an allocation procedure is a set of conditional probabilities that assigns 

an individual i to unit j, given the individual’s status c: 

 ( )| , 1,..., ; 0,1.a
jp P unit j c a j J a≡ = = = =  

We define systematic segregation as being present when 

 1 0: j jj p p∃ ≠ . 

We can see the relationship between D and the conditional probabilities of the 

underlying allocation process by noting that the fraction 1 1/jn n  and 0 0/jn n  are 

estimates of these conditional probabilities: 

 
0 1

0 1
0 1

ˆ ˆ;j j
j j

n n
p p

n n
= = ,  

and therefore the index of dissimilarity is equal to 

1 0

1

1
ˆ ˆ

2

J

j j
j

D p p
=

= −∑ . 

Formalising the allocation process, an area population of n individuals with a given 

proportion 1 /p n n=  with status 1c = , is allocated to J units according to the 

population conditional probability rules. Each individual is allocated independently, 

for 1c =  individuals according to the probabilities 1, 1,..., ,jp j J=  and for 0c =  

individuals according to the probabilities 0, 1,..., .jp j J=  The outcomes of this 

process are the allocations 1
jn  and 0

jn . Clearly, unit sizes are not fixed in this setup as 

                                                 

1 D  measures the share of either group that must be removed, without replacement, to achieve zero 
segregation (Cortese et al., 1976; Massey and Denton, 1988). It can be shown to be equal to the 
maximum distance between the line of equality and a segregation curve that sorts units by jp , then 

plots the cumulative share of 1c =  individuals against the cumulative share of 0c =  individuals 
(Duncan and Duncan, 1955). 
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they are equal to 1 0
j j jn n n= +  and therefore determined by the stochastic allocation. 

The expected unit sizes are given by 

( ) 1 1 0 0
j j jE n n p n p= + . 

We can now interpret the index of dissimilarity as an estimator for the population 

quantity 

1 0

1

1

2

J

pop j j
j

D p p
=

= −∑ . 

It is clear that 0popD =  if 1 0
j jp p=  for all 1,..., .j J=  

From the allocation process described above, we can estimate the conditional 

probabilities by maximum likelihood. As the allocations are two independent 

multinomial distributions the log-likelihood function, given the observed allocations 

is given by 

( ) ( )
1 0

1 1 0 0
1 1 0 0 1 1
1 1

! !
log log log log log ,

!... ! !... !

J J

j j j jj j
J J

n n
L n p n p

n n n n = =

   
= + + +   

   
∑ ∑  

Clearly, the maximum likelihood estimates are given by 
1

1
1

ˆ j
j

n
p

n
=  and 

0
0

0
ˆ j

j

n
p

n
= , 

1,..,j J= , i.e. exactly the same as the estimates entering D. 

Ransom (2000) proposed the use of the following statistical model for a random 

sample of size n : 

( ) ( )1
0 0 0 1 1 1
1 2 1 2

1 0

, ,..., , , ,..., ; !
!

c
jn

J
jc

J J jc c
j c j

P n n n n n n n
n

π
π

= =

= ∏∏  

where jcπ  is the joint probability of observing an individual with status c  and in unit 

j  in the sample, i.e. ( ),ja P unit j c aπ = = = . Mora and Ruiz-Castillo (2007), and 

references therein, consider a similar setup for an information index of multi-group 

segregation. Ramsom (2000, p. 458) notes that this model is not appropriate when the 

population is observed as then the jcπ  are known. The parameters jcπ  are not those 

that enter the segregation index popD , which are the conditional probabilities 

( )
1

| /
Jc

j jc scs
p P unit j c π π

=
= = = ∑ . 

Our model is applicable even when we observe the complete, finite population, but 

randomness is achieved by the random allocation process to units. Our statistical 
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model is for a finite population of size 0 1n n n= + , with parameters c
jp , 1,...,j J= , 

0,1c = , and is given by 

( ) ( )1
0 0 0 1 1 1 0 1
1 2 1 2

1 0

, ,..., , , ,..., ; , , !
!

c
jncJ

jc c
J J j c

j c j

p
P n n n n n n n n p n

n= =

= ∏∏ . 

In the remainder of the paper we will focus on this particular model. A different 

model applies where unit sizes jn  are assumed fixed, in addition to our assumptions 

that the population size n and minority fraction p are fixed. In this case, the allocation 

mechanism is determined by the conditional probabilities ( )|P c a unit j= = . As 

( ) ( ) ( ) ( )| | /P unit j c a P unit j P c a unit j P c a= = = = = = =  

popD  can equivalently be written as 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

1

1

1| 1 1|1

2 1 1 1

1| 1 1|1

2 1 1 1

J

pop
j

J
j

j

P c unit j P c unit j
D P unit j

P c P c

n P c unit j P c unit j

n P c P c

=

=

= = − = =
= = −

= − =

= = − = =
= −

= − =

∑

∑

 

Finally, if instead of the full population we obtain a random sample from the 

population, D  will still be an estimator of popD , in both cases of random or fixed unit 

sizes.  

 

2.1 Bias 

As D  is an estimator for popD , we define the bias of D  as 

( ) popbias E D D= − , 

where the expectation is taken over the independent multinomial distributions with 

probabilities , 1,..., ; 0,1c
jp j J c= =  for given population size n  and minority 

proportion p : 

( ) ( )
{ }{ }0 0 1 1

1 1

1 0 1

1 0,..., ,...,
1 1 0

1
!

2 !

c
j

J J

ncJJ
jj j c
cn n n n

j j c j

pn n
E D n

n n n= = =

   = − 
     

∑ ∑ ∑ ∏∏  

The value of ( )E D  is a function of the underlying conditional probabilities, 

summarised by popD , and of unevenness generated by the randomness of the 
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allocation process. As has been well documented in the literature (see e.g. Carrington 

and Troske (1997)), D  can be severely upward biased when unit sizes are small and 

allocation is ‘random’, meaning that there is no systematic segregation, 1 0
j jp p=  for 

all j , and hence 0popD = . For small number of units J  and small unit sizes, we can 

calculate the expected value of D  analytically. The figure below graphs the bias 

( ) popE D D−  for 4J = , { }20,40,60n = , 0.1p =  and for various values of popD . 

These values of popD  are obtained by setting the cjp  according to a scheme discussed 

in Section 5 below. The expected unit sizes are the same for the 4 units, i.e. 5 when 

20,n =  10 when 40n =  and 15 when 60n = . 

 

Figure 1. Bias (((( )))) popE D D−−−− , 4J ==== , 0.1p ==== , equal expected unit sizes 

 

The small-unit bias is apparent in the figure. When expected unit sizes are equal to 5, 

( )E D  is equal to 0.56 when 0popD = . The graph also shows that the bias is a 

decreasing function of increasing systematic segregation ( popD ) and a decreasing 

function of expected unit size. 

 

3. Bootstrap Bias Correction 

The purpose of our adjustment to D  is to reduce the upward bias on the estimate of 

popD , as highlighted in Figure 1. Our proposal is to use a bootstrap type bias 
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correction, as described in e.g. Hall (1992) and Davison and Hinkley (1997). Given an 

observed allocation, a new sample is generated with the same sample size n and 

minority proportion p , but using the observed conditional probabilities 1 1 1ˆ /j jp n n=  

and 0 0 0ˆ /j jp n n=  for the allocation process. The value for D  in this bootstrap sample 

is denoted bD . Repeating this B  times, we can calculate 

1

1 B

b b
b

D D
B =

= ∑ . 

The population value of the segregation measure in the bootstrap sample is D  itself, 

and so a measure of the bias of D  is given by bD D− . A bootstrap bias corrected 

estimate of popD  is then obtained as 

( ) 2bc b bD D D D D D= − − = − . 

This type of bias correction works well if the bias is constant for different values of 

popD . This is clearly not the case here, as the biases as displayed in Figure 1 are much 

larger for smaller values of D . This bias correction is therefore not expected to work 

well for small unit sizes combined with small values of popD . We show in the next 

sections that this bootstrap procedure reduces enough of the bias to make inferences 

about levels of segregation, provided unit sizes are not too small. Where unit sizes are 

very small, we show in section 4 that the observed level of segregation can rarely 

statistically be distinguished from evenness. Thus, we suggest that in these cases the 

data is inappropriate for making inferences about segregation. 

 
3.1 Monte Carlo Simulations 

This section evaluates the performance of the bootstrap bias adjustment for estimating 

levels of segregation. To do this we follow Duncan and Duncan’s (1955) approach of 

generating a level of unevenness between no segregation and complete segregation 

using a single parameter,0 1q≤ < . This parameter maps a set of parabolic segregation 

curves via the formula:2 

                                                 

2 Although this set of segregation curves cannot represent all distributions of segregation, it is a 
sufficient set to examine different levels of systematic segregation for the purposes of this paper. 
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 ( ) ( ) ( )
( )

1 0
1

1 0

q P unit j c
P unit j c

q P unit j c

− ≤ =
≤ = =

− ⋅ ≤ =
  

This formula, combined with the constraint of equal expected unit sizes, fixes the 

conditional allocation probabilities for both groups. An allocation is then generated by 

assigning 1n  and 0n  individuals to the J  units using these calculated conditional 

probabilities. 

For each D , bD is calculated from 100 bootstrap samples. This process is repeated 

1,000 times for each n, p  and popD  combinations over the following parameter 

space: 

• Number of units, J, is fixed at 50; 

• Unit sizes jn  are equal in expectation, with expected unit size varying from 6 

to 200; 

• Proportion of 1c =  individuals, p, varies from 0.01 to 0.5; 

• Systematic segregation generator, q, varies from 0 to 0.99. 

 

The biases of D  and bcD  are presented in Table 1. It shows that where the minority 

proportion is very small tiny (e.g. 0.05p = ), unit sizes are small (e.g. ( ) 10jE n = ) 

and systematic segregation is very low (e.g. 0.056popD = ), observed segregation 

incorrectly suggests a highly segregating process underlies the allocation, 

0.55 0.056 0.606D = + = , and the bootstrap correction does little to correct this bias 

0.43 0.056 0.486bcD = + = . At the other extreme, where the minority proportion is 

large (e.g. 0.3p = ), unit sizes are large (e.g. 200n = ) and systematic segregation is 

high (e.g. 0.818popD = ), no correction is needed because the expected value of 

observed segregation is not different from popD . However, in much social science 

data, the phenomenon of interest tends to have moderate ( popD  around 0.1 to 0.4) 

rather than very high levels of segregation. In this range, the proposed bootstrap 

correction tends to work well and is necessary, provided that p  and ( )jE n  are not 

both simultaneously very small. For example, when the minority proportion is 10%  
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Table 1: Bias of D  and bcD  for 50J ====  and combinations of p , ( )jE n  and popD . 

  popD  

p  ( )jE n   0 0.056 0.127  0.225 

  − popD D  −bc popD D  − popD D  −bc popD D  − popD D  −bc popD D  − popD D  −bc popD D  

0.01 6 0.94 0.92 0.89 0.87 0.81 0.80 0.72 0.70 

 10 0.90 0.87 0.85 0.82 0.78 0.75 0.68 0.65 

 20 0.82 0.76 0.76 0.70 0.69 0.63 0.60 0.54 

 30 0.74 0.65 0.68 0.60 0.61 0.53 0.52 0.44 

 40 0.67 0.56 0.61 0.51 0.55 0.44 0.46 0.36 

 50 0.60 0.48 0.55 0.43 0.48 0.37 0.40 0.29 

 100 0.38 0.22 0.33 0.17 0.27 0.12 0.20 0.063 

 200 0.28 0.16 0.22 0.11 0.17 0.064 0.12 0.025 

                  

0.05 6 0.74 0.65 0.68 0.60 0.61 0.53 0.52 0.45 

 10 0.60 0.48 0.55 0.43 0.48 0.36 0.40 0.29 

 20 0.30 0.24 0.35 0.19 0.29 0.14 0.22 0.079 

 30 0.33 0.21 0.28 0.16 0.22 0.10 0.16 0.056 

 40 0.29 0.17 0.24 0.13 0.18 0.073 0.13 0.032 

 50 0.26 0.16 0.21 0.11 0.16 0.061 0.10 0.024 

 100 0.18 0.11 0.13 0.062 0.089 0.026 0.054 0.005 

 200 0.13 0.074 0.082 0.033 0.048 0.007 0.027 -0.000 

                  

0.10 6 0.55 0.41 0.49 0.36 0.43 0.30 0.35 0.23 

 10 0.41 0.26 0.36 0.21 0.30 0.15 0.23 0.094 

 20 0.29 0.18 0.24 0.13 0.19 0.079 0.13 0.037 

 30 0.24 0.14 0.19 0.095 0.14 0.050 0.091 0.016 

 40 0.21 0.12 0.16 0.077 0.11 0.037 0.071 0.010 

 50 0.19 0.11 0.14 0.065 0.093 0.027 0.057 0.006 

 100 0.13 0.078 0.085 0.034 0.051 0.008 0.029 0.000 

 200 0.093 0.055 0.051 0.016 0.027 0.002 0.015 0.000 

                  

0.30 6 0.35 0.22 0.30 0.17 0.24 0.12 0.18 0.066 

 10 0.27 0.16 0.22 0.12 0.17 0.068 0.12 0.028 

 20 0.19 0.11 0.14 0.067 0.10 0.03 0.061 0.006 

 30 0.16 0.092 0.11 0.048 0.070 0.016 0.041 0.002 

 40 0.14 0.08 0.089 0.036 0.053 0.009 0.030 0.000 

 50 0.12 0.071 0.076 0.029 0.044 0.006 0.024 -0.001 

 100 0.086 0.051 0.045 0.014 0.023 0.001 0.013 0.000 

 200 0.061 0.036 0.025 0.005 0.011 0.000 0.006 0.000 

          

0.50 6 0.32 0.19 0.26 0.14 0.21 0.091 0.15 0.048 

 10 0.25 0.15 0.20 0.098 0.15 0.055 0.098 0.020 

 20 0.18 0.10 0.13 0.058 0.086 0.024 0.051 0.004 

 30 0.14 0.083 0.097 0.041 0.059 0.012 0.034 0.001 

 40 0.12 0.072 0.079 0.030 0.046 0.007 0.025 0.000 

 50 0.11 0.07 0.07 0.024 0.037 0.004 0.020 -0.001 

 100 0.079 0.046 0.039 0.011 0.019 0.001 0.011 0.001 

 200 0.056 0.033 0.021 0.003 0.009 -0.000 0.005 -0.000 

Notes: Mean bias reported for 1000 replications. Number of bootstrap replications 100. 
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Table 1 continued 
  popD  

p  ( )jE n   0.292 0.382 0.634  0.818 

  − popD D  −bc popD D  − popD D  −bc popD D  − popD D  −bc popD D  − popD D  −bc popD D  

0.01 6 0.65 0.63 0.56 0.54 0.31 0.30 0.15 0.14 

 10 0.61 0.58 0.53 0.50 0.29 0.27 0.14 0.13 

 20 0.53 0.48 0.45 0.40 0.24 0.21 0.11 0.10 

 30 0.46 0.39 0.39 0.32 0.20 0.16 0.095 0.076 

 40 0.40 0.31 0.33 0.25 0.18 0.13 0.081 0.059 

 50 0.35 0.24 0.28 0.19 0.15 0.097 0.069 0.045 

 100 0.16 0.035 0.13 0.014 0.058 -0.007 0.025 -0.006 

 200 0.094 0.011 0.069 -0.000 0.029 -0.007 0.011 -0.006 

                  

0.05 6 0.47 0.39 0.39 0.32 0.21 0.17 0.099 0.079 

 10 0.34 0.24 0.29 0.19 0.15 0.096 0.070 0.045 

 20 0.18 0.056 0.14 0.030 0.066 0.003 0.030 0.000 

 30 0.13 0.032 0.10 0.014 0.043 -0.004 0.019 -0.004 

 40 0.10 0.018 0.075 0.005 0.032 -0.005 0.013 -0.004 

 50 0.083 0.013 0.061 0.004 0.026 -0.003 0.012 -0.001 

 100 0.040 -0.000 0.029 -0.002 0.012 -0.002 0.005 -0.001 

 200 0.020 -0.001 0.014 -0.001 0.0057 -0.001 0.002 -0.000 

                  

0.10 6 0.31 0.19 0.25 0.15 0.13 0.069 0.061 0.031 

 10 0.19 0.065 0.15 0.040 0.069 0.006 0.031 0.000 

 20 0.11 0.021 0.079 0.007 0.034 -0.003 0.015 -0.003 

 30 0.070 0.006 0.051 0.000 0.022 -0.003 0.010 -0.001 

 40 0.054 0.003 0.04 -0.001 0.016 -0.002 0.007 -0.001 

 50 0.043 0.001 0.031 -0.002 0.013 -0.001 0.005 -0.001 

 100 0.021 -0.001 0.015 -0.001 0.006 -0.000 0.003 -0.000 

 200 0.011 0.000 0.008 0.000 0.003 -0.000 0.001 -0.000 

          

0.30 6 0.14 0.043 0.11 0.022 0.050 0.001 0.023 -0.001 

 10 0.091 0.014 0.067 0.003 0.028 -0.003 0.012 -0.002 

 20 0.047 0.002 0.034 0.000 0.014 -0.001 0.006 -0.001 

 30 0.031 0.000 0.022 -0.001 0.009 0.000 0.004 -0.001 

 40 0.022 -0.002 0.015 -0.002 0.006 -0.002 0.002 -0.001 

 50 0.018 -0.001 0.013 -0.001 0.005 -0.001 0.002 -0.001 

 100 0.001 0.000 0.006 -0.000 0.003 0.000 0.002 -0.000 

 200 0.005 0.000 0.003 0.000 0.001 -0.000 0.000 -0.000 

          

0.50 6 0.12 0.028 0.092 0.011 0.041 -0.002 0.018 -0.002 

 10 0.075 0.008 0.055 0.000 0.021 -0.005 0.009 -0.003 

 20 0.038 0.000 0.028 0.000 0.011 -0.001 0.004 -0.001 

 30 0.025 -0.001 0.019 -0.001 0.008 0.000 0.003 -0.001 

 40 0.019 0.000 0.013 -0.001 0.005 -0.001 0.001 -0.001 

 50 0.015 0.000 0.010 -0.001 0.004 -0.001 0.002 -0.000 

 100 0.008 0.001 0.006 0.000 0.002 0.000 0.001 -0.000 

 200 0.004 -0.000 0.003 -0.000 0.001 -0.000 -0.000 -0.000 

Notes: Mean bias reported for 1000 replications. Number of bootstrap replications 100. 
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and unit sizes are expected to be 30, if underlying segregation is 0.225, the observed 

index of segregation would be upward biased by 0.091 whereas the bootstrap 

correction would successfully reduce this bias to just 0.016. 

Figure 2 illustrates the pattern of results for an expected unit size of 30. For a 

reasonably large minority proportion of 20% and above, bcD  succeeds in removing 

most of the bias of D , provided underlying segregation levels are not very low. Once 

the size of the minority proportion falls below 7.5%, the bias correction is poor, 

except where popD  is high. 
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Figure 2. Performance of bootstrap bias correction for (((( )))) 30jE n ====  

 
 
4. Tests of no systematic segregation 

To complement this bootstrap bias correction, we provide a test for no systematic 

segregation. We consider two alternative methods to test whether we can reject the 

hypothesis that the level of segregation observed was generated by randomness alone, 

0popD = . It is common in the literature to run a randomisation procedure to generate 



 14 

the distribution of D  under the null of no systematic segregation (see e.g. Boisso et 

al., 1994), and D  is compared to this distribution. Here, we generate the distribution 

of D  under the null of no systematic segregation by creating B  samples generated 

using the restricted conditional probabilities ( )0 1 0 1ˆ ˆ ˆ /j j j j jp p p n n n= = = +  and 

calculating D  in each sample, which we denote *D . The null hypothesis 

0 : 0popH D =  is then rejected at level α  if ( )*

1

1
1

B

b
b

D D
B

α
=

> <∑ , where ( )1 .  is the 

indicator function 

Alternatively, following the statistical model developed in Section 2, we can employ a 

likelihood ratio test for the hypothesis 

 0 1
0 : j j jH p p p j= = ∀ , 

which is given by 

 ( ) ( ) ( )( )0 0 1 1

1 1 1
ˆ ˆ ˆ2 log log log

J J J

j j j j j jj j j
LR n p n p n p

= = =
= − − −∑ ∑ ∑ , 

and which follows an asymptotic 2 1Jχ −  distribution. This asymptotic distribution is for 

large n and fixed J , and therefore for large unit sizes. For large J  and/or small unit 

sizes, the asymptotic approximation can be expected to be poor, as we originally 

found in our simulation results discussed below. We therefore also utilise a bootstrap 

procedure to improve the size properties of the test. Let *LR  be the value of the 

likelihood ratio test in a sample generated from ( )0 1 0 1ˆ ˆ ˆ /j j j j jp p p n n n= = = + . Then the 

null hypothesis of no systematic segregation is rejected at level α  if 

( )*

1

1
1

B

b
b

LR LR
B

α
=

> <∑ . 

Table 2 presents the test results for 50J =  and ( ) 30jE n = , for various values of 

popD  and minority proportions p . The size and power properties of the two tests are 

virtually identical. They have good size properties for all minority proportions p . The 

tests fail to reject the null for small values of popD  combined with small minority 

proportions p , exactly the circumstances where the bootstrap bias correction does not 

remove much of the bias of D , as indicated in Figure 2. Clearly, any calculation of 
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D  and bcD  should be accompanied by the *D  and/or bootstrapped LR  tests. If these 

tests fail to reject, no further inference should be pursued. 

 

Table 2. Rejection frequencies of D  randomisation and Likelihood Ratio tests, 

50J ==== , (((( )))) 30jE n ==== , level 0.05====αααα . 

p  Test popD  

  0 0.056 0.127 0.225 0.292 0.382 0.634 0.818 
0.01 *D  0.062 0.069 0.086 0.136 0.196 0.356 0.96 1.000 

 LR  0.056 0.059 0.076 0.124 0.188 0.360 0.97 1.000 
          

0.05 *D  0.068 0.073 0.162 0.527 0.849 0.991 1.000 1.000 
 LR  0.056 0.073 0.161 0.538 0.861 0.995 1.000 1.000 
          

0.15 *D  0.053 0.100 0.429 0.984 1.000 1.000 1.000 1.000 
 LR  0.044 0.084 0.416 0.984 1.000 1.000 1.000 1.000 
          
0.30 *D  0.046 0.141 0.735 1.000 1.000 1.000 1.000 1.000 

 LR  0.045 0.136 0.740 1.000 1.000 1.000 1.000 1.000 
          
0.50 *D  0.050 0.160 0.812 1.000 1.000 1.000 1.000 1.000 

 LR  0.049 0.161 0.828 1.000 1.000 1.000 1.000 1.000 
 
 

5.  Inference 

Having established that the bootstrap bias correction works well for a large part of the 

parameter space, the next step is to develop reliable inference procedures such as 95% 

confidence intervals and Wald test statistics for equivalence of segregation in 

different areas. We start by deriving the asymptotic distribution of D  given our 

statistical framework, following the procedures as developed in Ransom (2000). 

The estimated conditional probabilities ˆ c
jp , for { }0,1c = , are asymptotically normally 

distributed, as  

 

( )
( )

( )

( )
1 1 1 2 1

1 1

1 2 2 2 22 2

1 2

1ˆ

1ˆ
0, 0,

ˆ 1

c c c c c c
c c J

c c c c c cc c
Jdc c

c c
c c c c c c

J J
J J J J

p p p p p pp p

p p p p p pp p
n N N

p p p p p p p p

  − − − −   
    − − −−   → ≡ Ω 
    
      −   − − −   

L

M M O M

L

. 
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As 1n pn=  and ( )0 1n p n= − , the limiting distribution of D  can then be obtained via 

the delta method:  

( ) ( )( )( )11 1 00, 1d
popn D D N p pλ λ−−′− → Ω + − Ω  

where λ  is a J -vector with rth element ( )1 0
r r rsign p pλ = − /2, where ( ) 1sign q =  if 

0q >  and ( ) 1sign q = −  if 0q < .3 This follows from 

( )

( )

1 0 1 0
1 1

1

1 0 1 0
0 0

1

1
/ 2;

2

1
/ 2.

2

J
pop

j j r r
jr r

J
pop

j j r r
jr r

D
p p sign p p

p p

D
p p sign p p

p p

=

=

∂ ∂= − = −
∂ ∂

∂ ∂= − = − −
∂ ∂

∑

∑
 

Clearly, this derivation is only valid when 1 0
r rp p≠ . 

The asymptotic distribution of D  is then given by 

( )( )( )11 1 1 0~ , 1
a

popD N D n p pλ λ−− −′ Ω + − Ω , 

or, equivalently, 

( )( )1 1 0 0~ , / /
a

popD N D n nλ λ′ Ω + Ω  

which can form the basis for constructing confidence intervals and Wald test statistics 

for hypotheses of the form 0 : popH D δ= . Denoting λ̂  and ˆ cΩ  the estimated 

counterparts of λ  and cΩ  substituting the observed fractions ˆ c
jp  for c

jp , the Wald 

test is then computed as 

( )
( )

2

1 1 0 0ˆ ˆˆ ˆ/ /

D
W

n n

δ
λ λ

−
=

′ Ω + Ω
 

and converges in distribution to a 21χ  distributed random variable under the null. 

Clearly, we don’t expect this approximation to work well when δ , group sizes and/or 

minority proportions are small, if only due to the upward bias of D  as established in 

the previous sections. However, the Wald test W is asymptotically pivotal in the sense 

                                                 

3 Although cΩ is singular because 1c
jj

p =∑ , exactly the same results are obtained by redefining D  

as a function of ( )2 1J −  probabilities only. 
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that its limiting distribution is not a function of nuisance parameters. We can therefore 

use bootstrap p-values which may result in an improvement of the finite sample 

behaviour of the test (see Hall (1992) and Davison and Hinkley (1997)). Denoting the 

Wald statistic in the b-th bootstrap sample as bW , calculated as 

( )
( )

2

1 1 0 0ˆ ˆˆ ˆ/ /

b
b

b b b b

D D
W

n nλ λ
−

=
′ Ω + Ω

 

the bootstrap p-value is then given by ( )
1

1
1

B

bb
W W

B =
>∑ . 

This bootstrap procedure is equivalent to a symmetric two-tailed test for the t-statistic. 

Let τ  denote the t-test 

( )1 1 0 0ˆ ˆˆ ˆ/ /

D

n n

δτ
λ λ

−=
′ Ω + Ω

, 

then a test that does not assume symmetry can be based on the equal-tail bootstrap p-

value 

( ) ( )
1 1

1 1
2min 1 , 1

B B

b b
b bB B

τ τ τ τ
= =

 < > 
 
∑ ∑ . 

 

Alternatively, we can base the inference directly on the bootstrap bias corrected 

estimator of popD . In order to estimate the variance of the bias corrected estimator, we 

perform a double bootstrap procedure. For every bootstrap sample we generate 

another set of bootstrap samples, enabling us to generate a bootstrap estimate of the 

variance of bcD . Denoting this estimate ( )ˆ b bcVar D , the Wald test statistic is then 

calculated as 

( )
( )

2

ˆ
bc

bc
b bc

D
W

Var D

δ−
=  

and this is again compared to the 2
1χ  distribution.  

Figure 3 shows p-value plots for testing the true hypothesis 0 : 0.2922popH D = , for 

( ) 30jE n = , 50J =  and 0.3p = . The Wald test based on the asymptotic normal 

distribution of D  and using the 2
1χ  critical values is denoted W, whereas the Wald 

test using the bootstrap critical values is denoted pbW . The test based on the equal tail 
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bootstrap p-value for the t-test is denoted pbT . The Wald statistic using the double 

bootstrap variance estimate for the bias corrected estimator is denoted bcW . The 

results shown are for 10,000 Monte Carlo replications. Per replication 599 bootstrap 

samples are drawn for the calculation of bcD  and the bootstrap distribution of the 

Wald test. Per bootstrap sample we draw a further 50 double bootstrap samples for the 

calculation of ( )ˆ b bcVar D . 

The mean of D  is equal to 0.323, whereas that of bcD  is equal to 0.292. There is 

therefore a 10% upward bias in D , but bcD  is unbiased. The standard deviation of D  

is equal to 0.023, that of bcD  is equal to 0.027, and their root mean squared errors are 

given by 0.039 and 0.027 respectively. As is clear from Figure 3, the asymptotic Wald 

test, W , using the 2
1χ  critical values does not have good size properties. It rejects the 

true null too often, for example at 5% nominal size, it rejects the null in 18.5% of the 

replications. In contrast, using the p-values from the bootstrap distribution of the 

Wald statistic improves the size behaviour considerably. At the 5% level, the rejection 

frequency is now reduced to 7.3%. Using the equal-tailed bootstrap p-values for the t-

test also improves on the size performance of the asymptotic Wald statistic, but it 

performs less well than pbW . However, the best size performance in this case is 

obtained by using bcW  with 2
1χ  critical values. At the 5% level, it only rejects 5.4% of 

the time. 

Figure 4 shows the p-value plot for a similar design, but now for smaller expected 

group sizes ( ) 20jE N =  and a smaller minority proportion, 0.10p = . The bias of D  

in this case is 0.106, or 36%, whereas that of bcD  is 0.020, or 6.5%. The standard 

deviation of D  is equal to 0.037, that of bcD  is equal to 0.048, and their root mean 

squared errors are given by 0.111 and 0.051 respectively 

The size distortions of all test statistics are now more severe. The asymptotic Wald 

test is severely size distorted, with a 68% rejection rate at the 5% level. The Wald and 

asymmetric t-test using the bootstrapped p-values behave best, with their size 

properties being very similar. At the 5% level, the rejection frequencies for these tests 

are 9.4% and 9.5% respectively. bcW  has only a slightly worse size performance than 

these two bootstrap tests, it rejects the true null 10.7% of the time at the 5% level.  
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Figure 3. P-value plot, 0 : 0.292popH D = , ( ) 30jE n = , 50J = , 0.30p = . 

 
 

 
Figure 4. P-value plot, 0 : 0.292popH D = , ( ) 20jE n = , 50J = , 0.10p = . 
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Clearly, in general, inference can only be based on these latter three tests when the 

sample size, popD  and/or the minority proportion are small, although as the figures 

show, some size distortions occur also for these tests. 

There is a one-to-one correspondence between the p-value plots as depicted in figures 

3 and 4 and the coverage properties of the confidence intervals associated with the 

particular test statistics. Using the normal approximation, ( )1 %α−  confidence 

intervals associated with the asymptotic Wald and bcW  tests are constructed as 

( ) ( ) ( ) ( )1 / 2 1 / 2
ˆ ˆpopD z Var D D D z Var Dα α− −− < < +  

and 

( ) ( ) ( ) ( )1 /2 1 /2
ˆ ˆbc b bc pop bc b bcD z Var D D D z Var Dα α− −− < < +  

respectively, where ( )1 / 2z α−  is the ( )100* 1 / 2α−  percentile of the normal distribution.  

For the bootstrap Wald test the associated confidence interval is given by 

( ) ( ) ( ) ( )* *
1 1

ˆ ˆ ,popD w Var D D D w Var Dα α− −− < < +  

where ( )
*
1w α−  is the ( )100* 1 α−  percentile of the distribution of the bootstrap 

replications bW . The equal-tailed bootstrap t-test has the corresponding confidence 

interval given by 

( ) ( ) ( ) ( )* *
1 / 2 /2

ˆ ˆ ,popD Var D D D Var Dα ατ τ−− < < +  

where ( )
*
1 / 2ατ −  and ( )

*
/ 2ατ  are the ( )100* 1 / 2α−  and ( )100* / 2α  percentiles of the 

distribution of the bootstrap replication bτ . 

For the example with ( ) 20jE n =  and 0.10p =  as described above, the observed 

rejection frequencies of 68%, 10.7%, 9.4% and 9.5% for the W , bcW , pbW  and pbT  

tests respectively translate into coverage probabilities of 32%, 89.3%, 91.6% and 

91.5% of the associated 95% confidence intervals. Given the upward bias of D  this 

leads to an interesting observation concerning the confidence interval based on the 

bootstrap Wald test pbW . As the size and associated coverage properties of this test 

are reasonably good, but as the confidence interval is symmetric around the upward 

biased D , this suggest that the pbW  based confidence interval will be quite large. 
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Table 3. Average lower and upper limits of 95% confidence intervals 

Test Lower limit Upper limit 

bcW  0.227 0.395 

pbW  0.226 0.569 

pbT  0.209 0.376 

 
 

Table 3 shows the averages of the lower and upper limits of the 95% confidence 

intervals based associated with bcW , pbW  and pbT  respectively. This confirms that the 

pbW  based confidence interval is on average indeed much larger than those based on 

bcW  and pbT . Whereas the lower limit is quite similar to those of the other two 

confidence intervals, its upper limit is much higher, as expected due to the symmetry 

around the upward biased D . Clearly, pbW  can therefore have poor power properties 

when D  has substantial bias. 

A researcher will in general be interested in determining whether segregation has 

changed significantly within an area over time, or whether segregation in one area is 

significantly different from that in another, similar or perhaps neighbouring area. We 

consider the performances of the test statistics for comparing the two hypothetical 

areas for which the results were simulated above. Area 1 has 50J = , ( ) 30jE n =  and 

0.30p = , whereas Area 2 has 50J = , ( ) 20jE n =  and 0.10p = . To study the size 

properties of the tests for the null hypothesis 

0 ,1 ,2: pop popH D D=  

we set the two area population segregation measures ,1 ,2 0.2922pop popD D= =  as 

before. Given the area specific conditional allocation probabilities, the allocations in 

the areas are determined independently and therefore the Wald test 

( )
( ) ( )

2

1 2

1 2ˆ ˆ

D D
W

Var D Var D

−
=

+
 

is asymptotically 2
1χ  distributed. The Wald test based on the bootstrap bias corrected 

estimates is defined as 
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( )
( ) ( )

2

,1 ,2

,1 ,2ˆ ˆ
bc bc

bc

b bc b bc

D D
W

Var D Var D

−
=

+
, 

whereas the bootstrap p-values for the pbW  test are based on the distribution of the 

bootstrap replications of  

( )( )
( ) ( )

2

,1 ,2 1 2

,1 ,2ˆ ˆ
b b

b

b b

D D D D
W

Var D Var D

− − −
=

+
, 

where ,1bD  and ,2bD  are calculated from independent bootstrap replications. The 

bootstrap p-values for the pbT  test are obtained in an equivalent way. 

Figure 5 depicts the p-value plots for the true null of equal population segregation 

measures popD  in the two areas. The asymptotic Wald test again over-rejects 

substantially, 27.3% at the 5% level. The bcW  test displays the best size properties in 

this case, followed by pbT  and then pbW . The rejection probabilities for these tests at 

the 5% level are 8.8%, 9.2% and 10.9% respectively. 

We next turn to evaluate the power properties of these tests when the two population 

segregation measures ,1popD  and ,2popD  are not equal. We keep ,2popD  equal to 0.2922, 

but increase ,1popD  to 0.3819. As discussed above, because 2D  is substantially biased 

upwards, we expect the pbW  test to have low power. This is confirmed by the p-value 

plots in Figure 6. The standard Wald test has power below nominal size, but 

especially the bootstrap based Wald test pbW  fails to reject the null of equal 

segregation completely. In contrast, both bcW  and pbT  show reasonable power 

properties, with pbT  having most power to detect this deviation from the null, 

although it has not been size adjusted. The p-value plots, not shown here, for the true 

null that ,1 ,2 0.0897pop popD D− =  are very similar to those in Figure 5. Clearly, these 

results combined together show that for simple hypothesis testing bcW  and pbT  are the 

test procedures with reasonably good size and power properties in the settings we 

considered. 
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Figure 5. P-value plot, 0 ,1 ,2: pop popH D D==== , size properties 

 
 
 

 
Figure 6. P-value plot, 0 ,1 ,2: pop popH D D==== , power properties 

 



 24 

6. Social segregation in schools 

In this section we illustrate our inference procedures with an empirical application 

relating to social segregation in primary schools in England. The dichotomous 

measure is an indicator of poverty based on eligibility for free school meals (FSM). 

This context is useful as it naturally produces small unit sizes, and shows a range of 

minority proportions and overall populations across different Local Authorities (LAs). 

We use administrative data collected by the Department for Children, Families and 

Schools and made available to researchers as part of the National Pupil Database on 

pupils aged 10/11 in English primary schools in 2006. Measurement of school 

segregation in using this dataset has been carried out by many researchers (e.g. Allen 

and Vignoles, 2006; Burgess et al., 2006; Gibbons and Telhaj, 2006). Using the tools 

developed above, we can assess whether the small unit sizes and/or small minority 

populations lead to incorrect inferences about differences in segregation across areas. 

We provide two cases. First, we compare two similar pairs of LAs, showing that quite 

small differences in their characteristics imply different outcomes of inference; these 

are North-East Lincolnshire and North Lincolnshire, and Blackburn and Oldham. 

Second, we compare all the different LAs in inner-city London, and consider which 

pair-wise comparisons yield significant differences. Table 4 shows the descriptive 

statistics and the dissimilarity indices of the LAs. 

North-East Lincolnshire and North Lincolnshire have the same number of pupils, 

2005 and 2011 respectively, but differ in the number of schools, 46 vs. 57 

respectively, and therefore the average cohort size, and also differ in the percentages 

of children eligible for free-school meals, 21% vs. 13%. The dissimilarity index for 

North-East Lincolnshire is 0.43, higher than that of North Lincolnshire, which has an 

index of 0.36. Blackburn and Oldham differ rather more in size, but have closer 

average unit sizes, and slightly higher percentages of children eligible for free-school 

meals. 
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Table 4: Key parameters of primary schools across English local authorities 

LA name 
Number 
of pupils 

Number 
of schools 

Average 
cohort size 

% 
FSM D  

      
North-East Lincolnshire 2005 46 44 21 0.43 
North Lincolnshire 2011 57 35 13 0.36 
      
Blackburn 2105 51 41 26 0.34 
Oldham 2990 86 35 21 0.47 
      
Camden 1394 41 34 42 0.23 
Greenwich 2666 66 40 36 0.29 
Hackney 2194 54 41 43 0.22 
Hammersmith & Fulham 1177 39 30 45 0.30 
Islington 1845 48 38 41 0.26 
Kensinton & Chelsea 881 27 33 36 0.32 
Lambeth 2428 60 40 40 0.24 
Lewisham 2833 70 40 29 0.30 
Southwark 2929 72 41 36 0.21 
Tower Hamlets 2703 68 40 61 0.20 
Wandsworth 2124 60 35 27 0.29 
Westminster 1336 39 34 39 0.33 
 

 

Are the school allocations in North-East Lincolnshire more segregated than those in 

North Lincolnshire? Table 5 shows that the observed D  marginally overstates the 

level of segregation in each local authority, but the bootstrap correction to D  does not 

alter the ranking. The table further presents the various test procedures and confidence 

intervals as described in the previous section. Here we generate 999 bootstrap samples 

with a further 100 samples for the double bootstrap variance estimate of bcD . The LR 

test for no systematic segregation is clearly rejected for both LAs, with both bootstrap 

p-values equal to 0. The rejection of the null of equal segregation in North-East 

Lincolnshire and North Lincolnshire depends on the test statistics employed. Using 

the preferred test statistics bcW  and pbT  we reject the null of equal segregation in the 

two LAs at the 5% and 1% level respectively. 

Table 6 shows the test statistics for Blackburn and Oldham. In this example, we can 

reject, with a high degree of confidence, the null of equal segregation in these areas. 

This greater confidence than in the Lincolnshire example is possible, despite similar 

segregation levels, because the local authorities are slightly larger and the minority 

proportion is higher. 
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Table 5. Bias corrected dissimilarity indices, confidence intervals and test 
statistics for North-East and North Lincolnshire 
 North-East Lincolnshire North Lincolnshire 
D  0.433 0.364 

bcD  0.419 0.322 

LR-test, boot. p-value 0 0 
CI-W  [0.386-0.481] [0.306-0.421] 
CI- bcW  [0.369-0.469] [0.264-0.379] 

CI- pbW  [0.377-0.490] [0.271-0.456] 

CI- pbT  [0.370-0.462] [0.261-0.373] 

 
0 , ,: =pop NEL pop NLH D D , p-values 

W  0.067 

bcW  0.011 

pbW  0.121 

pbT  0.004 

 

 

Table 6. Bias corrected dissimilarity indices, confidence intervals and test 
statistics for Blackburn and Oldham 
 Blackburn Oldham 
D  0.342 0.472 

bcD  0.325 0.454 

LR-test, boot. p-value 0 0 
CI- bcW  [0.282-0.368] [0.418-0.490] 

CI- pbT  [0.287-0.360] [0.420-0.486] 

 
0 , ,: =pop Blackburn pop OldhamH D D , p-values 

bcW  0.000 

pbT  0 

 

 

For our second illustration, Table 7 compares observed and bootstrap corrected 

segregation levels across the 12 local authorities in Inner London. The bootstrap 

correction makes little differences to the ranking of segregation levels, with just 

Wandsworth and Greenwich switching positions. The test statistics show that the LAs 

can be approximately divided into three groups, with possible multiple membership, 

where the tests do not reject the null of equal segregation. These groups are: Tower 

Hamlets, Southwark and Hackney, with the lowest level of segregation; Hackney, 

Camden and Lambeth, with medium level of segregation; and Wandsworth, 

Greenwich, Hammersmith & Fulham, Lewisham, Kensington & Chelsea and 
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Westminster with the highest level of segregation. Islington is a medium segregation 

LA with some overlap with the group of highest segregation LAs. 

 

7. Conclusions 

To make statements about the true underlying degree of segregation, or understand 

the processes causing segregation, it is desirable to measure the level of systematic 

segregation. However, where minority proportions and unit sizes are small, the level 

of segregation observed by researchers in their data is known to be significantly 

greater than systematic segregation. Furthermore, because the size of the bias of 

observed segregation over systematic segregation is known to be a function of 

minority proportion, unit sizes and systematic segregation, differences in any of these 

parameters between areas or over time may lead to incorrect inferences. 

In this paper we have proposed and tested a bootstrap procedure for adjusting 

segregation indices for this bias. Our bootstrap correction works well provided both 

the minority proportion and unit size are not very small. Where very small minority 

proportions and unit sizes render our correction useless, we show that levels of 

segregation are often not statistically distinguishable from zero. We have developed 

and tested our statistical framework using the index of dissimilarity, D , but it can, in 

principle, be applied to other segregation indices. 

From our statistical framework we have developed inference tests for a null of no 

systematic segregation; a null of equal segregation in two areas; and establishing 

confidence intervals for levels of systematic segregation. In tests using unit sizes, 

minority proportions and underlying segregation levels similar to those encountered 

by social scientists, the Wald statistic using the double bootstrap variance estimate for 

the bias corrected estimator (bcW ) and the test based on the equal tail bootstrap p-

value for the t-test (pbT ) are found to perform best. The methods proposed in this 

paper provide a framework for more reliable inference as to levels of segregation, 

which will aid the further investigation of the causes of segregation. 
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Table 7: Bias corrected dissimilarity indices, confidence intervals and test statistics for Inner London 
  

D  
 

bcD  
LR 
(p) 

CI- bcW  

CI- pbT  

Sout Hack Camd Lamb Isli Wand Gree Hamm Lewi Kens West 

Tower 
Hamlets 

.197 .161 0 [.123-.199] 
[.127-.193] 

.764 

.695 
.291 
.176 

.289 

.208 
.088 
.036 

.032 

.012 
.001 
.000 

.000 

.000 
.001 
.000 

.000 

.000 
.000 
.002 

.000 

.000 
Southwark 
 

.206 .169 0 [.132-.206] 
[.137-.200] 

 .435 
.330 

.300 

.412 
.151 
.096 

.058 

.042 
.003 
.000 

.001 

.000 
.001 
.000 

.000 

.000 
.001 
.000 

.000 

.000 
Hackney .219 .191 0 [.151-.231] 

[.156-.224] 
  .888 

.881 
.542 
.476 

.267 

.208 
.030 
.014 

.013 

.000 
.013 
.000 

.002 

.000 
.007 
.004 

.001 

.002 
Camden .231 .196 0 [.144-.247] 

[.152-.239] 
   .698 

.633 
.398 
.322 

.077 

.046 
.044 
.020 

.035 

.016 
.011 
.004 

.017 

.010 
.004 
.000 

Lambeth .240 .208 0 [.170-.247] 
[.175-.241] 

    .581 
.484 

.106 

.052 
.056 
.020 

.047 

.020 
.011 
.002 

.022 

.010 
.005 
.000 

Islington .257 .225 0 [.181-.269] 
[.184-262] 

     .327 
.272 

.220 

.178 
.157 
.086 

.071 

.028 
.077 
.062 

.027 

.018 
Wandsworth .290 .255 0 [.213-.298] 

[.219-.291] 
      .821 

.833 
.582 
.519 

.430 

.380 
.311 
.262 

.169 

.126 
Greenwich .286 .262 0 [.223-.300] 

[.226-.297] 
       .701 

.641 
.547 
.511 

.381 

.312 
.216 
.148 

Hammersmith 
& Fulham 

.303 .274 0 [.222-.327] 
[.226-.318] 

        .910 
.899 

.627 

.579 
.450 
.358 

Lewisham .304 .278 0 [.241-.315] 
[.247-.310] 

         .656 
.641 

.449 

.402 
Kensington & 
Chelsea 

.317 .295 0 [.231-.358] 
[.232-.350] 

          .843 
.833 

Westminster .328 .303 0 [.250-.357] 
[.253-.352] 
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