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Abstract 
The effect of a more able peer group on a child’s attainment is considered an integral part in estimating 
a pupil level educational production function. Examinations in England at age 16 are tiered according 
to ability, leading to a large stratification of pupils by ability. However, within tiers, there is a range of 
policies between schools regarding setting, ranging from credibly random to strict setting by results 
from examinations at age 14. We use this variation to estimate ordinary least squares (OLS) estimates, 
with school and teacher fixed effects, of the effect of a more able peer group using a subset of schools 
that has apparently random allocation of pupils. As a robustness test of the apparently random setting 
results, we use an instrumental variables (IV) methodology developed by Lefgren (2004b). We find 
significant, positive, and non-trivial effects of a more able peer group using both the OLS and IV 
estimations for English and mathematics. 
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1. Introduction  

There has long been an interest in the effect of a pupil’s peers upon their outcomes. 

Britain, like all nations, has geographic areas of relative deprivation and affluence. 

Access to schools by catchment areas (residential location), academic selection or 

parental choice mechanisms all result in large variations in the pupil mix within schools 

(see Burgess et al. 2004). Whether the sorting of children in these ways have an impact 

on a child’s outcomes is thus a key and longstanding policy concern. If there is a 

significant effect of a more able peer group, then stratification of pupils into ability 

based teaching groups may lead to a polarisation of the population, with more able 

students only helping the similarly able. However, there is a standard problem when 

comparing pupil attainment across schools according to the school mix. Schools with 

intakes with low measured ability on average are likely to be attracting pupils that have 

unmeasured adverse characteristics influencing their future achievement prospects. 

These pupils may achieve less in the future, even given their initial measured ability, 

for reasons relating to their home or school characteristics rather than the mix of pupils 

within the classroom. The correlation of the unmeasured attributes with both the 

outcome measure and the peer group indicator results in an omitted variable bias that 

likely overstates the influence of the peer group.  

 

Isolating the influence of the peer group from unobserved heterogeneity is not 

straightforward, but there has been a rapid growth in studies attempting this by 

econometric techniques and experimental policy design, such as Lefgren (2004b) and 

others.  In the UK there have been no true experimental studies capable of addressing 

this issue.  However, there have been a small but growing number of studies addressing 

this issue using other techniques, such as Gibbons and Telhaj (2006) 

 

We use data from key stage 3 (KS3), examined at age 14 and GCSE, examined at age 

161.  The GCSE qualification has two or three levels of difficulty of examination, or 

tiers, that pupils can be entered for within each subject. This encourages schools to 

group students into sets by ability for these examinations. Within each individual 

examination tier, however, there is much greater variation in setting ranging from strict 

                                                 
1 The structure of the English school system is discussed in more detail in the data section. 
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ordering to apparent random allocation. We use a unique dataset for England2, 

containing data on the sets in which pupils are taught at ages 15 and 16, giving us data 

on the peer group that the students directly experience.  We estimate the effect of a 

more able peer group using a sample of schools with a credibly random distribution of 

pupils, and utilise an instrumental variables technique developed in Lefgren (2004b), 

and using these methods, we find significant and non trivial positive effects of a more 

able peer group, which are smaller than the ordinary least squares estimates.  Section 2 

summarises the recent literature.  Section 3 discusses identification issues. Section 4 

examines the data. Section 5 discusses the results. Section 6 offers some concluding 

discussion. 

 

2. Literature  

The literature looking at peer group effects is long standing. Perhaps the most important 

was the Coleman Report (Coleman et al (1966)), which argues that the “Attributes of 

other students account for far more variation in the achievement of minority group 

children than do any attributes of school facilities and slightly more than do attributes 

of staff” Coleman et al (1966, page 86). More recent literature in this vein shows 

substantial correlations between a child’s outcomes and that of their peers. Jencks and 

Mayer (1990) point out that pupils are more likely to drop out of school if their peers 

are of lower socioeconomic status. Mayer (1991) demonstrates that pupils at a school 

with peers having a higher socioeconomic status are less likely to drop out of school 

between the tenth and twelfth grades, whilst white pupils attending schools with mainly 

black or Hispanic peers are also more likely to drop out of school early.  However, this 

literature makes little attempt to isolate the peer group effect from school or teacher 

effectiveness or from biases from unobserved pupil attributes. 

 

Some caution therefore needs to be applied when drawing conclusions from these 

studies. It is probable that the peer measure is correlated with the error term in the 

regression. This correlation could come from the fact that selection into schools and 

allocation of teachers to classes and the allocation of pupils to classes are most 

definitely not random, and are in fact assigned based upon ability and other 

(unobserved) characteristics. Similarly, as discussed in Manski (1993) these effects 

                                                 
2 Data collected to examine the effects of the introduction of performance related pay.  See Atkinson et al 
(2004) 
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may simply be due to pupils experiencing the same circumstances that could similarly 

affect all of their outcomes. This could be in the form of a particularly good (or bad) 

classroom teacher, or some other common shock. These shocks are often unobservable, 

and so cannot be directly controlled for. Thus, we would expect the ability of a pupil in 

a classroom environment to be implicitly correlated with that of their peers. Within 

neighbourhoods, we may expect to see people living with similar characteristics.  

People may move into an area because of the people who live there, and similarly, 

richer parents may be able to buy housing in areas with better schools and better ability 

pupils.   

 

There is now a small but rapidly growing body of literature that uses a variety of 

solutions to address this problem, but to date this literature is mainly US based. A 

number of studies look at randomly allocated accommodation within higher education 

in the US. Sacerdote (2001) uses the fact that students are randomly assigned a dorm-

mate upon arrival at Dartmouth College and find that peers have an effect on grade 

point average. This same argument is used by Zimmerman (2003) and Winston and 

Zimmerman (2004), both of which find no credible effect on the top of the SAT 

distribution, but instead find evidence of a negative effect on mid-ability students 

grouped with students in the bottom 15% of the SAT distribution. Stinebrickner and 

Stinebrickner (2006) use this method with data from first year students at Berea 

College, and find significant effects on female students’ results from their roommate’s 

high school grade point average and their family income. 

 

More relevant for our purposes are studies looking at school age children. Angrist and 

Lang (2004) use results from the METCO program in Boston, which sends mostly 

black students out of Boston’s public schools into the more affluent suburbs. They 

assess the impact of the low reading score of the transferred students on the students in 

the receiving districts. They suggest that the differences in peer groups this generates 

show small negative localised effects on ethnic minority pupils in the host districts.  

Hoxby (2000) exploits the variation in gender and racial mix within schools across time 

suggesting that “a credible [positive] exogenous change in [school] peers’ reading 

scores raises a students own score between 0.15 and 0.4 points” (Hoxby (2000), 2). The 

effects she identifies are thus quite substantial.  Proud (2008) uses a similar strategy to 

Hoxby, and shows a change in the gender make up of the peer group does not make a 
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good proxy for ability, and instead considers the proportion of girls to affect other 

aspects such as behaviour and teacher-pupil interactions.  Lavy and Schlosser (2007) 

demonstrate that a higher number of female peers leads to higher academic outcomes, 

but they argue that this is not due to an increase in the ability of the peer group, but 

rather due to behaviour within the classroom due to the compositional make-up of the 

school.   

 

Yet these studies are based on school intake variations, whereas the majority of peer 

effects are more likely to be motivated in the classroom. The probable non-random 

assignment of pupils and/or teachers to classes, or common patterns of attainment 

development within a class other than from the peer group means that biases may 

remain. To address these issues Hanushek et al (2003) use lagged student attainment to 

net out individual fixed effects which, along with school and school-grade fixed effects, 

could account for the systematic but unobserved differences in students and schools. 

They also deal with any common production of added value in the school grade (other 

than peer effects) by using lagged peer attainment. Their results suggest that, having 

controlled for school characteristics in a value added model, there are no mean peer 

attainment effects but there are adverse effects from having more poor children in the 

class or less homogeneity of ability within a class. However, introducing student fixed 

effects, school fixed effects and school-grade fixed effects produces a consistent 

pattern, that a greater proportion of poorer children is not detrimental and actually 

weakly positive. Betts and Zau (2004) also use student fixed effects are draw similar 

conclusions. There remain concerns though that non-random allocation of pupils to 

classes within schools will also be correlated with non-random allocation of teaching 

resources including teacher quality to classes. Thus, there is the danger that teacher 

ability is correlated with mean prior attainment of peers in the class.   

 

Burke and Sass (2006) go one step further introducing teacher fixed effects,  in addition 

to school fixed effects, into value added models looking at peer effects in Florida 

middle schools. The broad pattern of results is that positive peer effects disappear once 

a value added model is adopted, with school and teacher fixed effects making little 

further difference. Lefgren (2004b) uses an instrumental variables estimation technique 

in order to remove the correlation with the error term. As an instrument he uses the 

variation in class setting policies in Chicago secondary schools. He argues this decision 
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is school level and unrelated to pupil characteristics after inclusion of school fixed 

effects, but does alter the pupil composition of classes. This is measured by the R-

squared obtained by regressing the pupils’ results against a set of class dummies. This 

results in smaller, but still significant, effects than non-IV estimates. Clark (2003) also 

uses an instrumental variable estimation technique looking for the effect of being 

placed with older pupils in a middle school environment rather than a primary school 

followed by a secondary school. He uses a binary dummy based on whether they attend 

a middle school as an instrument for peer behaviour and finds significant peer effects 

on behaviour. 

 

Robertson and Symons (2003) use UK data to estimate a production function using peer 

group, parental input and schooling as its inputs.  They examine the effect of streaming 

on children’s outcomes, and show that children placed in the top stream within a school 

benefit, whilst children placed in the bottom stream suffer.   

 

Further studies look at variations in peer group effects across population sub-sets. On 

effects of different levels of ability, Summers and Wolfe (1977) find that low achieving 

pupils benefited from being in a school with high achievers whereas the high ability 

pupils are not significantly affected. This positive effect to the lower ability pupils is 

backed up by Dills (2005) who consider the introduction of a magnet school into a 

school district that cream off the best students from the schools, and found that the 

lower ability pupils’ performances are lowered following the removal of the high 

ability pupils. Similarly, Henderson et al (1978) show that a mixing of weak and strong 

students will benefit the overall student population, but at the cost of lowering the 

outcomes for the higher achievers. Similar results are also found by Bradley and Taylor 

(2007), who use pupils moving between schools to address the problems inherent with 

estimating peer effects, and find the effects of a more able peer group are stronger for 

low ability students than for higher ability students. However, Betts and Shkolnik 

(2000) find little evidence of differential effects of ability grouping for high or low 

ability pupils.  Further to this, Gibbons and Telhaj (2006) examine pupil attainment at 

age 14 in England, and find that whilst middle and high ability pupils have the same 

response to an improvement in the ability of the peer group, the lowest ability pupils do 

not seem to gain much, if anything. 
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In summary, the literature shows, on the whole, that being grouped with a higher ability 

peer group leads to an increase in outcomes.  However, the effects found in early 

studies are likely to have mis-estimated the effects.  In this study, we consider the 

effects, within classrooms in England, of a more able peer group.  We use a measure of 

grouping within the school, within the tier of examination entered for at GCSE to 

estimate these effects for schools with a credibly random grouping strategy.  

Furthermore, we validate these results using the methodology developed by Lefgren 

(2004b). 

 

3. Identification of peer effects 

Researchers face substantial problems with how to correctly identify the peer effects.  

This may be due to the non-random allocation of pupils to schools, and within the 

schools into classes and classes to teachers. A pupil’s peers within a school are often 

likely to have a similar social background due to fixed catchment areas for schools.  

That is, housing in the catchment areas of good schools is likely to be more expensive 

due to higher demand and is thus available to richer parents (Gibbons and Machin, 

2003). Similarly, fee paying, religious and selective schools are also likely to have 

pupils with similar demographics, whilst also potentially having better facilities and 

resources available to them. So it is important to control for these school entry effects 

by including school-year or pupil fixed effects. Within the school there is also likely to 

be a non-random assignment of peers within classes. This is especially true for GCSE 

classes in the UK as pupils are often assigned to classes based on previous exam results 

as well as potentially ability that is unobservable to researchers based on teacher’s 

assessment 

 

A natural place to start in considering pupil attainment at GCSE level (age 16) is the 

general cumulative education production function developed by Todd and Wolpin 

(2003): 

 

],,,[ ijjijijtij SFAGCSE εµ  =  

 

where GCSE is the exam result for the pupil (i) in each subject (j) considered, A is the 

cumulated achievement function with F and S representing the entire input histories of 
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the family and schools over the child’s life to date, as they apply to subject j; µ is a 

composite variable representing individual time invariant characteristics such as ability 

to learn the subject and ε captures any measurement error. 

 

On the assumption that past inputs and the past attainment stemming from the 

individual endowment can cumulated into a lagged attainment measure this can be re-

written as: 

jitijjtijtijtij vASFGCSE ηλββ ++= −++ 221  

To explore class based peer group effects we can look to split up the school inputs 

component into:  

tjtijtijt STCS ++=  

 

where C is the measure of the class peer group for each individual in each subject, T 

represents teacher quality inputs for each subject and S is the residual school level 

inputs reflecting school ethos, administration etc. which does not vary across 

individuals or classes. To avoid contamination of the peer group with any other co-

produced attainment at class level during the two year GCSE course, the peer group 

measure is measured as the average outcome of the peer group 2 years previously. So 

here, our measure of the peer group (classave) is the mean Key Stage 3 (KS3) score of 

the set, not including the subject child, where KS3 is taken at the end of school year 

preceding the GCSE courses starting. In our estimation vectors of school-year fixed 

effects are included to capture school level variations in school effectiveness and we 

also explore teachers fixed effects. More detail on this in given in the data section. 

 

Even with well measured pupil prior attainment, school, and teacher fixed effects there 

will remain a concern that a measure of class level peer group effects may still be 

biased. The data reveals, discussed in detail later, that the extent of grouping into sets 

by ability at the class level varies from school to school, especially in English. Within 

mathematics, on the other hand, pupils are widely grouped into sets with peers of very 

similar ability. In order to get a measure of the extent of setting at the school level, we 

regress the observed ability measure, that is the key stage 3 score, against a set of class 

dummies, and obtain the R-squared value. This gives us a measure to which a pupil is 

grouped in a class with pupils of a similar ability to themselves. We try to use this R-
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squared value in order to consider schools that use a credibly random policy for 

assigning their students to teaching sets. That is, if a school has an R-squared close to 1, 

then a pupil will be taught in a class with pupils with very similar scores at key stage 3, 

whilst if a school has an R-squared close to zero, then there will be more random 

assignment of pupils according to their key stage 3 score. 

 

However, at GCSE, pupils are entered for a tier of examination, depending on how the 

school expects them to perform. Within these tiers, only a sub-sample of the grades is 

available to the students. This is likely to generate setting policy as the teacher may 

well find it easier to teach to a specific standard script rather than have students 

entering different exam tiers in the same class. So we consider regressions dependent 

on the tier the pupils are entered for at GCSE. Within tier, we also create an R-squared 

measure of setting within tier within the school. Since the curriculum taught in British 

secondary schools is regulated by the national curriculum, we hope that pupils within 

each tier will be taught in similar ways to each other, thus removing one of the potential 

alternative mechanisms for the peer effects to operate. We show in the data section 

there is much more evidence of apparently random setting practices within tier than 

exists within a whole school. However, in these regressions by tier entry, we only 

consider those schools that have 2 or more sets entered for any particular tier in order to 

compare the results within the school. So, whilst we may not find much evidence of 

credibly random distribution of pupils according to ability within schools, we do find 

evidence of credibly random distribution of pupils within the tier that the pupils are 

entered for. Due to this tiering policy, it is unlikely that many, if any, schools have a 

credibly random setting policy for the whole school, but our identification strategy 

should allow us to use schools with credibly random strategies within the examination 

tier they are entered for. 

 

In order to estimate the effect of a more able peer group within the educational 

production function described above, we estimate 

ijttjtijjijtij tsclassaveXGCSE εγδα +++++=
−2

  (1) 

where GCSE is the GCSE score for pupil i at time t in subject j, classave is the mean of 

the peer group’s key stage 3 score, not including child i, whilst X includes exogenous 

pupil level demographics. We include school–year fixed effects that have the effect of 
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removing any other effects that may be constant across the pupil data within the cohort 

entry to the school. Further we explore the implications of adding teacher fixed effects. 

 

We would like to be able to remove as much unobserved heterogeneity from the model 

as possible by including as much relevant background for the children as is available.  

However, in our dataset, there is little data regarding the child’s background and other 

details. We try to reduce this unobserved heterogeneity by also including other 

measures of the pupil’s ability in the form of the pupil’s key stage 3 scores from other 

subjects, as well as demographics including their age within year, gender and a measure 

of the deprivation of their postcode from the index of multiple deprivation, from the 

Department of the Environment, Trade and Regions of local area deprivation. 

 

In order to identify the effect of the peer ability score, we need to consider schools that 

use a credibly random setting policy. In order to do this, we consider schools that have 

an R-squared score of less than 0.353 within the tier as having a credibly random 

distribution of pupils. Schools that have an R-squared score of greater than 0.4 are 

defined as having a large R-squared, and do not have a credibly random distribution of 

pupils. This cut off is essentially arbitrary but the sample sizes within tier start to get 

very small, especially for maths but we can check for any residual bias by comparing 

the results those for the IV approach of Lefgren (2004b). 

 

Whilst we may be confident that these schools have a random distribution of pupils to 

classes, in order to validate this, we appeal to the methodology developed in Lefgren 

(2004b) This identification strategy utilises the same R-squared measure as defined 

above, interacted with the pupil’s subject specific key stage 3 score to estimate the 

following two-stage regression for each subject examined at key stage 3; English and 

maths: 

ijttjtijsjjijtij utsKSRXaclassave +++++=
−−

ψβ
2

2

2
3  (2) 

ijttjtijjijtij tsclassaveXGCSE εγδα +++++=
−2

  (3) 

                                                 
3 Whilst this may be considered a large cut-off, we are limited by having a small sample of schools, and 
so we must allow for schools with a less strict definition of random distribution.  However, we appeal to 
the methodology of Lefgren (2004b) to verify these results. 
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where 2R  is the setting measure and KS3 is the pupil’s own key stage 3 measure4. 

 

This IV approach, in line with Lefgren (2004b) only allows the use of one measure of 

peer ability, and we adopt the most common representation, that is the average of a 

pupil’s classroom peer’s lagged attainment score at 14 (Key Stage 3 scores).  There are 

many potential mechanisms for peer effects to operate. A pupil may benefit from 

working with pupils of higher ability. Similarly, low ability pupils may absorb more 

classroom teacher contact time than higher ability pupils or disrupt teaching for other 

pupils by bad behaviour. Also, teacher allocation may be based on the makeup of the 

class. A school may allocate its best teachers to the lowest sets in order to maximise 

possible value added within the school, or similarly could allocate them to the highest 

sets in order to maximise the top level results possible. 

 

4. Data 

We use a unique sample from England consisting of 9,428 pupils taken in two tranches 

from a small sample of schools across the country. The data was collected at the Centre 

for Market and Public Organisation (CMPO) within the University of Bristol, for 

another purpose, namely to look at the effects of the introduction of teachers 

performance related pay in England (Atkinson et al. (2004)). Within the first tranche, 

we have 5,587 pupils within 35 schools who sat their key stage 3 examinations in 1997 

and GCSE exams in 1999. Within the second tranche we have 3841 pupils within a 

subset of 23 schools who sat their key stage 3 examinations in 2000 and GCSE exams 

in 2002. These schools are a non-random sample of state schools, mixed sex and single 

sex, selective and non-selective. The sample was constructed purely on the basis that 

these schools were able and willing to divulge the extensive data requirements for the 

study aims. Hence, this dataset has the unique characteristic (for England) that we have 

complete data on the class in which all of the pupils are taught for English and maths. 

So, we have data on the pupil’s entire classroom peer group, along with their abilities 

based on the key stage 3 scores already gained. We also have widespread but 

                                                 
4 Lefgren (2004a) presents conditions that this IV strategy yields unbiased estimates of the peer effects 

and shows that the estimator is consistent when TR
tt

UN
tt sKSsKS ),3cov(),3cov( 22 −− =  , 

TR
t

UN
t KSKS )3var()3var( 22 −− =  and TR

t
UN

t ss )var()var( = , where UN represents an untracked 

school (with R2=0), and TR representing a tracked school, (with R2=1). 
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incomplete knowledge of which teacher is taking each class. However, the pupil level 

data we observe is limited to age, gender and residential postcode. 

 

Using postcode data on where each of the pupils lives we can map the pupils to a ward 

and thus can include data from the 2000 Indices of Deprivation from the Department of 

the Environment, Trade and Regions of local area deprivation. Hence, we have some 

idea of the demographics of the area in which the pupils live, and thus also some of the 

characteristics of their neighbours in terms of income, education, child deprivation etc.  

 

In England, pupils sit compulsory key stage examinations at various points in their 

school career, at ages 7, 11, 14 and 16.  At age 14, pupils are assessed at key stage 3 

(KS3), a national examination, in English, mathematics and science, whilst at 16, pupils 

are assessed at general certificate of secondary education (GCSE) in a number of 

subjects, including English and mathematics.  As a measure of ability we use the 

pupil’s key stage 3 and GCSE scores from English and mathematics. The key stage 3 

scores are presented as a national curriculum level in the range from 2 to 8, and above 

that for exceptional performance. However, this exceptional level is very rare, and so 

we treat it as the same as those who receive a level 8 score. We also include an 

additional variable for those pupils who fail the key stage 3, or at least fail to gain a 

grade. The GCSE score is presented as a range from U (fail) to A*.  In order to analyse 

the data, we consider an A* to be level 8 and a U to be a level 0.   

 

We drop all results of pupils who are missing either a GCSE score or the subject 

specific key stage 3 score5. We also control for the age and gender of the pupils as well 

as including other ability measures consisting of the other subject key stage 3 scores.  

 

GCSE qualifications are examined using a tier structure; with pupils being entered for 

the tier that the school decides is the best match to their ability. mathematics has three 

tiers; higher, intermediate and foundation, whilst English has two tiers; higher and 

foundation. Each tier only offers a range within the full grade spectrum. In English, a 

pupil can gain a grade in the range from A* to D for the higher tier paper and a range 

from C to G for the foundation paper. Similarly, for mathematics, a pupil can achieve a 

                                                 
5 We thus drop results here for pupils classified with an X meaning entered but did not sit the exam 
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grade in the range A* to C for the higher tier, B to E for the Intermediate tier and D to 

G for the foundation tier. If a pupil fails at any tier they are awarded a U. Thus, a pupil 

of low ability entered for the foundation tier could receive an E grade whilst a higher 

ability pupil could be entered for the higher tier and fail, and thus receive a U, which 

could give the impression that the pupil entered for a lower tier paper had higher 

achievement. The nature of this tier structure further complicates the task of identifying 

the peer effects, since implicitly higher ability pupils will need to be taught to a higher 

syllabus to meet the requirements of the higher tier. Thus the content being taught is 

likely to be linked to the peer group. However, classes are not necessarily being taught 

a single tier. Some classes will have students taught as a mixed ability group with 

students entered for different tier exams at the end of the course.   

 

In order to control for the different syllabus taught due to different tier entry, we need 

to control for this tier entry. We cannot directly observe what tier a pupil is entered for, 

but we can obtain an indicator as to what tier a set is collectively entered for based on 

the results gained at GCSE. It is a reasonable assumption that for many sets within 

schools the entire set will be entered for the same GCSE exam, since for each tier 

different syllabi are required. We examine the maximum and minimum scores pupils 

within the set achieve (excluding failures). We can subsequently compare this range 

with the range available within each tier, and if the results lie clearly within one tier, we 

assign that tier to the set. However, there is the potential for results not to point to one 

particular tier. For example, if in an English set, the only results gained were Cs and Ds 

we would not be able to distinguish between higher and foundation. We consider these 

sets where we cannot differentiate as being in the higher of the two possible tiers. This 

seems rational since in some of these borderline sets, whilst the top grades available in 

the lower tier are gained, some pupils also failed the exam. It is more likely that if the 

entire set were entered for the lower of the tiers, some of the lower grades would have 

also been obtained. However, this should not make a significant difference to the 

results, but we also examine the robustness of our results to assigning these borderline 

cases to the lower of the tiers. 

 

For those sets where the exam results point to pupils entered in more than one tier 

within the set, we consider the set to be of mixed ability. For instance, if in 

mathematics, the maximum grade achieved within the set was an A* and the minimum 
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mark was an E, the set could not all have been entered for higher tier or intermediate 

tier. We thus classify this as mixed set. This does not, however, distinguish between a 

high mixed ability set and a low mixed ability set in mathematics which has three tiers. 

 

In order to construct the peer ability variable we consider the mean average of the key 

stage 3 scores of the other pupils within the class. Whilst at key stage 3, all pupils 

receive one grade in English, at GCSE; there is the possibility of receiving two GCSEs 

in English (language and literature).   Having compared the structure of the English key 

stage 3 with the GCSEs, it was decided to use the mean average of the language and 

literature GCSE scores, with pupils who were missing either a language or literature 

score simply taking the non-missing score. 

 

Our estimation method is within schools, utilising school fixed effects.  Because of the 

way that we calculate our peer score, there will be a small within class variation. 

However, this is very small compared to the variation that is seen across classrooms. 

We thus only consider those schools where there is more than one class. Because of 

this, we lose a number of the schools that are small and only have one set for each 

subject.  Similarly looking at within tier specifications, a larger number of schools will 

not have more than one set. Table 1 shows the number of schools that have a given 

number of sets both in the full sample and the restricted samples within tier entry for 

the set, and thus the number of schools that are included in our sample, once we have 

dropped those with less than one set. 

 

Table 2 reports summary statistics for the pupils in our sample. The national average 

key stage 3 score for English is approximately 5, whilst for mathematics, the average 

score is just above 5. We have a slightly lower proportion of males than the national 

average of 0.511 in our sample for English and maths. The gender mix is not constant 

across the tiers with far fewer boys in the top tier and far more in the foundation tier, 

especially for English.   Atkinson et al (2004) further discuss the representativeness of 

the sample of schools used in the study on a national level, and show that the “sample 

of schools is not, therefore, very representative of the national picture in terms of value 

added and GCSE scores. 
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Looking at the R-squared measure of setting, for whole schools, there is a relatively 

large value of 0.510 on average for English, and 0.749 for mathematics within schools.  

However, as discussed earlier, this is mainly due to the fact that within schools, the fact 

that GCSEs are examined in tiers, we would expect the R-squared for the whole school 

to be high compared to the R-squared setting measure for within tiers. This is evidenced 

further in table 3.  The R-squared values for the within tier specifications are lower than 

those for the whole school, indicating a relatively less homogenous distribution of key 

stage 3 scores. That is, the lower R-squared measure within tier indicates a more 

random distribution of pupils to sets within the tier. This we can attribute to schools 

placing more emphasis on trying to ensure pupils are in a class teaching to the correct 

tier for GCSE. There is thus much more randomness when it comes to class allocation 

policies within the tier. It may be the case that for some schools there is a strict setting 

policy for within tier teaching whilst for others classes are taught in parallel with mixed 

ability within the class subject to being taught the appropriate tier. For these reasons, 

we may expect to see more robust results when we consider within tier results.   

 

A worry is that the R-squared for mathematics is substantially larger than that for 

English in the higher tier, although again, as there are three tiers of entry in 

mathematics, and only a finite number of grades available at key stage 3, we would 

expect a more homogenous distribution of grades within tier in mathematics than in 

English. Our identification strategy assumes that schools with an R-squared of less than 

0.35 will have a credibly random distribution of pupils by ability within the tiers.  

Figure 1 shows the distribution of the R-squared values within tier for English.  We can 

see that for within whole schools, there are a wide range of setting policies, going from 

credibly random, with an R-squared of close to zero, to very strictly grouped according 

to ability, with an R-squared of close to 1.  Within the higher tier, there is less variation 

in setting policy, but there is evidence of a considerable number of schools randomly 

assigning pupils into sets by ability, evidenced by the large proportion of schools with 

an R-squared value close to zero. In the foundation tier, there is evidence of more 

variation in the setting policies, with again, more apparently random setting policies 

within the foundation tier than within the entire school. 

 

Figure 2 shows the distribution of the R-squared setting measure for mathematics.  For 

the whole school case, it is immediately clear that there is much less heterogeneity of 
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setting policies between schools, with the vast majority of schools having very strong 

policies regarding setting, evidenced by the large R-squared value.  In the higher tier, 

there is evidence of more random sorting than in the whole school case, but there are 

still not many schools with very low R-squared measures indicating apparently random 

distribution of pupils.  In the intermediate and foundation tiers, there is evidence of 

more schools having random setting policies than in the higher tier case, although also 

with more heterogeneity in setting policies across schools. 

 

In our analysis, we use a measure of previous ability, the pupil’s key stage 3 scores.   

The Key Stage 3 score is a national test sat by 14 year olds in English and maths. We 

also need to consider how to enter this prior achievement into our regressions as the 

effects may not be linear against the GCSE score.  For all of the key stage 3 scores, we 

enter a failure as a separate dummy. This is due to the fact that as with GCSEs, the key 

stage 3 tests are examined in a tier structure with certain grades only available from 

certain tiers, and thus a failure is not necessarily representative of a child’s ability6.  

Furthermore, we include all of the subject specific key stage 3 scores as individual 

dummies7.  For other subject key stage 3 scores, we consider them to be linear between 

scores of 2 and 8, and similarly use a failure dummy to deal with the non-linearity we 

experience here.     

 

5. Results 

OLS Estimates 

Table 4 contains OLS estimates of the classroom level peer effects present for English 

and maths. The regressions build up from a very simple model with no attempt to 

condition on prior attainment of the pupil concerned. This simply reflects the 

correlation between individuals’ attainment and that of their peers conditional on the 

small set of demographic and deprivation indicators. Sequentially, the columns present 

regressions that include pupil prior attainment in the subject considered (column II) and 

in column III prior attainment in the other KS3 subject is also included. Column IV 

                                                 
6 Mathematics is examined in 4 tiers, offering levels 2 to 5, 3 to 6, 4 to 7 and 5 to 8.  English is examined 
in a single tier for reading and writing, the raw scores of which are added together to be converted into a 
national curriculum level. 
7 Upon testing linear effects of key stage 3 scores on GCSE scores in a regression of GCSE scores on a 
full set of score dummies for key stage 3, we reject the null of linearity for English at all reasonable 
significance levels (P>F=0.0000).  We do not reject the null of linearity for mathematics, but for 
consistency we treat this in the same way as for English 
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introduces school fixed effects so that we are estimating within schools and finally 

Column V introduces teacher fixed effects. In Column V those teacher or teacher 

combinations that appear only once and retained in the sample and in Columns VI and 

VII we repeat columns IV and V but only include observations where the teacher is 

observed teaching at least two classes.    

 
Pooled estimation 
 
Starting with the English results in the upper panel of Table 4 the correlation between a 

pupil’s attainment and his peers lagged attainment is very strong if we condition on 

only a limited range of personal, school and neighbourhood indicators. The coefficients 

imply that when the peer average lagged attainment changes by one grade8, a result is 

seen equivalent to raising a pupil’s attainment by 1 to 1.5 GCSE grade. The rows reflect 

the impact of moving to within tier estimation for English in the upper panel and maths 

in the lower. Within tier estimates are around 20-30% lower than for the full sample. 

The examination tiering is a major reason for setting and suggests that setting does 

create an upward bias to estimates of peer group effects. 

 

Such models do not condition on pupils prior attainment, school intake selection or 

effectiveness or indeed teacher effectiveness. Introducing controls for the pupils’ prior 

attainment (including any prior peer group effects) sharply reduces this correlation. 

Refining the prior attainment measure by including attainment in other KS3 subjects 

further reduces the correlation between pupil attainment and prior attainment of their 

classmates. The introduction of school fixed-year effects pushes the point estimate of 

the peer group effect upward and conditioning of teacher fixed effects makes no further 

difference. Restricting the sample to those pupils whose teachers are observed taking 

more than one class leaves the estimates unaffected, although due to the decreased 

sample size the standard error is increased. The introduction of school and teacher fixed 

effects within this relatively small sample of schools makes little difference to 

estimated peer group effects once pupil prior attainment is conditioned on as fully as 

possible. The estimates in columns IV and V suggest that an increase in average peer 

ability of one grade at key stage 3 in English raises pupil attainment by 0.4 GCSE 

                                                 
8 This change is roughly a change of 1 standard deviations of the class average score in English, and 0.8 
standard deviations for mathematics.  Standard deviation of class average in English is 1.084, whilst for 
maths it is 1.243 
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grades or around one quarter of a standard deviation. Thus these estimated effects of 

peer effects within the classroom are moderately large. The picture for maths is broadly 

the same except that the estimated coefficients are somewhat higher with conditional 

estimates of around 0.6. 

 

However, these estimates may still be misleading. As discussed earlier in the data 

section, in English schools there is a large amount of enforced stratification of pupils, 

due to the tiered nature of the examinations, so the highest ability students are never 

taught in a classroom at GCSE with the lowest ability students.  It is thus more reliable 

to examine the effects within examination tier. 

 

Within tier estimation 

As noted earlier, at the school level setting is very common, especially in maths in 

order to, in part, facilitate teaching to a single exam tier. So when we consider within 

tier estimates the results are closer to a random allocation of pupils to classes, although 

there is a wide variation in school practices. The within tier estimates become very 

similar to whole sample estimates once we control for the child’s past attainment as 

fully as we can. This suggests that including pupils’ prior attainment captures the bias 

that setting for exam tiers produces or to put it another way the pupils KS3 scores 

provide the information used in grouping the children for entry into a GCSE exam tier.  

 

For English the estimates without school or teacher fixed effects are smaller than in the 

full school regressions but the school fixed effect raises the estimates for an increase of 

the peer ability by 1 grade9 at key stage 3 in higher and foundation tiers back to around 

0.4.  

 

For maths, the coefficient is higher for the higher tier, but this decreases as we move 

through intermediate, foundation to mixed tier teaching.  A one grade increase in the 

class average at key stage 310 leads to an increase in individual pupil’s attainment of 

                                                 
9 This is equal to a change in the peer group of 1.5 standard deviations in higher tier, and 1.33 standard 
deviations in foundation tier.  Standard deviation in higher tier English is 0.667 and foundation tier is 
0.767. 
10 This is equal to a change in the peer group of 1.33 standard deviations in higher tier and approximately 
2 standard deviations in intermediate and foundation tiers.  Standard deviation in higher tier mathematics 
is 0.722, intermediate tier is 0.559 and foundation tier is 0.484. 
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approximately 0.76 grades in higher tier, 0.64 grades in intermediate and 0.4 grades in 

foundation tier. 

 

Apparently random allocation of pupils. 

The major concern is that despite within tier estimates, lagged pupil attainment, school 

and teacher fixed effects, there still be selection of pupils into classes within the school 

on the basis of unobserved (to the researcher but not the school) differences in pupils’ 

ability leading to a possible bias in the estimates of the effect of an increase in the peer 

ability. Table 5 shows the results comparing the coefficients gained for the schools with 

low R-squared measures from within tiers with those that have a high R-squared 

measure. We now focus on the subset of schools that have a much lower R-squared 

setting measure, and thus a more credibly random distribution of the ability of pupils 

within the tier. In English, the picture is very clear cut. In both the higher and 

foundation tiers, the schools that have a low R-squared value, and consequently a 

credibly random distribution of pupils within the tier, have considerably lower 

estimates of the effect of a more able peer group than the OLS estimates on the full 

sample within each tier, whilst the schools with a high R-squared setting measure have 

considerably higher estimated effects than those seen in the full sample OLS 

regressions. For the higher tier estimation using credibly random distribution of pupils, 

there is a significant effect of a more able peer group demonstrated using our 

identification strategy, equivalent to an increase of between 0.17 and 0.20 grades for a 

one grade increase in the class average measure.  For the foundation tier, a significant 

positive effect is seen, equivalent to an increase of between 0.23 and 0.28 grades for a 

one grade increase in the class average measure.  This same picture is seen with the 

schools with apparently random setting policies within foundation tier mathematics, 

with a small positive effect observed in specification 4, although the significance is 

greatly reduced in specification 5, with smaller effects observed than in the OLS case. 

The magnitude of these effects is approximately an increase of between 0.230 and 

0.296 grades for a one grade increase in the peer ability measure.  Whilst these effects 

are smaller than those seen in the full sample, they are still positive, significant and 

non-trivial 

 

As observed in the data section, the R-squared scores in the higher and intermediate 

tiers for mathematics are unaffected by concentrating on schools with apparently at 
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random setting. The pattern that emerges is similar to that in Table 4 with higher 

estimates of peer effects in maths and especially higher tier maths and low estimates in 

English. However, the apparently at random setting schools for English suggest there 

was a moderately large upward bias to the estimates in Table 4. This may be because of 

there only being two rather than 3 exam tiers in English. 

 

IV Estimation 

It is possible that our selection of the “credibly random” sub-sample may still mask 

some underlying selection, leading to a residual bias of the estimate of the effects. In 

order to check the validity of our results, we use the identification strategy developed in 

Lefgren (2004b). Table 6 shows the first and second stage 2 stage least squares results, 

using the identification strategy developed by Lefgren (2004b).   

 

The estimates within tier where there is far weaker evidence of active setting are very 

robust. An effect of similar size as seen in Table 5 is seen in English across the higher 

tier and foundation tier, meaning we cannot see any differential effect across ability 

ranges. However, by the very nature of the tiering, the lowest ability pupils are not 

placed with the highest ability pupils, and if they were, then we may expect to see a 

larger effect become apparent for the lower ability pupils. The estimated effect of a one 

grade change in the peer measure leads to approximately a one third of a GCSE grade, 

slightly lower than for the uninstrumented estimates in Table 4 but very similar to the 

apparently random sample seen in Table 5. 

 
The estimates for maths only show significant effects for the intermediate and 

foundation tiers, and this becomes insignificant for foundation tier when we include the 

teacher fixed effects but the magnitude is very much in line with the estimate in Table 

5. Within the intermediate tier, we see the strongest effect of having higher ability 

peers, with it actually increasing when we condition for the classroom teacher. This 

gives us an effect of about three tenths of a grade when moving one standard deviation 

in the peer measure. The estimated effects of peer group in higher tier maths are 

insignificant from zero and significantly different from the estimates in Table 5. This 

alternative approach produces result very much in line with our apparently random 

sample except for higher tier maths.  
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In order to test the endogeneity of the peer ability measure, we consider the OLS 

specification, but also include the residual obtained from the first stage of the two-stage 

IV regression. Table 7 shows the results of the endogeneity test.  We can see that for 

English, the coefficient on the residual is not significantly different from zero for any of 

the within tier regressions, implying that the peer ability measure may not be 

endogenous. For maths, the story is more complicated, with the coefficient on the 

residual for the full sample being highly significant, but also there is significance on the 

higher tier and the mixed tiers, with a very low significance on the foundation tier. This 

difference in behaviour can be simply explained by recalling the summary statistics of 

the R-squared setting measure. For all tiers, the value was higher for maths than for 

English, implying that whilst there may be approximately random assignment of 

children, within tier, to classes in English, there is a more systematic policy for 

mathematics.   

 
We may also wish to compare outcomes of studying in a class for foundation tier and 

higher tier. For this comparison, a school needs to have 2 or more sets of each tier. In 

order to make the marginal comparison, we consider sets as ordered by their average 

key stage 3 score, and compare the outcomes a borderline student would achieve in the 

highest foundation tier class and the lowest higher tier class (in the case of mathematics 

we consider the lowest intermediate tier class). For our comparison, we use 

specification IV, school fixed effects but not teacher fixed effects. This gives an 

average improvement of 0.66 grades by being in the higher tier classroom than in the 

lower tier classroom and for maths an average improvement of 0.62 grades. 

 

6. Conclusions 

We find significant and non-trivial evidence of peer effects within the classroom when 

both conditioning on school and teacher fixed effects. The examination system in 

England at GCSE with various different tiers encourages schools to teach children in 

sets grouped by ability in order to meet the differing requirements of the tiers. 

However, if we consider the grouping within the tier we find evidence of much more 

credible near random allocation within some schools. 

 

We find very similar results using the sub-sample of schools that apparently allocate 

pupils (near) randomly within an exam tier and for the Instrumental Variables 
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approach. These estimates of the effect of a more able peer group are approximately 

one fifth to one half of the unconditional OLS specifications and half to parity of those 

for conditional OLS estimates. Our OLS estimates on the schools with apparently 

random distribution of pupils give estimates of the effects that are not significantly 

different from the IV estimates, except for within higher tier mathematics and English.  

It is apparent from Figure 2 that within mathematics, there is a much higher level of 

setting in higher tier than in the other tiers, so there is a worry that the results may well 

be biased, and thus less robust than those for the IV specification. However, the IV 

estimates still give non-trivial significant effects for English, and for intermediate and 

foundation tiers for mathematics. 

 

Our within tier teaching allows us to compare differential effects for pupils studying 

like exams, whilst pooled regressions may suffer from the fact that pupils are not 

necessarily studying the same syllabus and may be thus able to achieve differentially.  

In comparing pupils being taught in different tiers we see a considerable gap, which is 

difficult to attribute simply to being in a class with higher peers, and it may be 

necessary to attribute some of this gap to the difference in exam, and possible 

difference in aspirations due to being in a class where it is difficult to achieve even the 

most basic “pass” grade in GCSE.  This is particularly important for the mathematics 

tiering as those in the foundation tier are pre-destined to be unable to reach the 

minimum level required to progress of a grade C. In fact Smith (2004) comments on the 

fact that nationally 30% of all pupils are pre-destined to fail GCSE maths before even 

sitting the exam simply due to the tier they are entered for. This may lead to low 

aspirations, and the carrot in intermediate tier of being able to gain a grade B could act 

to increase pupils’ aspirations and thus increase their outcomes.     

 

Whilst for each subject we see an improvement by being in the higher level classroom, 

there is still a question that remains of whether this is solely down to the influence of 

the peers, or whether this is more to do with the structure of the tiered examination. It 

may be of interest for further research to consider the effect that being entered into a 

higher tier examination has on the borderline children, especially those taught solely in 

a set being entered for the higher tier paper. 
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Figure 1 Distribution of R-squared setting measure for English between school

a)  Whole Schools 
 

 
 
c) Foundation tier 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b)  Higher Tier 
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Figure 2 Distribution of R-squared setting measure for mathematics between schools

 
a)  Whole Schools 

 
 
c) Intermediate Tier 

 
 
 
 
 
 
 

 
b) Higher tier 

 
 
d) Foundation tier 
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Table 1 Number of school/years with specified number of sets 

No. Sets Full Sample Higher Tier 
Inter-

mediate 
Tier 

Foundation Tier 

 
 

English Maths English Maths Maths English Maths 

1 2 1 13 21 13 5 9 
2  1 13 7 24 12 16 
3 2 1 8 5 3 12 16 
4 8 8 4  4 10 5 
5 12 9 4 2  1  
6 7 12  1 2 1 2 
7 10 10      
8 6 3 1     
9 3 5    1  
10 2 3      
11        
12        
13        
14        
15 1       
16 1 2      
17        
18        

 
Notes:  This table shows how many schools have each number of sets within each tier. The within tier 
regressions only consider schools with 2 or more sets within the tier.  
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Table 2 Summary statistics 
 

 

 

 

Note.  Standard deviations in parentheses.  Unit of observiation is an individual child. 

 

Subject 
GCSE 
Score 

Key Stage 
3 score 

Age Gender 
2R setting 

measure 
Sample size 

Full Sample     
English 4.756 5.061 16.259 0.508 0.510 6935 
 (1.559) (1.155) (0.296) (0.500) (0.197)  
Maths 4.423 5.380 16.257 0.510 0.749 7231 
 (1.813) (1.276) (0.294) (0.500) (0.127)  
       
Higher tier       
English 5.824 5.792 16.276 0.465 0.263 2328 
 (1.034) (0.919) (0.291) (0.499) (0.203)  
Maths 6.406 6.815 16.257 0.496 0.443 1170 
 (0.941) (0.718) (0.297) (0.500) (0.171)  
Schools with low R-squared measures     
English 5.961 5.899 16.270 0.370 0.044 987 
 (1.029) (0.990) (0.285) (0.483) (0.065)  
Maths 6.264 6.744 16.255 0.555 0.278 523 
 (0.955) (0.713) (0.300) (0.497) (0.113)  
Schools with high R-squared measures     
English 5.859 5.693 16.285 0.547 0.470 909 
 (1.070) (0.864) (0.300) (0.498) (0.059)  

Maths 6.742 6.942 16.258 0.350 0.605 446 
 (0.834) (0.697) (0.292) (0.477) (0.032)  
Intermediate tier    
Maths 4.567 5.466 16.258 0.507 0.401 2030 
 (1.016) (0.705) (0.297) (0.500) (0.207)  
Schools with low R-squared measures     
 4.669 5.571 16.267 0.548 0.198 834 
 (1.029) (0.709) (0.291) (0.498) (0.153)  
Schools with high R-squared measures     
 4.450 5.410 16.253 0.475 0.594 786 
 (1.046) (0.641) (0.294) (0.500) (0.063)  
       
Foundation tier    
English 3.140 4.028 16.232 0.640 0.313 1724 
 (1.097) (0.975) (0.303) (0.480) (0.200)  
Maths 2.291 3.851 16.233 0.552 0.390 1521 
 (1.050) (0.674) (0.289) (0.497) (0.179)  
Schools with low R-squared measures     
 3.048 3.917 16.234 0.613 0.116 686 
 (1.135) (1.071) (0.299) (0.487) (0.083)  

 2.226 3.756 16.231 0.518 0.196 606 
 (1.022) (0.643) (0.277) (0.500) (0.093)  
Schools with high R-squared measures     
 3.113 4.128 16.239 0.706 0.517 656 
 (1.063) (0.806) (0.313) (0.456) (0.122)  

 2.465 3.981 16.239 0.635 0.569 572 
 (1.054) (0.704) (0.297) (0.482) (0.058)  
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Table 3 Description of regression specifications. 

Specification Description 
I We include age, gender, index of income deprivation and the proportion of pupils in 

the school who are male and a dummy for whether the school year has more than the 
mean number in it, indicating a large school. 

II Includes the subject specific key stage 3 score 
III Includes the other subject key stage 3 scores 
IV Includes school fixed effects 
V Includes teacher fixed effects (Teachers who teach 2 or more classes and all others 

including those identified as teaching 1 class in sample replaced as missing) 
VI Subsample of IV with identifiers for teachers who teach 2 or more classes 
VII Only with teachers who teach 2 or more classes. (Missings and teachers who teach 

only one class omitted) 
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Table 4 Results from ordinary least squares estimation of the effect of peer ability 
on outcomes. 
 I II III IV V VI VII 
School/year fixed 
effects 

   √ √ √ √ 

Teacher fixed effects     √  √ 
English        
Full Sample        

1.169*** 0.558*** 0.336*** 0.439*** 0.442*** 0.437*** 0.425*** Class Average peer 
measure (0.031) (0.036) (0.032) (0.033) (0.032) (0.044) (0.041) 
Observations 6935 6935 6935 6935 6935 3776 3776 
R-squared 0.53 0.62 0.69 0.72 0.74 0.74 0.76 
Higher tier        

0.854*** 0.412*** 0.248*** 0.442*** 0.447*** 0.761*** 0.862*** Class Average peer 
measure (0.071) (0.073) (0.065) (0.066) (0.070) (0.174) (0.173) 
Observations 2328 2328 2328 2328 2328 489 489 
R-squared 0.34 0.43 0.53 0.64 0.64 0.75 0.75 
Foundation Tier        

0.669*** 0.305*** 0.224*** 0.367*** 0.435*** 0.357*** 0.238 Class Average peer 
measure (0.064) (0.068) (0.063) (0.055) (0.063) (0.123) (0.146) 
Observations 1724 1724 1724 1724 1724 420 420 
R-squared 0.20 0.28 0.36 0.43 0.44 0.50 0.51 
Mathematics        
Full Sample        

1.303*** 0.676*** 0.555*** 0.605*** 0.595*** 0.632*** 0.613*** Class Average peer 
measure (0.021) (0.046) (0.047) (0.045) (0.045) (0.065) (0.066) 
Observations 7231 7231 7231 7231 7231 3675 3675 
R-squared 0.70 0.74 0.75 0.79 0.80 0.81 0.82 
Higher tier        

1.092*** 0.699*** 0.571*** 0.758*** 0.767*** 0.884*** 0.919*** Class Average peer 
measure (0.088) (0.117) (0.113) (0.079) (0.070) (0.145) (0.100) 
Observations 1170 1170 1170 1170 1170 208 208 
R-squared 0.39 0.44 0.47 0.58 0.60 0.62 0.62 
Intermediate Tier        

0.982*** 0.542*** 0.441*** 0.630*** 0.650*** 0.728** 1.055** Class Average peer 
measure (0.084) (0.090) (0.088) (0.081) (0.083) (0.264) (0.347) 
Observations 2030 2030 2030 2030 2030 313 313 
R-squared 0.26 0.30 0.33 0.43 0.43 0.41 0.43 
Foundation Tier        

1.045*** 0.502*** 0.375*** 0.457*** 0.400*** 0.926*** 0.894*** Class Average peer 
measure (0.085) (0.092) (0.092) (0.070) (0.065) (0.273) (0.291) 
Observations 1521 1521 1521 1521 1521 208 208 
R-squared 0.28 0.37 0.39 0.49 0.51 0.52 0.52 
Notes Dependent variable is the GCSE score in English or mathematics.  Specifications of regressions shown in table 
3.  Method of estimation is ordinary least squares. (OLS) Robust standard errors for within class clustering in 
parentheses.  * indicates significant at 10%; ** indicates significant at 5%; *** indicates significant at 1%  
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Table 5 Results from the estimation of the effect of a more able peer group using 
schools that have a credibly random distribution of pupils by ability within tiers. 

Notes Dependent variable is the GCSE score in English or mathematics.  Specifications of regressions shown in table 
3.  Method of estimation is ordinary least squares. (OLS) Robust standard errors for within class clustering in 
parentheses.  * indicates significant at 10%; ** indicates significant at 5%; *** indicates significant at 1%.  Low R-
squared indicates a school with an R-squared score less than 0.35.  High R-squared indicates a school with an R-
squared higher than 0.40.  

 English Maths 
 IV V IV V 
School/year fixed effects √ √ √ √ 
Teacher fixed effects  √  √ 
1. Higher Tier     
OLS Low R-squared     

0.198** 0.167** 0.820*** 0.806*** Class Average peer 
measure (0.082) (0.069) (0.182) (0.113) 
Observations 1330 1330 469 469 
R-squared 0.67 0.67 0.43 0.47 
High R-squared     

0.524*** 0.518*** 0.773*** 0.792*** Class Average peer 
measure (0.097) (0.118) (0.115) (0.109) 
Observations 770 770 701 701 
R-squared 0.63 0.63 0.66 0.67 
2. Intermediate Tier     
Low R-squared     

  0.772*** 0.769*** Class Average peer 
measure   (0.139) (0.184) 
Observations   633 633 
R-squared   0.47 0.48 
High R-squared     

  0.626*** 0.634*** Class Average peer 
measure   (0.109) (0.112) 
Observations   1144 1144 
R-squared   0.42 0.43 
3. Foundation tier     
Low R-squared     

0.291*** 0.331*** 0.296** 0.230* Class Average peer 
measure (0.090) (0.099) (0.143) (0.135) 
Observations 936 936 588 588 
R-squared 0.39 0.40 0.44 0.44 
High R-squared     

0.446*** 0.545*** 0.556*** 0.512*** Class Average peer 
measure (0.091) (0.098) (0.079) (0.075) 
Observations 556 556 933 933 
R-squared 0.46 0.47 0.54 0.56 
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Table 6 Results from two stage least squares estimation of the effect of peer ability 
on outcomes. 
 English Maths 
 IV V IV V 
School/year fixed effects √ √ √ √ 
Teacher fixed effects  √  √ 
First stage of 2 stage least squares    
Higher Tier     

0.968*** 0.931*** 0.966*** 0.951*** Higher tier instrument 
(0.082) (0.091) (0.160) (0.160) 

Observations 2328 2328 1170 1170 
R-squared 0.80 0.81 0.72 0.72 
Intermediate Tier     

  0.926*** 0.912*** Intermediate tier instrument 
  (0.095) (0.090) 

Observations   2030 2030 
R-squared   0.72 0.73 
Foundation Tier     

0.974*** 0.752*** 1.008*** 0.935*** Foundation tier instrument 
(0.110) (0.160) (0.109) (0.117) 

Observations 1724 1724 1521 1521 
R-squared 0.67 0.76 0.62 0.66 
     

Second stage of 2 stage least squared    
Higher Tier     
Class Average peer measure 0.377*** 0.380*** 0.249 0.201 
 (0.126) (0.133) (0.229) (0.206) 
Observations 2328 2328 1170 1170 
R-squared 0.64 0.64 0.56 0.57 
Intermediate Tier     
Class Average peer measure   0.581*** 0.671*** 
   (0.214) (0.210) 
Observations   2030 2030 
R-squared   0.43 0.43 
Foundation tier     
Class Average peer measure 0.309*** 0.309* 0.304* 0.266 
 (0.115) (0.168) (0.153) (0.171) 
Observations 1724 1724 1521 1521 
R-squared 0.43 0.44 0.49 0.51 
     
Notes Dependent variable is the GCSE score in English or mathematics.  Specifications of regressions shown in table 
3.  Method of estimation is two stage least squares. Robust standard errors for within class clustering in parentheses.  
* indicates significant at 10%; ** indicates significant at 5%; *** indicates significant at 1%.   
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Table 7 Test of endogeneity of class peer ability measure 

 English Maths 
 IV V IV V 
School/year fixed effects √ √ √ √ 
Teacher fixed effects  √  √ 
Higher Tier     

0.377*** 0.380*** 0.249 0.201 Class Average peer 
measure (0.128) (0.136) (0.225) (0.196) 
Residuals 0.079 0.080 0.566** 0.627** 
 (0.130) (0.137) (0.278) (0.233) 
Observations 2328 2328 1170 1170 
R-squared 0.64 0.64 0.59 0.60 
Intermediate Tier     

  0.581*** 0.671*** Class Average peer 
measure   (0.214) (0.210) 
Residuals   0.056 -0.024 
   (0.217) (0.217) 
Observations   2030 2030 
R-squared   0.43 0.43 
Foundation Tier     

0.309*** 0.309* 0.304* 0.266 Class Average peer 
measure (0.115) (0.164) (0.156) (0.173) 
Residuals 0.068 0.141 0.175 0.152 
 (0.127) (0.174) (0.167) (0.184) 
Observations 1724 1724 1521 1521 
R-squared 0.43 0.44 0.50 0.51 
Notes Dependent variable is the GCSE score in English or mathematics.  Specifications of regressions shown in table 
3.  Method of estimation is ordinary least squares. (OLS) Robust standard errors for within class clustering in 
parentheses.  * indicates significant at 10%; ** indicates significant at 5%; *** indicates significant at 1%.  
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