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Abstract 
Recently, many US employers have adopted less generous prescription drug benefits.  In addition, the 
U.S. began to offer prescription drug insurance to approximately 42 million Medicare beneficiaries in 
2006.  We use data on individual health insurance claims and benefit data from 1997-2003 to study the 
effects of changing consumers’ co-payments for prescription drugs on the quantity demanded and 
expenditure on prescription drugs, inpatient care and outpatient care.  We allow for effects both in the 
year of the co-payment change and in the year following the change. Our results show that increases in 
prescription drug prices reduce both the use of and spending on prescription drugs.  However, 
consumers substitute the use of outpatient care and inpatient care for prescription drug use, and the 
expenditure reductions on prescription drugs are largely offset by the increases in outpatient spending.  
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1. Introduction 

In the past 15 years, national spending on prescription drugs has grown dramatically, far 

outpacing the growth rate of hospital spending and physician spending during the same period.1 

In response to these rapid increases in drug spending, many health insurance plans have reduced 

the generosity of their prescriptio n drug benefits.  Consequently, patients have been paying 

substantially more out of their own pockets for prescription drugs in recent years.  Ostensibly , 

benefit designers are seeking to reduce drug spending by increasing the price faced by consumers, 

the copayment.  

A number of studies have investigated the relationship between cost-sharing and spending 

on drugs (Joyce et al., 2001; Goodman et al., 2004; Huskamp et al., 2003; Soumerai et al., 1987, 

1991; Harris et al., 1990; Johnson et al., 1997; Tamblyn et al., 2001; Motheral and Fairman, 

2001).  Almost all of these studies suggest that higher cost-sharing reduces pharmaceutical use. 

In addition, some studies have found that higher drug cost-sharing results in worsened health 

status (Johnson et al., 1997), and more adverse health events such as emergency room visits, 

nursing home admissions, or hospital admissions (Soumerai et al., 1991; Tamblyn et al., 2001; 

Balkrishnan et al., 2001). These findings suggest that the reduction in drug spending may come 

with unintended consequences.  Achieving reduced drug use may come at the cost of worse 

health consequently leading to use of expensive care such as the emergency room or inpatient 

hospital care. 

Two economic theories provide potential explanations of why and how changes in the price 

of drugs affect people’s health and the demand for other types of health care. First, the household 

                                                 
1 Spending on prescription drugs in 2004 was nearly five times the level in 1990.  Spending on physician and 
hospital services were a little over twice as high in 2004 as in 1990.  Source: Center for Medicare and Medicaid 
Services, “National Health Expenditure Web Tables,” 
http://www.cms.hhs.gov/NationalHealthExpendData/downloads/tables.pdf. 
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production model introduced by Becker (1965) provides a framework for analyzing the 

determinants of many behaviors including health-related behaviors. In this approach, prescription 

drugs are one of many inputs to a health production function.  Drugs and other types of medical 

goods such as physician visits or hospital care are substitute (or complementary) treatments for 

some diseases. For example, clinical evidence suggests that either antidepressant medication or 

psychotherapy can be used as first line treatment for mild to moderate Major Depressive 

Disorder (MDD). Theory suggests that, to the extent that these other inputs are substitutes 

(complements) to drugs in producing health, increases in drug prices will result in increases 

(decreases) in the consumption of other medical goods.   

The basic household production theory is static.  Grossman’s health capital theory (1972) is 

derived from Becker’s basic model, and provides a dynamic framework for analyzing medical 

care demand.  In this theory, individuals inherit an initial stock of health capital that depreciates 

over time and can be increased by investment. Gross investments in health capital are produced 

by inputs such as medical care, diet, exercise, etc. Prices of medical goods affect people’s 

demands for medical care in each period. This model suggests that the effects of changes in input 

prices on consumers’ demands for medical care have a dynamic component through their effects 

on health capital.   

Taken together, these theories suggest that changes in drug prices will have effects not only 

on the demand for drugs, but also on the demands for substitute and complementary services.  It 

also suggests that there will be a dynamic aspect to the effects of changes in drug prices.  

Adjustment will not occur instantaneously, but over time.   

These theories are consistent with the observed outcomes of worsening health status and 

increased adverse health events following increases in consumer cost-sharing for prescription 
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drugs.  A substantial fraction of drug consumption is directed at managing chronic conditions 

(hypertension, hyperlipidemia, diabetes, etc).  In responding to changes in prescription drug 

prices, people with chronic illness reduce compliance with drug therapies. In the short-term there 

may not be serious adverse health events as a result. However, in the longer term poor 

compliance could lead to health stock transitions that manifest as poor health outcomes, which 

lead to additional medical use and expenses.   For example, if an increase in drug co-payments 

causes people to fall out of compliance with their drug therapy for hypertension, they may be 

more likely to suffer heart attacks, strokes, and other complications, leading to hospitalization, 

physician care, additional medication, and higher health care spending.  

The discussion above suggests that a fuller understanding of the effects of out-of-pocket 

drug price changes on health spending and health outcomes requires an examination of the 

dynamic structure of demand for health care services. This is our focus.   We use a large panel 

dataset of health insurance claims and benefit design information to identify the effects on drug 

spending, outpatient spending, and inpatient spending of changes in workers’ employer-provided 

prescription drug benefits.   

There are two central findings. First, there is substantial substitution between prescription 

drugs use and the use of outpatient care.  Increases in out-of-pocket drug prices lead to decreases 

in the demand for drugs, but lead to increases in demand and spending on outpatient care. We do 

not find detectable changes in inpatient spending as a result of increases in drug co-payments 

overall. However, for the small group of people who use inpatient services, the increase in drug 

co-payment leads to a substantial increase in inpatient spending.   

Second, we find strong dynamic own-price effects for drugs and dynamic substitution 

effects for outpatient care.  The dynamic price effects are substantially larger than the 
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contemporaneous effects.  The effect of increasing drug co-payments on total health care 

spending is significantly smaller than is the direct effect on drug spending.  This suggests a 

substantial offset effect : increased co-payments for pharmaceuticals result in savings on drugs, 

but that effect is substantially offset by increased spending incurred as patients substitute 

outpatient care for pharmaceuticals. 

The paper is organized as follows.  Section 2 provides relevant institutional facts and 

findings from prior literature.  The data used in the study are described in Section 3.  Section 4 

describes the empirical strategy, including estimation methods.  Results are discussed in Section 

5.  Finally, Section 6 contains a summary and conclusions. 

 

2. Background 
 
2.1 Background on Prescription Drug Insurance Benefit Design 
 

Aggregate spending in the U.S. on outpatient prescription drugs has increased rapidly, both 

in absolute terms, and compared to the trends for spending on hospital services and physician 

services.  Private drug spending has increased by 15-20 percent per year, starting in the 1990s.2  

Prescription drug spending is the third largest component (after hospital and physician services) 

of national health care expenses at $162.4 billion.  This amount is almost 5 times larger than the 

amount spent in 1990, and drugs now account for more than 11% of total health care spending. 3   

In response to these large and rapid increases in drug expenditures, many employers and 

insurance plans adopted more stringent prescriptio n drug benefit designs, imposing greater cost-

sharing on patients for the use of prescription drugs. By far the most common form of cost-

                                                 
2 Kaiser Family Foundation and Health Research and Educational Trust, Employer Health Benefits: 2004 Annual 
Survey, Sept 2004.  
3 Source: Center for Medicare and Medicaid Services, “National Health Expenditure Web Tables,” 
http://www.cms.hhs.gov/NationalHealthExpendData/downloads/tables.pdf. 
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sharing for prescription drugs is fixed co-payments.  Drugs are typically divided into groups 

called “tiers,” and each drug in a given tier has the same co-payment.  In a two-tier plan, 

consumers pay a lower co-payment for generic drugs and a higher co-payment for branded drugs.  

In a three tier plan, a further distinction is made between “preferred” and “non-preferred” 

branded drugs.  There is a higher co-payment for non-preferred drugs.  A typical co-payment 

schedule for a 3-tier plan is a $5 co-payment for each generic drug prescription, $10 for preferred 

branded drugs, and $25 for non-preferred branded drugs. Moreover, starting in the late 1990s 

insurance plans further differentiated the co-payments for drugs purchased at walk- in pharmacies 

(“card plan” purchases) and at mail order pharmacies.  The mail order part of the plan typically 

requires that ninety days supply of the drug be purchased at once.  Co-payments are set so that 

mail-order prescription purchases cost less per day than do card plan prescription purchases.   

These changes have led to an increase in out-of-pocket payments by consumers over time. 

According to statistics from the Kaiser Family Foundation4, the average co-payment for generic 

drugs increased from $7 per prescription in 2000 to $9 in 2003 (a 28.6% increase) for workers 

with employer-sponsored health plans. Co-payments for preferred branded drugs increased from 

$13 to $21 per prescription from 2000 to 2004 (a 61.5% increase), and for non-preferred drugs 

increased from $17 to $33 per prescription (a 94.1% increase) over the same period. 

2.2 Cost-sharing and the Demand for Pharmaceuticals  
 

A number of studies have evaluated the effects of increased prescription drug co-payments 

on the use of and spending on prescription drugs and on health status. The results from most of 

these studies are show that increased cost-sharing resulted in lower drug use and spending. 

A prominent paper in this field of research is Joyce et al. (2002). Using individual claims 

data from 25 large employers with 75 distinct insurance plan-years from 1997-1999, the authors 
                                                 
4 Kaiser Family Foundation: Prescription Drug Trend, Oct 2004.  
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studied the effects of patient cost-sharing and formulary restrictions on spending for generic 

drugs, branded drugs and on patients’ out-of-pocket spending. The study exploits cross-sectional 

variation in plan-level drug co-payments to identify the effects of cost-sharing and formulary 

restrictions.  The results show that higher co-payments for prescription drugs are associated with 

significantly lower drug spending: the estimates imply that a doubling of the co-payment is 

associated with reductions in drug spending of 19%-33%.   

Using a similar study framework and dataset, Goodman et al. (2004) further explore the 

effects of prescription drug benefits on the use of the eight most commonly used therapeutic 

classes of drugs.  The key independent variable in this study is the generosity of prescription 

drug benefits, which is calculated as the insurance plan- level price index for a standardized 

“market basket” of drugs.  The estimation results in this study imply that doubling the co-

payment for each therapeutic class is associated with lower use of almost all therapeutic classes 

of prescription drugs, although patients’ demands might be more responsive for “nonessential” 

drugs such as NSAIDS and antihistamines than to “essential” drugs such as antihypertensive 

drugs and antidepressants.   

Other studies on this topic include Huskamp et al. (2003), Soumerai et al. (1987, 1991), 

Harris et al. (1990), Johnson et al. (1997), Tamblyn et al. (2001), and Motheral and  Fairman 

(2001).  Johnson et al. (1997) estimates the effects of increased cost-sharing by exploiting the 

difference in the drug co-payment changes in two large Medicare HMO plans. A difference-in-

difference estimation strategy is used. Soumerai et al. (1987) uses time-series analysis to study 

the effect of imposing caps to the number of drug prescriptions in one state’s Medicaid program. 

They find that among the 10,734 continuously enrolled patients, the cap caused a sudden and 

sustained drop of 30% in the number of prescription filled. Tamblyn et al. (2001) investigates the 
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effects of the introduction of prescription drug cost-sharing policy in Quebec Province, Canada 

in 1996. Using an interrupted time-series study design, they study the effects of instituting a cost-

sharing schedule of a deductible plus 25% coinsurance on the use of essential and nonessential 

drugs for poor and elderly population. They find significant reductions in the use of essential 

drugs (9%-14%) and in less essential drugs (15%-22%) for this population after the introduction 

of this drug cost-sharing schedule.  

In sum, previous studies use various designs, measurements, statistical models and data 

samples and come to a consensus  that increased cost-sharing is associated with lower drug use 

and spending.  

2.3 Substitution and Dynamic Price Effects  
 

Our study focuses on two important economic questions: what are the substitution and 

dynamic price effects of pharmaceutical co-payments on the demand for medical care?  

The notion of substitution among different types of medical care has long been recognized 

in the health economics literature. However, most of the existing studies on this topic focus on 

the substitution between outpatient and inpatient care. For example, Davis and Russell (1972) 

use data for 48 states on outpatient visits and inpatient admissions in nongovernmental and 

nonprofit hospitals to study the substitution between all outpatient and inpatient services and find 

evidence of substitution between these two types of care. Helms et al. (1978) study the effects of 

imposing small co-payments for out-of-hospital services on some Medica id beneficiaries in 

California, and find the co-payment requirement decreased physician visit demand by 8 percent, 

but increased hospital service demand by 17 percent, suggesting the substitution of inpatient care 

for outpatient services when the price of the latter changed.   
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Evidence from studies on drug insurance policy changes suggests the existence of 

substitution effects. For example, Balkrishnan et al. (2001) study the effects of increased cost-

sharing on prescription drugs for 2,411 Medicare HMO enrollees in 1998. They find this resulted 

in a 25.2% increase in annual inpatient admissions in the first year.  Soumerai et al. (1991) study 

the effects of imposing caps on the number of prescriptions for a small sample of elderly people 

with chronic illness in New Hampshire and find a significant increase in nursing home 

admissions after the drug use limit was introduced. Tamblyn et al. (2001) find that a reduction in 

essential drug use (induced by higher co-payments) was associated with significantly higher 

adverse events such as hospitalization and long-term care admission.  

Lichtenberg (1996, 2001) looks at the effect of changes in the quantity and type of drugs 

prescribed by physicians on the changes in the use of other medical inputs such as hospitalization 

and surgical procedures. He finds that the number of hospital stays, bed-days and surgical 

procedures declined most rapidly for those diagnoses with the greatest increase in the total 

number of drugs prescribed. In Lichtenberg’s work the changes in drug use were driven mostly 

by physicians’ prescribing behavior and the diffusion of new prescription drugs ; therefore, his 

empirical results can be best interpreted as the “biological” or “technological” substitution 

between drugs and other medical inputs in health production. Duggan (2004) investigates 

whether newer and more expensive antipsychotic drugs offset, and therefore substitute for, the 

use of other health care services such as inpatient care. He finds no evidence of an offsetting 

effect for anti-psychotic drugs.  

We study consumers’ demand for medical goods and the substitutability of drugs for other 

medical inputs. Using consumer demand theory as our conceptual framework, we use variation 

in out-of-pocket prices facing patients for the use of prescription drugs and other medical goods 
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to identify substitutability between drugs and other medical services. Since Grossman’s health 

capital theory suggests the existence of dynamic price effects, we estimate a demand system with 

a lagged price structure. This demand system represents a reduced form of a full dynamic model 

of medical care demand and health production. The contemporaneous and lagged prices on the 

demand equations allow us to estimate short and long term effects of insurance price changes. To 

our knowledge, this is the first study on this topic to allow for dynamic price effects.   

 
3. Data  

We use data from the Medstat MarketScan database. MarketScan is the largest private sector 

health care database in the U.S, containing paid claims of more than 7 million privately insured 

individuals, and over $13 billion in annual healthcare expenditures. Medstat had contracts with 

over 40 large employers for the submission of the health insurance data for their employees over 

the period 1990-2003. Neithe r employers nor health plans are identified by name in the database. 

The database contains longitudinal data for each person, including person and family identifiers, 

enrollment history, uses of inpatient care, outpatient care and prescription drugs, health 

expenditure, and detailed health insurance coverage information from 1990 to 2003.  

We link information from five different files in the Medstat database from 1997-2003: 1) the 

enrollment file, containing patients’ demographics and detailed information on their health plan 

enrollment history, 2) the employer benefit plan design file, containing summary benefit 

descriptions for major medical and prescription drugs  benefits for many health plans, 3) the 

hospital inpatient claims file, containing individual hospital claims aggregated to the level of the 

hospital stay and providing information on diagnosis, treatment, length of stay, and basic 

payment information, 4) the outpatient service claims file, containing individual outpatient 

claims aggregated to the level of each outpatient visit with information on diagnosis, treatment 
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procedures and payment information, and 5) the outpatient pharmaceutical claims file, 

containing a claim for each prescription filled by each person with information on days of 

prescription drug supplied, national drug codes, therapeutic classes and payment information. 

3.1 Sample Selection 
 

More than 40 individual employers contributed data to the MarketScan databases over time. 

However, not every employer submitted all five files to Medstat in a given year. We use only 

firms with complete information in all of the above five files. Moreover, in our empirical work, 

we estimate models with dynamic price effects (1 lag), and person-specific fixed effects.  This 

requires at least three consecutive years of full information.  Therefore we selected from the 

overall database firms which had complete information from all of the five files mentioned above 

for at least three consecutive years.  This removed a large number of firms from our analysis, 

principally because a large number of firms did not submit prescription drug data. For example, 

in 1997 only 19 out of 53 employers (an employer may have one or multiple health plans in a 

specific year) submitted prescription drug claims data; in 2000, only 24 out of 45 employe rs 

submitted drug data; and in 2003, 38 out of 45 employers submitted drug data. After applying the 

3-consecutive-year requirement, 16 employers remain.   

Of these 16 employers, two used coinsurance in their prescription drug bene fits design and 

the other 14 used co-payments as their cost-sharing mechanism. Since these two cost-sharing 

mechanisms represent different incentive strategies in insurance benefit designs, and have 

different effects on the demand for medical care, we limited our analysis to the fixed co-payment 

insurance plans, which represent the most common benefit design for pharmaceuticals (Kaiser 

2006). Last, the employer benefit plan design file contains some missing or inaccurate 

information for prescription drug benefits or medical benefits for some employers. We delete the 
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firms with unclear or missing insurance benefits information from our analysis sample, an 

additional three firms.  

There are eleven employers which have three consecutive years of full information, clear 

insurance benefit information, and use co-payments as their cost-sharing mechanism for 

prescription drugs. These employers offer multiple insurance plans of varying generosity. Of 

these eleven firms, nine had a single, uniform prescription drug benefit plan: that is, all 

employees faced identical prescription drug plans at any given time.  We focus only on the plans 

at these nine employers. For consumers covered by these firms, any change in consumer out-of-

pocket price for prescription drugs comes about not from employees switching drug plans to 

change their own out of pocket benefits, but from employers uniformly changing the benefits of 

all of their employees. This selection strategy left us with 97 insurance plans from the nine large 

employers.5 

On average there are 4.3 years of data from each firm. There are in total 1,304,687 

individuals who have ever enrolled at least one full year in these nine firms. We further restrict 

our selection of individuals by examining only those individuals who have been continuously 

enrolled for at least three years during the 1997-2003 period.6 This selection criterion rules out 

about 56% of individuals. Last, people older than 65 are excluded because of the complexities 

introduced by Medicare coverage, potential outside Medigap coverage, and coordination of 

benefits issues. Finally, we have a panel data set of 1,713,879 person- years for 526,086 people 

in 97 different insurance plans at nine different employers, spanning a seven-year period from 

1997 to 2003.   

                                                 
5 Including these two firms which have non-identical prescription drug benefits in a given year and are deleted from 
our study sample doesn’t change the main results of this paper.  
6 Continuously enrolled here means continuously enrolled in any of the firm’s health plans.  We are not dropping 
people who switch among health plans. 
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Given all of the observations eliminated by the inclusion criteria, there is a natural concern 

about the representativeness of the data in the analysis sample. We therefore make a number of 

comparisons of the analysis sample with the full sample from the Medstat database and the 

population in the U.S. with employer sponsored health insurance.   

In Figures 1 through 4, we compare demographic and spending variables for people in our 

study sample with the full sample in the Medstat database and with the employer-insured U.S. 

population. We get the information on age, regional location of residency, annual total medical 

spending and annual pharmaceutical spending for the employer- insured US population from the 

Medical Expenditure Panel Survey from 1997 - 2003. Figure 1 suggests that the age distribution 

in the Medstat sample (excluding those age greater than 65) represents the US population quite 

well, except that it underrepresents the age group 25-44 by 6.8%, and overrepresents the age 

group 55-64 by 4%. The same conclusion holds for the comparison of our study sample with the 

US population – our sample is slightly older. The Medstat sample and our study sample are less 

representative in terms of regional distribution compared with the US population. The South 

region is over-represented in these two samples, and Northeast and West are under-represented. 

This is described in Figure 2.  

Figures 3 and 4 indicate that the Medstat sample and the MEPS sample for the US 

population follow similar trends in per-capita total spending and pharmaceutical spending, but 

enrollees in the Medstat sample on average spend $146 more for prescription drugs, and $300 

more for all types of medical care.  For our study sample, enrollees on average spend $380 more 

for prescription drugs, and $945 more for all types of medical care, compared to an average 

employer- insured person.  
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Overall, while there are some differences, it does not appear that the analysis sample we 

use differs critically from either the Medstat or the U.S. populations.   

3.2 Measures 

Our dependent variables are quantity and total spending on prescription drugs, outpatient 

care and inpatient care. For prescription drugs, quantity is the sum of days supplied from all 

prescriptions filled from a particular year for a patient.7  Similarly, quantity of outpatient services 

is the total number of outpatient visits, and the quantity of inpatient services is the total number 

of inpatient admissions. 

Total spending on prescription drugs, outpatient services and inpatient services are 

calculated as the yearly spending per enrollee. This measure of spending is the sum of spending 

by the insurer in the database and the required out-of-pocket spending by the insured person.  We 

are not able to observe whether or not the consumer actually made their out-of-pocket payment, 

neither are we able to observe the operations of coordination of benefits.  

Since we use an individual fixed effects model in our estimation, only time-varying socio-

demographic variables are used. The effects of time-constant variables such as race, sex, 

education, etc. are absorbed in the individual fixed effect. In our estimation, we use indicators of 

urban residence, retirement status , a set of individual fixed effects, and a set of year fixed effects.  

Because we enter both individual and year fixed effects, we cannot also enter age into our 

estimating equations. We do wish, however, to allow spending to grow at different rates for 

people in different age groups; therefore, we construct a set of interactions between dummies for 

age category and a linear time trend. We separate people into seven age categories: 0-10 years, 

11-18, 19-29, 30-39, 40-49, 50-59, and 60-64. 

                                                 
7 Our results are similar if we define quantity as the number of prescription fills. 
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Our primary independent variable of interest is the out-of-pocket price faced by consumers 

for prescription drugs. In the presence of health insurance, the prices faced by a consumer for 

health services are determined by the consumer’s health plan benefit design. Ideally, one would 

like to include all the relevant aspects of the prescription drug benefit des ign in the analysis.  

These are six variables describing the benefit design in the Medstat database (generic co-

payment, preferred brand co-payment, and non-preferred brand co-payment, separately for card 

and mail order). While this is a rich source of descriptive information, these measures are highly 

collinear, therefore it isn’t possible to separately identify their effects in a regression.  Further, 

there are 18 changes in drug benefit design that occur in the data, making it highly unlikely we 

could id entify parameters for six variables describing the drug benefit (see Table 2).   

Thus, we construct an out-of-pocket price index for prescription drugs for each health plan 

in each year. For each plan-year, the price index is a weighted average of the out-of-pocket co-

payments for that plan’s tiers: the generic co-payment, the preferred brand co-payment, and the 

non-preferred brand co-payment. For a plan with only two tiers, we use that plan’s brand co-

payment as both the preferred and non-preferred brand co-payment. In addition, since plans often 

specify different co-payments for the card plan and the mail order plan, we differentiate between 

those two modes of delivery in the price index. The formula for the price index for plan j in time 

t is: 
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using insurance card at walk -up pharmacies. Mailt
GjCopay ,

, , Mailt
PBjCopay ,
,  and Mailt

NPBjCopay ,
,  are plan 

sj '  co-payment for one prescription of generic drugs, preferred brand drugs and non-preferred 

brand drugs respectively purchased by mail order. The nmW , s are quantity-based weights for 

generic, preferred brand and non-preferred brand drugs for card and mail-order purchases, 

calculated using prescription drug claims data for all the enrollees in all the years in the nine 

study firms.  For example, t he weight on generic, mail-order, GMailW , , is the proportion of 

prescriptions in our whole sample which are generic drugs ordered by mail-order.   

Table 1 contains the weights for the six categories. For example, the table shows that 

GMailW , , the weight on generic mail-order co-payment, is 0.0603 Since each employer in our data 

offers a uniform prescription drug benefit at any given time, this price index changes for a 

consumer only when his employer changes its prescription drug benefit design.  

Because of the potential for input substitution in the production of health, the demand 

equations for each type of medical care are functions of drug prices and the prices of other 

medical services. Insurance benefits for outpatient and inpatient services are more complicated 

than those for prescription drugs. Common cost-sharing devices for medical services take the 

form of a combination of deductibles, coinsurance rates for spending above the deductible, a co-

payment for one physician office visit, and a stop- loss limit beyond which consumers don’t pay 

any more. The budget sets for these medical services are therefore complicated and nonlinear. It 

is difficult to construct a single price measure for these services that would correctly reflect the 

true out-of-pocket prices consumers pay. Instead we include the deductible for medical services 

and the co-payment for outpatient visits as our out-of-pocket price measures for medical services. 

Table 2 provides a description of the history of prescription drug benefits for the nine firms, 

and the drug price index for the health plans within each employer. Each firm changed its 
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prescription drug benefits at least once, with a total of 18 price changes occurring during the 

1997-2003 period. As is clear in Table 2, each benefit change is associated with increases in co-

payments and therefore made the prescription drug insurance less generous. This is consistent 

with the national trend of increasing drug co-payments over the past decade. In Figure 5 we 

compare the average co-payments for generic, preferred branded and non-preferred branded 

drugs of the nine firms in our study with those of the employer-sponsored prescription drug 

insurance plans for the U.S. population. The estimates of drug co-payments for U.S. population 

are from the Employer Health Benefits Annual Survey by Health Research & Educational Trust 

(HRET) in 2000-20038 .   

     Table 3 gives definitions of all the variables used in the demand estimation, and Table 4 

provides summary statistics of these variables. Our dependent variables are the spending and use 

variables for prescription drugs, outpatient care and inpatient care. We construct the total 

spending variable as the sum of spending on these three types of medical care. In Table 4 we 

also report the number of observed zeroes in the corresponding quantity and spending variables. 

In our sample, 96% of the inpatient observations have zero values, compared to 30% for 

prescrip tion drug use, and 17% for outpatient care. In this sample 87% of individuals never used 

any inpatient care during the time span when data are available for them, compared with 13% for 

prescription drugs and 6% for outpatient care. We describe our empirical strategy for coping 

with the large number of zero values in the next section.   

By construction, there is no switching within employer among drug plans, since all of our 

employers have uniform drug plans over time. But switching among medical plans is st ill of 

some concern. Employers have, on average in our data, 2.76 medical plans available to their 

                                                 
8 The Employer Health Benefit Annual Survey is funded by Kaiser Family Foundation and studied jointly by HERT 
and Kaiser Family Foundation since 1987. It collects health insurance benefits information of approximately 2,000 
randomly selected employers in all major industries. 
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employees. Table 5 gives summaries insurance plan switching rates for each firm. This table 

shows that the switching rates are fairly small. One might interpret the low switching rates in 

Table 5 as indicating that, although people may self- select into insurance plans, it seems that 

these selections are determined mostly by stable health or preference factors at the baseline year. 

If this is true the individua l fixed effects will largely account for unobservable factors which 

drive selection. 

4.  Empirical Strategy 

 
4.1 Model Specification  

 

We estimate equations relating the demand for and the total spending on prescription drugs, 

outpatient care, and inpatient care to the out-of-pocket prices paid by consumers for drugs and to 

the medical plan design characteristics.  The basic estimation model is  

1 2 3 1 4 5 1
j d d m m

it it it it it it i t itQ P P P P Xβ β β β β δ α γ ε− −= + + + + + + + +   (2) 

In this equation j
itQ  denotes the demand for health input j by person i in period t, where j 

indexes prescription drugs, outpatient care, and inpatient care.   
 , 1,d d

i t i tP P −  are indexes of the 

contemporaneous  and lagged patient out-of-pocket prices for prescription drugs  m  m
 , 1,i t i tP P −  stand 

for prices for other types of medical care, such as outpatient and inpatient care. The itX  capture 

all non-price time-varying variables that also affect peoples’ demand for medical care, such as 

retirement status, urban-rural location, and age group-year interactions. The error term can be 

decomposed into three separate elements. iα  captures unobservable and unchanging individual 

heterogeneities in medical demand, such as individuals’ preferences for using medical goods, 
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inherited generic traits, etc. tγ  captures the general trend effects in demand over time, and itε  

stands for all other random factors which might affect demand, such as random health shocks.    

Since we are concerned with dynamic effects of out-of-pocket drug prices on both drug 

demand and demand for other medical services, throughout our analysis we include both the 

current drug price index and one lag of the drug price index.  We include a lag of prices in our 

demand model for two reasons. First, there is substantial evidence that people treat health as an 

investment, as suggested by Grossman’s health capital theory (1972). Thus, a one-time change in 

drug prices will not only alter consumption in the current period, but also in future periods. 

Including a lag in drug prices is a simple way to allow for this effect. Second, drug consumption 

may be sticky. Previous literature suggests that there might exist substantial persistence in the 

habits of patients’ use and doctors’ prescribing of prescription drugs (Coulson and Stuart, 1992; 

Hellerstein, 1998; Coscelli, 2000).  As the result patients and their doctors may not alter 

prescribing and filling behavior quickly in response to a change in drug prices.  

In this model, the “long-run” effect of a change in out-of-pocket prescription drug prices is 

the sum of the effects of both the contemporaneous and lagged price variables. We are unable to 

include a lag structure longer than 1 year, since this would require including only firms with four 

or more years of usable data, and would thus reduce our sample size greatly9.  

The spending measure we use throughout is the total spending on the relevant service.  For 

example, total spending on drugs is the consumer’s out-of-pocket spending plus the insurance 

plan’s spending, subject to the caveats above. It is important to distinguish our regression of total 

spending on price with the more familiar expenditure function approach to estimating demand. 

Our total spending regressions are not expenditure function regressions, because the left-hand-
                                                 
9 Adding two lags in the regression will cause the losing of three firms which have only three years of data from our 
estimation sample. Total number of individuals would be 355920, almost a third reduction from 526086 in our 
sample with only one lags.  
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side spending variable is not the consumer’s total spending but the consumer’s total spending 

plus the plan’s total spending. Therefore, our price elasticity of spending is not the consumer’s 

price elasticity of demand plus one, as it is in consumer theory. The spending variable here is 

more like a quantity index: it weights each prescription by the total (as opposed to out-of-pocket) 

price paid for the prescription. 

4.2 Econometric Issues 

Throughout the analysis, we use fixed effects to control for unobserved individual 

characteristics. This choice is motivated by several considerations. The consumer-specific 

information we have access to is quite sparse. For example, we have no income information and 

the only health status information we have is that which we can infer from the claims data.10 

Second, though there is little switching among medical plans over time, there is still the prospect 

of adverse selection: consumers may already have selected into their health plans at baseline. 

Thus, we hope to control for unobserved consumer characteristics and to mitigate adverse 

selection by including individual fixed effects. Since firm fixed effects are contained in the span 

of the individual fixed effects, this strategy also means that we are identifying the effects of the 

out-of-pocket drug prices solely from the variation induced by changes in the drug plans within a 

firm over time. 

We use linear fixed effect models for both the quantity demand and expenditure equations. 

This approach is straightforward; however, there are a number of econometric issues associated 

with the use of linear fixed effect estimators, given the nature of some of our data. The measures 

of quantity are counts. Some of the expenditure variables have significant probability mass at 

                                                 
10 We could attempt to estimate h ealth status from the claims data by using a “before” period.  However, that would 
require shortening our panel, which we are loathe to do. 
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zero. We therefore also employ fixed effect count data model and fixed effect Tobit model to 

estimate the quantity and spending equations, respectively.    

Another issue is serial correlation. The errors in the demand equations are likely to be 

serially correlated when the individual fixed effects and time trends do not completely control for 

the persistence in consumer ’s demand. We know of no straightforward parametric method for 

correcting for serial correlation in the non-linear settings discussed above. We therefore use the 

block bootstrap method to adjust standard errors for serial correlation.   

Last, a large number of zeroes are observed in both quantity and spending for inpatient care 

(most people are not hospitalized in a given year). As will be explained in more detail in the 

following section, in estimating the individual fixed effect Poisson model, individuals for whom 

the dependent variable is always zero make no contribution to the likelihood function. Similarly, 

in the fixed effect Tobit estimation, the symmetric trimming procedure employed by this 

estimator causes substantial loss of observations  for inpatient demand equation. The parameter 

estimates from fixed effect Poisson and fixed effect Tobit estimators are not biased because of 

the data loss. However, it is likely that these estimates for the inpatient demand equation reflect 

demand responses for a smaller group of individuals who are inpatient care users, and therefore 

may not be representative of the entire population. We therefore aggregate the data into broader 

groups and re-estimate the inpatient demand using fixed effects for these groups. The results 

from these regressions provide an alternative look at inpatient demand. Indeed, we do find 

significant differences between the parameter estimates from individual and group fixed effect 

models.   
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4.2.1 Fixed Effect Count Data Model 

As Table 3 documents, our quantity variables are counts and some of them are frequently zero. 

We therefore use fixed effects count data methods to model the m.   

Specifically, we use Hausman, Hall and Griliches’ (1984) conditional maximum likelihood 

estimator (HHG). The HHG estimator is based on a conditional mean assumption, 

exp( ) exp( )exp( )it i it i itx xλ α β α β= + = , where the fixed effect takes the multiplicative 

form )exp( ic . Estimation is fairly straightforward, since the individual fixed effects parameters 

ic are conditioned out in the log- likelihood function. This estimator also has strong robustness 

properties. Consistency requires only that the conditional mean assumption is correct. Except for 

the conditional mean, the distribution of ity given ( ,i itxα ) is completely unrestricted. That means 

the estimates are consistent. even in the presence of overdispersion, underdispersion, or serial 

correlation (Wooldridge, 1999). 

4.2.2 Fixed Effect Tobit Model 

It would be inappropriate to use linear regression models for the spending variables, given 

the large number of zeros observed for each. Obviously, these zeroes arise when consumers do 

not use any of the services in the relevant category in a year. We therefore use fixed effect Tobit 

models to estimate the parameters of the spending models.  

Although there has been a large literature on identification and estimation of linear panel 

data models with fixed effects, fixed effect limited dependent models have not been studied as 

much. Honoré (1992) proposed a semi-parametric estimator for estimating the fixed effect Tobit 

model. The idea for this estimator is to restore the symmetry of the distribution of the dependent 

variable which was destroyed by censoring. In a panel data context, the censored regression 

model can be described by 
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*

*max{0, }
it it i it

it it

y x

y y

β α ε= + +

=
                                   (3) 

Honoré (1992) proposed that under the assumption of independent and identically 

distributed errors ( , )it isε ε , where t , s  denotes errors in different periods, the conditional 

distribution of * *( , )it ity y given ( , )i ix α  is distributed symmetrically around the 45° -degree line 

through ( , )is itx xβ β (or equivalently through the 45° -degree line through (( ) ,0)is itx x β− ).  As 

discussed in Honoré’s (2000) paper, this i.i.d. error assumption can be relaxed, and the estimator 

is still applicable under only conditional exchangeability and conditional stationarity 

assumptions. As this is true for any value of iα , it is also true for the conditional distribution of 

* *( , )it ity y given ix .  

Honoré proposed two estimators - the trimmed least absolute deviation estimator (LAD) 

and trimmed least square estimator (LS) - for fixed effect Tobit models. These two estimator s are 

essentially the generalization of Powell’s (1984) least absolute deviation estimator and Powell’s 

(1986) trimmed Least Square estimators for censored regressions, in the setting of panel data 

with fixed effects. Each estimator is consistent and asymptotically normal under fairly weak 

assumptions. Moreover, these estimators do not impose any parametric structure on the 

distribution of error terms.  

As later pointed out by Deaton (1997), Powell’s (1984, 1986) censored LAD estimator and 

censored least square estimator can be calculated easily by repeated application of linear least 

squares or least absolute deviations regression algorithms. This point was further reinforced by 

Chay and Powell (2001). Simply put, these estimators can be achieved by iterating between the 

“symmetric trimming” of the dependent variables using estimates from the previous iteration and 

least squares or median regression using the “trimmed” data.  
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Honoré’s least square and LAD estimators are replications of Powell’s methods in a panel 

data framework. The slight difference between them resides in how the data are properly 

trimmed. To derive our fixed effect Tobit estimates, we use the identically censored least squares 

(ICLS) estimator of Honoré as described by Clay and Powell (2001).  

4.2.3 Serial Correlation in Panel Errors 

Estimating health care demand using longitudinal data is subject to a potential serial 

correlation problem. Several studies show that consumers’ health spending is persistent from one 

year to the next (Eichner, McClellan and Wise, 1996; Vliet, 1992; Pauly and Zeng, 2003 ). 

Bertrand, Duflo and Mullainathan (2002) evaluate several methods of estimat ing consistent 

standard errors in the presence of serial correlation in difference- in-difference models. They find 

that the block bootstrap method works well in producing precise standard errors in the case when 

T is small and N is large.  

We use the block bootstrap method to correct our standard errors for serial correlation. The 

block bootstrapping is done at the individual consumer level, so that we are correcting for serial 

correlation and heteroskedasticity at this individual level. Since we have to drop one year of data 

because of the lagged prices, our panel data has small T (3.3 on average per person) and large N 

(526,086), in which setting Bertrand, Duflo and Mullainathan (2002) found the bootstrap to be a 

good choice. The bootstrap has the merit of avoiding strong parametric assumptions about the 

structure of the error variance matrix. The serial correlation problem and possible solutions to it 

for nonlinear panel models, such as fixed effect Poisson models and fixed effect Tobit models 

which we will estimate in this study, are still not fully explored in theory.  
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4.2.4 Grouped Fixed Effects 

Ideally, we would like to use individual level fixed effect models to estimate all the 

demand and spending equations. However, for inpatient admissions, 87.35% people in our 

sample have zero admissions in each of the years we observe them. Mechanically, these 

observations would be dropped in the HHG estimator for inpatient demand. Similarly, the 

symmetric trimming requirement implied by the ICLS estimators for fixed effect Tobit model 

also suggests a substantial loss of individual data for inpatient spending equation.  Although 

there is no bias associated with this if the assumptions of the underlying models are true, the 

sample thus used for estimation is highly un-representative, as it is older and sicker. 

One approach is to use fixed effects for groups of individuals, where there are some non-

zero values in the dependent variables in each group. However, this remedy also comes with a 

price- the broader fixed effect parameters can’t completely absorb all individual heterogeneity.  

In addition to the individual fixed effects specifications, for inpatient care, we also estimate 

grouped fixed effects.  

  The groups are created by divid ing individuals into age group-sex- firm categories.  There 

are 126 (=7 age groups × 2 sexes × 9 firms) groups.  For the inpatient equation, our estimates for 

inpatient use involve a regression of admissions on these group dummies, time dummies, time-

age group interactions, pharmaceutical price index, medical benefit design variables, and the 

dummy variables for each of these groups into a more conventional Poisson regression. For the 

inpatient spending equation, we run a conventional Tobit regression including the same 

independent variables.  
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5. Results 

Figure 6 shows the time series movements of per-capita prescription drug spending and 

average out-of-pocket prices for prescription drugs over the study period, 1997-2003. These drug 

prices are the weighted average of yearly pharmaceutical price indexes at the firm level. Over 

this period, both the average co-payment and the average spending per enrollee have increased. 

Furthermore, the correlation over time between detrended average co-payment and detrended 

average spending is 0.7435 (N=7) and the OLS regression coefficient from a regression of 

spending on co-payment and a time trend is 14.16 (also N=7). 

Table 6 summarizes the fixed effect estimation results for the spending equations, and 

Table 7 summarizes the fixed effect results for the quantity demand equations. In each table we 

present results from individual linear FE models, individual FE Tobit and FE Poisson models, 

and the grouped fixed effect Tobit and Poisson models. In each table, the point estimates of 

marginal effects are reported. The parameter significance indicators are based on block 

bootstrapped standard errors which cluster residual errors at either individual or group dummy 

level. For each demand variable only the coefficients of contemporaneous and lagged drug prices 

are reported. Coefficients for other control variables are available from the authors upon request.  

The coefficients for prescription drug demand through all specifications yield consistent 

results. Increases in out-of-pocket drug prices cause fewer days of drug use and reduce spending 

on drugs. For example, the individual FE Tobit estimates suggest a $1 increase in drug price 

reduces total drug spending by $33.50 in the first year after the price change, and a further 

reduction of $46 in the second year after the price change. This corresponds to a “short-run” 

elasticity of -0.5 and “long-run” elasticity of -0.8 for drug spending. The regression results for 

days of drug supply follow a similar pattern. These results concur with previous findings that 



 26 

more stringent drug cost-sharing benefits are associated with reductions in drug use and drug 

spending. One distinguishing contribution of our analysis is its examination of the dynamic 

effects on consumers’ demand. The results from our study show that there are significant and 

strong lagged price effects on the demand for drugs. Moreover, the lagged price effects exceed 

the instantaneous effects. These results suggest that there are substantial adjustments to drug 

consumption in the long term, along with considerable shorter term stickiness.  

Through all specifications, results from both the OLS and Tobit estimations suggest that 

consumers facing higher drug co-payments substitute to outpatient services in both the short and 

long run. Specifically, from the individual fixed effect Tobit results in Table 6, a one dollar 

increase in the out-of-pocket drug price index increases per-capita outpatient spending by $7.70 

and in the first year and $19 in the second year after price changes. These estimates correspond 

to “short-run” and “long-run” cross-price elasticities of 0.07 and 0.18, respectively. Estimates 

from the outpatient quantity demand equation are less consistent. The fixed effect Poisson results 

in Table 7 indicate that a one dollar increase in the out-of-pocket drug price index leads to 0.026 

fewer outpatient visits in the first year, but 0.075 more outpatient visits in the second year after 

the price change. This corresponds to cross-price elasticities of -0.02 and 0.07 with drugs, 

respectively. One limitation associated with the measure of the number of outpatient visits 

variable is that outpatient visits are not homogeneous. An outpatient surgery counts the same as a 

physician office visit. It is possible that in the short-run consumers reduce the use of less 

expensive outpatient visits, such as a trip to the doctor’s office to get a prescription written, but 

seek more expensive alternative treatments in the outpatient setting. In the long-run, both the 

quantity and spending on outpatient care go up as the result of increases in drug prices. This 

sustained substitution into the use outpatient care in a longer period might signal the worsening 
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of consumers’ underlying health status. That is, the reduction in prescription drug use in both 

periods affects patients’ health, and in turn generates more demand for outpatient care in the 

long-run.   

The individual linear FE results for inpatient demand indicate that there is no significant 

relationship between the use of inpatient admissions and prescription drug prices. However, the 

individual FE Tobit results suggest a different story. There are large positive price effects on 

inpatient spending in both the first year and second year after the price change. A $1 increase in 

drug price causes a $183 increase in inpatient spending in the first year, and another $800 

increase in the second year. Note that in the FE Tobit estimation for inpatient spending, nearly 

90% of observations are dropped because of the symmetric censoring. Therefore, the FE Tobit 

results are essentially the regression coefficients for the 10 percent of individuals who had 

positive spending on inpatient care. Taking into account that fact that this group of people spend 

on average $15,000 annually on inpatient care, the resulting elasticities for the Tobit estimates 

are 0.19 and 0.82 for the short and long run, respectively. These estimates suggest that sick 

people are sensitive to changes in drug prices. When drug price increases, these people end up 

spending more on hospital care. Presumably, the substitution into hospital care is driven mostly 

by a deterioration in health status.  

Note that this strong inpatient substitution effect goes away when we look at the grouped 

FE Tobit results, where every observation is included in the estimation. The coefficients for both 

short-run and long-run drug prices change signs in this group FE Tobit model. As discussed 

previously, these results might be of some concern because the individual heterogeneity might 

not be completely controlled for by the group dummy variables. Nevertheless, the large 

discrepancies in parameter estimates from the individual Tobit model and group Tobit model 
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suggest that the demand responses for sick people differ substantially from those of an average 

person.  

A comparison of the results from linear fixed effect models with those from the FE Poisson 

and FE Tobit models indicates that the linear FE models produce estimates which may be 

systematically biased toward zero. These results suggest that using simple linear regression 

models for prescription drug use could result in understating consumers’ demand responses.   

   

6. Summary and Conclusions 

We have estimated consumers’ responses to increased cost sharing for pharmaceuticals 

accounting for the contemporaneous and lagged responses of drug, outpatient, and inpatient 

quantity and spending to increases in drug co-payments. Our results show that increased 

consumer cost sharing for prescription drugs reduces both use and spending on prescription 

drugs. We also find dynamic adjustment by consumers: the effects one year after a co-payment 

increase are substantially larger than the contemporaneous effects. We also find that consumers 

substitute to outpatient care in response to rising drug prices. These effects also have a 

significant dynamic component: there is substantially more substitution to outpatient care one 

year after an increase in pharmaceutical cost sharing. There is no significant substitution between 

drugs and inpatient care for an average person. However, we find large substitution effects into 

inpatient care for the small group of people who are users of inpatient care.  

These results are intuitively plausible.  We expect there to be own price effects. Theory and 

intuition also tell us that consumers will no t likely adjust instantaneously to changes in their out 

of pocket costs. It is also plausible that consumers substitute outpatient care for medications. 

This may happen directly, as consumers pursue other treatments for their conditions. It may also 
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occur because consumers experience more adverse health events as a result of decreased drug 

consumption, thereby leading to more use of outpatient care.  

In total, we find that the expenditure savings on prescription drugs are largely offset by 

increases in outpatient spending. A $1 increase in drug price reduces drug spending by $33.50 in 

the first year, and $46 in the second year. This amounts to a total reduction of spending by 

almost $80 in a two year period. However, total medical spending decreases by about $48 

($24+$24) in this two year period. Thus, higher drug co-payments save money on drug spending, 

but cost money on outpatient and possibly inpatient spending and have much smaller effects on 

overall spending.   

These findings shed light on the efficiency of current insurance benefit designs in both the 

private and public sectors. The trend toward increased consumer cost sharing for prescription 

drugs should be carefully examined in light of these findings. Our results may also have 

relevance for the new Medicare prescription drug benefit (Part D).  The findings from our study 

suggest that high consumer cost-sharing might not be as effective a mechanism for controlling 

spending as previously thought.
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Figure 1: Age Group Distribution for Employer-Insured Population, Medstat Sample and Our Study 

Sample 
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Figure 2: Regional Distribution for Employer-Insured Population, Medstat Sample 

and Our Study Sample 
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Figure 3: Per Capita Pharmaceutical Spending for Employer-Insured Population, 

Medstat Sample and Our Study Sample 
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Note: The prescription drug spending data for year 2003 isn’t available in the MEPS data at 
the time of this research.   

 



 37 

Figure 4: Per Capita Total Medical Spending for Employer -Insured Population, 

Medstat Sample and Our Study Sample 
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Note: The prescription drug spending data for year 2003 isn’t available in the MEPS data at 
the time of this research. 



 38 

Figure 5: Average Co-payments for Generic, Preferred Branded and Non-Preferred 

Branded Drugs 
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Figure 6: Trend in Prescription Drug Spending and Prices 
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Table 1:  Weights Used to Calculated Price Index for Prescription Drug Purchase 

 Generic Preferred Brand Non-Preferred 
Brand 

CARD PLAN 0.3580 0.3681 0.0908 
MAIL-ORDER  0.0603 0.1025 0.0204 

 
 
 
 

Table2: Prescription Drug Benefits for the Firms in Study Sample 
 

  1997 1998 1999 2000 2001 2002 2003 

Card Plan $4 -$4 $4-$8 $4-$8     
Mail Plan $4 -$4 $4-$8 $4-$8     FIRM1 

Drug Price 4.00 6.33 6.33     
Card Plan   $12-$12 $12-$12 $12-$12 $12-$12 $12-$16 
Mail Plan   $12-$12 $12-$12 $20-$20 $20-$20 $20-$36 FIRM2 

Drug Price   12.00 12.00 13.47 13.47 17.27 
Card Plan  $5-$10 $5-$15 $5-$15-$25 $5-$15-$25 $7-$20-$40  

Mail Plan  $6-$12 $6-$18 $10-$30-$40 $10-$30-$40 $14-$40-$70  FIRM3 
Drug Price  8.22 11.25 14.08 14.08 19.87  
Card Plan   $5-$10-$25 $5-$10-$25 $5-$15-$30 $5-$15-$30 $5-$15-$30 
Mail Plan   $10-$20-$45 $10-$20-$45 $10-$30-$70 $10-$30-$70 $10-$30-$85 FIRM4 
Drug Price   11.31 11.31 15.60 15.60 15.90 
Card Plan   $4-$12 $8-$18 $10-$20-$30 $10-$25-$35 $11-$27-$42 
Mail Plan   $12-$36 $24-$54 $20-$40-$60 $20-$50-$70 $22-$54-$84 FIRM5 
Drug Price   12.09 19.21 20.20 23.72 26.27 

Card Plan $7-$7 $9-$9-$15 $9-$9-$15     
Mail Plan $7-$7 $9-$9-$15 $9-$9-$15     FIRM6 
Drug Price 7.00 9.67 9.67     
Card Plan $5-$10 $8-$16 $8-$16 $8-$16-$25 $8-$16-$25 $10-$20-$40 $10-$20-$40 
Mail Plan $5-$10 $8-$16 $8-$16 $8-$16-$25 $8-$16-$25 $15-$30-$60 $15-$30-$60 FIRM7 
Drug Price 7.91 12.66 12.66 13.66 13.66 19.78 19.78 
Card Plan $5-$10 $5-$10 $5-$10 $5-$10 $6-$15 $6-$15 $6-$15 
Mail Plan $8-$15 $8-$15 $8-$15 $8-$15 $9-$25 $9-$25 $9-$25 FIRM8 
Drug Price 8.71 8.71 8.71 8.71 12.65 12.65 12.65 
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Card Plan     $10-$10 $10-$10 $10-$20 

Mail Plan     $15-$20-$30 $15-$20-$30 $20-$45-$60 FIRM9 

Drug Price     11.74 11.74 19.80 

Note:  The $X-$Y or $X-$Y-$Z structures represent the 2-tier and 3-tier co-payment schedules, respectively, where $X denotes co-payment for generic drugs; 
 $Y denotes co-payment for brand drugs in a 2-tier schedule, and the co-payment for preferred brand drugs in a 3-tier schedule; $Z denotes co-payment for 
non-preferred brand drugs in a  3-tier schedule. Drug prices are the calculated price index for each insurance plan based on the co-payments and population 
weights of each types of prescription.
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Table3: Descriptions of variables   

Variable       Description 

RXS  Annual spending on prescription drugs 

OUTS Annual spending on outpatient services  

INS  Annual spending on inpatient services 

DAYSUPP Prescription drugs demanded (in days) 

NUMV Number of outpatient visits  

NUMADM Number of inpatient admissions 

RXP Out of pocket prices for prescription drugs 

DEDUCT Deductible for medical services (for outpatient and inpatient) 

COPAY Co-payment for one physician office visit  

AGEGROUP Age group, 1=0 -10, 2=11-18, 3=19-29, 4=30-39, 5=40-49, 6=50-59, 7=60-64  

AGE1YEAR-

AGE7YEAR The interaction of age group with Year 

RETIRE 1 = yes, 0 = no 

URBAN Residence place of employees, 1 = Urban, 0 = Rural 

YEAR97-YEAR03 Dummy variables for year of data.  Year97=1 if year=1997, etc.  

 

 

Table4:  Summary Statistics of Variables 

Variable 
Name Mean Std 

% of 
Zeroes 

% of People  
Always Users  

% of People  
Always Non-

User 
RXS  624 1756 29.52% 52.24% 12.94% 
OUTS 1614 5156 16.72% 68.18% 6.05% 
INS  714 6918 95.78% 0.42% 87.35% 
TOTS  2951 10242 13.00% 74.83% 4.45% 
DAYSUPP 331 584 29.52% 52.24% 12.94% 
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NUMV 16.61 27.83 16.72% 68.18% 6.05% 
NUMADM 0.06 0.33 95.78% 0.42% 87.35% 
RXP 15.30 5.32 - - - 
DEDUCT 134 168 - - - 
COPAY 6.50 7.06 - - - 
URBAN 0.78 0.41 - - - 
RETIRE 0.18 0.39 - - - 
AGE1TIME 0.71 2.13 - - - 
AGE2TIME 0.83 2.31 - - - 
AGE3TIME 0.57 1.96 - - - 
AGE4TIME 0.98 2.48 - - - 
AGE5TIME 1.47 2.93 - - - 
AGE6TIME 1.58 2.98 - - - 
YEAR98 0.05 0.22 - - - 
YEAR99 0.11 0.32 - - - 
YEAR00 0.19 0.39 - - - 
YEAR01 0.22 0.41 - - - 
YEAR02 0.22 0.41 - - - 
YEAR03 0.17 0.38 - - - 

N 1713879 

# of Individual 526086 

 

Table 5:  Percentage of People Switched Between Insurance Plans  

  
97 98 99 00 01 02 03 

Firm 1 Medical - 0 0     
 Drug - 0 0     

Firm 2 Medical   - 0 0.11 1.8 2.18 
 Drug   - 0 0 0 0 

Firm 3 Medical  - 0 2.88 1.11 1.14  
 Drug  - 0 0 0 0  

Firm 4 Medical   - 0.13 0.19 0.29 0.97 
 Drug   - 0 0 0 0 

Firm 5 Medical   - 0 7.13 0 0 
 Drug   - 0 0 0 0 

Firm 6 Medical - 0 0     
 Drug - 0 0     
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Firm 7 Medical - 1.13 0.99 0.92 1.17 0.39 0 
 Drug - 0 0 0 0 0 0 

Firm 8 Medical - 0.45 0.34 0.14 0.58 0 0 
 Drug - 0 0 0 0 0 0 

Firm 9 Medical     - 0 0 
 Drug     - 0 0 

Note: The number in each cell represents the percentage of people within a firm who switch their medical insurance benefits or prescription drug insurance 
benefits from previous year to the indicated year.  
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Table 6: Estimation Results for Spending Equations   

 FE OLS  FE Tobit  FE Tobit 

 Point 
Estimate Elasticity  

Point 
Estimate Elasticity  

Point 
Estimate Elasticity 

Rx Spending         

RxP -20.34*** -0.50  -33.5*** -0.82  
 (0.52)   (1.03)   
RxP_1 -13.49*** -0.33  -12.7*** -0.31  

-- 

 (0.75)   (1.27)    

Outpatient Spending   
 

  
 

 
RxP 10.28*** 0.10  7.7*** 0.07  
 (2.34)   (2.96)   
RxP_1 12.70*** 0.12  11.3*** 0.11  

-- 

 (4.05)   (3.46)    

Inpatient Spending    
 

  
 

 
RxP -3.45 -0.07  183.2** 0.19 †  -5.47** -0.12 
 (4.32)   (96.68)   (2.35)  
RxP_1 -4.97 -0.11  616.6*** 0.63 †  -6.43*** -0.14 
 (5.56)   (99.16)   (2.54)  

Total Spending    
 

  
 

  
RxP -13.51*** -0.07  -24.0*** -0.12  
 (5.01)   (6.60)   
RxP_1 -5.76 -0.03  -0.4 0.00  -- 
 (6.01)   (7.56)    

Obs 1713879  1713879  1713879 

# Group 526086  526086  126 

Individual FE Yes  Yes  No 
Note: † These elasticities are calculated using the mean dollar of inpatient spending for inpatient care users. The average inpatient spending for users is $15083 
per year, and for the whole population is $714  per year.  
 
Significance is based on bootstrapped standard errors which cluster errors at either individual or group level.  
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          *** Statistically significant at 0.001 level. 
          ** Statistically significant at 0.05 level. 
          * Statistically significant at 0.1 level. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 7: Estimation Results for Quantity Demand Equations   

 FE OLS  FE Poisson  FE Poisson 

 Point 
Estimate  Elasticity  Point 

Estimate Elasticity  Point 
Estimate Elasticity 

Days Rx Suppy         

RxP -11.47*** -0.53  -15.7*** -0.73  

 (0.18)   (0.3)   
RxP_1 -8.60*** -0.40  -10.6*** -0.49  

-- 

 (0.21)   (0.2)    
         

Outp Visits         
RxP 0.05*** 0.05  -0.026** -0.02  
 (0.01)   (0.013)   
RxP_1 0.18*** 0.17  0.101*** 0.09  

-- 
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 (0.02)   (0.01)    
         

Hospital Admission         
RxP -0.0003 -0.08  -0.0026 -0.03 †  -0.0006*** -0.15 
 (0.0002)   (0.0016)   (0.0002)  
RxP_1 -0.0005** -0.13  -0.0043** -0.05 †  -0.0009*** -0.23 
 (0.0002)   (0.0018)   (0.0002)  

Obs 1713879  1713879  1713879 

# Group 526086  526086  126 

Individual FE Yes  Yes  No 
Note: † These elasticities are calculated using the number of inpatient admissions for inpatient care users. The average inpatient admission for users is 1.29 
admissions per year, and for the whole population is 0.06 per year.  
 
Significance is based on bootstrapped standard errors which cluster errors at either individual or group level.  
          *** Statistically significant at 0.001 level. 
          ** Statistically significant at 0.05 level. 
          * Statistically significant at 0.1 level. 


