
Introduction to Geographically 
Weighted Regression 

Outline 
This practical session is intended as a beginner’s introduction to Geographically Weighed Regression 

(GWR).  It is by no means comprehensive. For much more detail and a better understanding of the 

statistical foundations of GWR please see Fotheringham et al. (2002) Geographically Weighted 

Regression: The Analysis of Spatially Varying Relationship, published by Wiley. 

There is “standalone” GWR software that you can obtain from http://ncg.nuim.ie/ncg/GWR/. We, 

however, shall be using the version available in R,  free statistical and computing software that you 

can obtain from http://cran.r-project.org/. The discussion of R and how it works is here kept to a 

minimum. See the previously referenced website if you would like to learn more. 

Getting going 
Locate the R program in the Windows Start menu and run it. This will load the “R Gui” (so called, but 

use of R is primarily command line).  

 

Figure 1. Screen shot of the “R Gui” as the program starts 



Locate the comma delimited file, “southeast.csv” and, within the “R Console” type (after the > 

symbol) an instruction of the form: 

mydata = read.csv(“H://segregation/southeast.csv”, header=TRUE) 

# Anything that appears after # is a comment and doesn‟t need to 

# be typed. The above code reads the data into an R data frame 

# called “my data” 

Note that R is case sensitive and also that if you make a mistake you can scroll up through your 

recently typed commands using the ↑ key on your keyboard.  

To inspect the top of the data frame, type 

head(mydata) 

To see the variable names 

names(mydata) 

To make those variables ‘usable’ in R type 

attach(mydata) 

The data frame contains Census information collected for 2536 zones in South East England. For 

each of those a grid reference marking the population weighted centre of the zone is given. We can 

produce maps from this information, for example of how the proportion of households not owning a 

car (or van) varies across the country. 

library(sp) 

# Loads the „add-ins‟ for R that are used for mapping 

map = SpatialPointsDataFrame(data=mydata,  coords=cbind(POPEAST, 

POPNORTH)) 

# Makes the data into a “mappable” format 

names(map) 

# Lists the “mappable” data 

colours = c(“dark blue”, “blue”, “red”, “dark red”) 

# Creates a colour palette 

spplot(map, “Nocars”, cuts=quantile(Nocars), col.regions=colours) 

# To provide more detail to the map produce above, use: 

spplot(map, “Nocars”, cuts=quantile(Nocars), col.regions=colours, 

cex=0.3) 



 

Figure 2. Map showing geographical variation in car non ownership in the SE of 

England. The map is shaded by quartiles. 

 

We will now fit a simple, linear regression model (a line of best fit) to explore the relationship 

between the proportion of households without a car (Y) and the proportion of economically active 

persons unemployed (X) in each Census zone. 

First, we produce a plot of the relationship to check it is broadly linear: 

plot(Nocars ~ Unemp, data=map) 

Then we fit the regression line: 

model1 = lm(Nocars ~ Unemp, data=map) 

# Fits the linear model, hence lm(…) 

abline(model1, col=”red”) 



# Draws the regression line on the plot 

summary(model1)  

Not unsurprisingly, the relationship is significant at a very high confidence level. But, what about the 

residuals – is there a geographical patterning to where the model over- or under-predicts? Let’s 

look! 

resids = residuals(model1) 

colours = c(“dark blue”, “blue”, “red”, “dark red”) 

map.resids = SpatialPointsDataFrame(data=data.frame(resids),  

coords=cbind(POPEAST, POPNORTH)) 

spplot(map.resids, cuts=quantile(resids), col.regions=colours, 

cex=0.3) 

 

Figure 3. Map showing the geographical patterning of the regression residuals. 

 



There does appear to be a pattern, invalidating an underlying assumption of the model: that the 

residuals have values independent of each other. There appears to be a spatial dependency that 

GWR might reveal further. 

Geographically Weighted Regression 
The basic idea behind GWR is to explore how the relationship between a dependent variable (Y) and 

one or more independent variables (the Xs) might vary geographically. Instead of assuming that a 

single model can be fitted to the entire study region, it looks for geographical differences. 

GWR works by moving a search window from one point in a data set to the next, working through 

them all in sequence. As the search window rests on a sample point, all other points that are around 

it and within the search window are identified. A regression model is then fitted to that subset of the 

data, giving most weight to the points that are closest to the one at the centre. For a data set of 

2536 observations GWR will, then, fit 2536 weighted regression models, the results of which are 

compared to look for geographical variation. 

This immediately raises a question – what area should the search window cover each time? The 

answer is provided by a process of calibration, to select an “optimal” bandwidth (an optimal search 

window size). 

Note that the distance from one point to another can be defined in two ways: either by actual 

geographic distance or by whether it’s the first nearest neighbour, the second, the third and so 

forth. If the number of neighbours within the search window is fixed then it will vary in area from 

point to point: where the sample points are close together the window will have less area; where 

the points are sparse it will fill a greater area. This is called an adaptive window and is usually better 

for analysing census data (because census zones are of a variable size: smaller where population 

density is higher and vice versa).  

To undertake GWR in R, first load the add-in: 

library(spgwr) 

Then, to calibrate the bandwidth, type the following. Be patient as it searches for the answer – it can 

take some time! 

bw = gwr.sel(Nocars ~ Unemp, data=map, adapt=T) 

To now fit the model, type, 

gwr.model = gwr(Nocars ~ Unemp, data=map, adapt=bw) 

And to see a summary of it 

gwr.model 

 

 



 

 

Figure 4. GWR works by passing a search window from one point to the next 

and fitting a distance weighted regression model each time. 

(Source: Prof. C. Brunsdon, University of Leicester) 

 

What the summary is telling you is that in some places the relationship between car non ownership 

and unemployment is negative, whilst in others it is positive. Going across the 2536 sample points 

within the study region, for half of them, as unemployment rises by 1 percentage point then, all 

things being equal, the level of car non ownership will rise between 5.887 and 9.179 percentage 

points (these are the values marked as 1st Qu. and 3rd Qu. on your screen). However, if all the 

sample points are considered, the effect ranges from a decrease of 3.178 percentage points, to an 

increase of 25.580 percentage points. 

We can anticipate a geographical patterning to the above, and there is! 

spplot(gwr.model$SDF, "Unemp", cuts=quantile(gwr.model$SDF$Unemp), 

col.regions=colours, cex=0.3) 

# SDF is short for Spatial Data Frame and it is where the model 

# results are stored 



 

Figure 5. Mapping the results of the GWR model. The effect of unemployment on 

car non ownership appears to vary geographically. 

What next? 
We need to be careful not to assume that just because the relationship between car non ownership 

and unemployment varies geographically that is also a significant relationship everywhere. In some 

or more places it could be due to chance. 

The following is for provided for information and it is recommended you don’t try it as the fitting of 

the GWR model will take some time – about 10 or 15 minutes. What the code does is change the 

default settings to calculate measures of statistical significance and to plot the results. The resulting 

map is shown in Figure 6; in most places the relationship appears to be significant. 

gwr.model = gwr(Nocars ~ Unemp, data=map, adapt=bw, hatmatrix=T, 

se.fit=T) 

t = gwr.model$SDF$Unemp / gwr.model$SDF$Unemp_se 



sig.map = SpatialPointsDataFrame(map, data.frame(t)) 

colours=c("green","red","green") 

breaks=c(min(t),-4,4,max(t)) 

spplot(sig.map, cuts=breaks, col.regions=colours, cex=c(0.3,1,0.3)) 

 

We also ought to think carefully about the form of our model. Does unemployment “cause” car non 

ownership or is it the other way around? 

 

Figure 6. Estimated t values for the GWR model. Points shown in red indicate 

a relationship that is not significant. 

 



Changing the model 
We could now fit further models, using multiple regression to bring in more predictor variables to 

help explain patterns of car non ownership. 

Note that if we do, or if we make other changes to the model, then the bandwidth needs 

recalibrating. For example: 

bw2 = gwr.sel(Nocars ~ Unemp + DepChild, data=map, adapt=T) 

gwr.model2 = gwr(Nocars ~ Unemp + DepChild, data=map, adapt=bw2) 

gwr.model2 

(etc.) 

Further information 
This has been a “whistle stop” tour through the basics of GWR. As stated at the beginning, the 

definitive text to consult for further information is Fotheringham et al. (2002) Geographically 

Weighted Regression: The Analysis of Spatially Varying Relationship, published by Wiley.  

Note that the use of GWR has been made possible as part of an ongoing project for applied spatial 

analysis with R. For further details, read the book! Bivand et al. (2008) Applied Spatial Data Analysis 

with R, published by Springer. However, for a simpler and succinct introduction to R, read the free 

manual “An Introduction to R” at CRAN: http://cran.r-project.org/manuals.html 

Finally, because of the way GWR works it take a long time to analyse larger data sets. For n = 

150 000 observations about 2 weeks is required! Fortunately, methods are being developed to 

speed up the process using grid computing. Type “Grid enabled spatial regression models” or “Grid 

enabled GWR” into a suitable search engine to find out more.  
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