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1. Introduction and aims

Possibly more has been written about the effects of class size on performance than on any
other single topic in education. Yet despite the number of studies, both experimental and
observational, and the number of reviews of such studies, there is still no clear consensus about
the extent to which classes of different sizes promote the learning of students. In fact, the class
size issue illustrates very clearly many of the important issues in the design and interpretation
of quantitative educational research, so that this paper will serve also as a discussion of some
general conditions for drawing conclusions from educational research studies. Moreover, many
of the issues arise in other areas of research, for example medicine. Because the focus of this
paper is methodological we do not attempt a review of existing findings (for which see
Blatchford and Mortimore, 1994 and Slavin, 1990), but what we have to say will inevitably
affect perceptions of these, especially in the reanalysis of data from the Tennessee
Student/teacher Achievement Ratio (STAR) study, a large randomised controlled trial (RCT)
which has provided the most important evidence so far.

In the course of this paper we will explore the methodology which has been used to date. We
will look at both observational2 studies and RCTs and through a criticism of existing practice
will endeavour to establish criteria for judging the usefulness of different study designs, and by
so doing help to inform decisions. In keeping with the bulk of the literature in this area we will
concentrate on quantitative research.

In particular we shall carry out a detailed analysis of the STAR project data. Since studies of
class size take place within existing educational systems which are organised into complex
hierarchical structures with students being grouped within classrooms and the latter grouped
within schools, it is appropriate to use multilevel statistical models in the analysis of such data
and we will describe the advantages of this approach.

Underlying our discussion is the assumption that the point of class size research is to make
statements about causation. By causation we mean the inference that from an ‘effect’ of class

                                               
1 This paper was originally prepared for UNESCO and we are most grateful to that organisation for its
encouragement and support.
2 The term 'observational study' is used to denote research which investigates the characteristics of students,
classes etc. as they exist, without experimental interventions, and attempts to establish relationships among
measurements made on these units.
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size estimated by research we can assume that moving children from one class size to another
will have a similar effect on achievement. Even with the most carefully controlled study causal
interpretations will be difficult, not least because we need to  take account of the context in
which the research has been carried out; whether the ‘effect’ may vary across schools,
educational systems and other contexts such as social background. For observational studies it
is essential to adjust for achievement at the start of the period being studied, and for studies
with initial random allocation such adjustment has important advantages in terms of estimation
efficiency and interpretation. This is necessary in order to allow for a possibly non-random
allocation of students to classes: for example lower achieving children may tend to be allocated
to smaller classes if the belief is that smaller classes are advantageous for such children. This
requirement for validity rules out from consideration a considerable number of large but purely
cross-sectional studies.

In the next sections we look at various aspects of study design and analysis which will form a
basis for a critique of existing work. We begin by examining the crucial notion of the target
population for a study, that is the schools and classrooms for which some statement about the
'effects' of class size is required. Because of their assumed theoretical methodological
advantages we then review the application of randomised controlled trials to studies of class
size. This is followed by a review of the methodology of existing studies, including the
attempts by several researchers to summarise the results of  many hundreds of different studies
using 'meta analysis’. We then look at the statistical models which may be appropriate for
investigating factors associated with differences among classes of varying sizes, and in the
course of this we look at how these models have been applied in practice. This leads into the
topic of multilevel models and we show how these can be used to provide greater insights than
conventional models. We then briefly discuss cost-benefit analysis aspects of class size
research.

Following this we describe our reanalysis of the STAR data for Reading and Mathematics
achievement. We show that some of the inferences which have been drawn from these data are
unsound and we illustrate how more satisfactory conclusions can be drawn. In some cases we
show that different conclusions emerge from the reanalysis, although the overall conclusion of
a modest class size effect is not refuted. Finally we summarise our findings and draw
conclusions for future research.

2. The measurement of class size

The process of measuring, and indeed defining, class size is problematical. First of all, the
actual size of class is not the same as the student-teacher ratio which is measured at the school
level by dividing the number of students by the number of full time equivalent teachers. This
statistic may provide useful additional information about the resources available for teaching
but it is the experienced size which is of primary interest. This will vary from day to day and
from term to term. The number of students formally on the register of a class may differ from
those being taught, for example because of absence. The size of class may vary during the
school day as students move between lessons or are withdrawn for particular purposes. At
entry into elementary schools there may be particular difficulties, with children entering at
different times of year or on a part time basis. There is also the issue, in some areas in some
educational systems, of multi-grade classes.

Clearly, therefore, measures of class size taken on just a few occasions during a school year, or
those which rely upon the formal size at the start of a school year, may be very poor guides to
the actual experiences of students. Ideally, a continuous monitoring of class size is required,
which can then be analysed to look for useful summary measures, such as the proportion of
time spent in classes of different size. There appears to be little research on this issue, and the
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unreliability of those measures which have been used in existing studies may explain some of
the failure to observe substantial effects.

3. Target populations

While it may sound obvious, it is often forgotten that any results obtained from a sample apply
strictly only to the population of schools and students from which that sample is chosen. If the
population sampled is not the target population, then to make any inference to such a
population requires additional evidence. In addition, it is usually of interest to study effects on
subgroups and also whether there are variations between schools in the sizes of effects. For the
purpose of making causal inferences this latter issue may be crucial and we shall return to it in
a later section. Here we shall raise three important concerns about target populations which
seem often to have been ignored in this area of research.

The first issue, which is especially relevant to some of the RCTs, arises from the variation in
size and methods of organisation of schools. In the area of elementary or primary schooling,
the smallest schools may have classes composed of children in different grades or age groups
whereas the largest may have three or more classes for each grade or age group. In the latter
case the dynamics of class formation are often complicated in ways which are related to pupil
attainment, teacher competence and class size: as we have already suggested, for example,
lower attaining children and more experienced teachers may be assigned to smaller classes.
Causal inferences will need to take account of this, either by statistical adjustment for prior
achievement or by initial randomisation. We shall explore the particular problems associated
with randomisation in the next section. In both cases, however, where comparisons are made
between classes of different sizes within the same school, any conclusions will apply strictly
only to large schools. The effect of  a given reduction of  class sizes within a large school may
not be the same as an equivalent change in a small school, especially for particular subgroups
such as low attainers. Likewise, a study of small schools where there is just one class for each
age group or grade, may detect effects of class size changes which will then strictly apply only
to such schools. A further possible complication, which will arise in a RCT, is that the only
way to reduce class sizes in small schools is by employing an extra teacher for each class,
effectively halving the class size so that more general conclusions about different class size
reductions cannot be drawn.

A second issue concerns the inherently historical nature of all social research. Social research
tends, indeed is forced, into measuring a real population or subpopulation at one point in time
within a particular historical setting. By the time the results are available that context normally
will have changed, and some assumptions about the continuity of relationships are necessary.
This underlines the necessity to develop theoretically grounded analyses whatever the research
is about.

The third issue, one which is endemic throughout social research, is that the institutions or
populations which are most accessible for study are often atypical. Thus, for example, because
much educational research depends on the co-operation of schools and school boards or
authorities, it will often tend to be the better resourced ones which can afford the time to
participate in a study. It is difficult to quantify such an effect, but for example in the STAR
project (Nye, Achilles et al. 1993) schools were required to agree to participate in the study for
four years, had to supply any extra accommodation necessary and undertook not to alter the
curriculum during the course of the study. We have little information about how these selection
criteria may have excluded particular kinds of schools but it is possible that those excluded may
have been more poorly resourced or unable to cooperate for reasons which were associated
with the effects which any changes in class size would have had. We shall look in more detail
at the role of selection criteria for RCTs in the next section.
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4. Randomised controlled trials

Randomisation of subjects to different ‘treatments’ or experimental situations guarantees that,
if the randomised allocation is successful, subsequent comparisons of the treatments for any
well defined subgroups can assume that random assignment still obtains. This is important if
there are interactions in the data, where differences may vary across subgroups. A problem
arises, however, if there are ‘compositional’ effects. Thus, suppose the ‘effect’ of class size
varies according to the proportion of a particular group in the class, say low attaining children.
Then the effect of a reduction in size for classes with high proportions of such children will be
different to the effect in classes with low proportions of such children. If randomisation has
produced a distribution of this group among classes representative of that in the target
population then average conclusions will be justified, even where the compositional variable is
not included in any statistical model. This can only be achieved for all possible groups,
however, if sampling is strictly with respect to the population of interest. As has already been
pointed out this may be very difficult to achieve. Ordinarily we cannot anticipate in advance
which factors of this kind may be important, nor can we generally stratify for more than a small
number of variables at a time. In such a  case randomisation does not  guarantee that all
inferences are applicable to the population of interest.

Those designs where randomisation is within schools face a particular problem. This is because
such experiments are ‘zero-blind’ where the subjects of the experiment, the teachers and even
the children know which treatment group they are in and have expectations about the likely
effect of the treatment. In medical research such experiments would usually be regarded as
difficult to justify because the results may reflect expectations as much as ‘real’ effects of any
treatment. Thus in a study such as STAR the expectations about the effects of class size may
be partly responsible for observed effects. In this respect a RCT would seem to have lower
validity than a purely observational study. The latter involves no manipulative intervention so
that the expectations of participants will not be raised as high so that expectations are less
likely to be influential. It is sometimes argued that this ‘anticipated expectation’ effect should
be regarded as a legitimate outcome of a study: even if achievements in small classes are raised
simply as a result of teacher expectations then this has practical usefulness. There is, however,
a problem with this argument.  The effect can only work if practitioners believe that the size of
class really matters. Suppose that this is not in fact true, in the sense that practitioners who do
not share this belief would not generate an effect. Suppose also that we were able to carry out
the research to demonstrate that  the effect was merely one which depended upon such a belief.
We could then only sustain the anticipated expectation effect by not carrying out the key
research study, because once such research had demonstrated the existence of such an effect, it
would immediately destroy the belief that a real effect was present and hence the future
possibility of anticipated expectation effects occurring. If we wished to rely upon such an effect
we could do so only by refusing to carry out the crucial research study or to refrain from
publicising its results. To base an educational programme upon such a policy seems somewhat
risky, not to say cynical.

A further problem with the within-school design is that there is also a lack of independence
across treatments since the teachers and children within a school in different class sizes will
interact over time and possibly ‘contaminate’ the effects of the size differences. As we have
pointed out, such effects may be worse in a randomised experiment where awareness of the
treatment is heightened compared to an observational study. In one study (Shapson, Wright et
al. 1980) over 90% of teachers were found to believe that larger classes produced worse
results and this expectation seems to be prevalent in all educational systems.

A design such as STAR, where each school has one or more very small classes and one or
more very large classes, may correspond to only a limited number of real populations. Thus,



5

for example, if all class sizes were to be reduced so that all schools had very small classes, the
results expected by extrapolating from a study such as STAR might not apply to this new
population. In general it is difficult to randomly assign units, whether these be children or
classes, so that they function independently. The nature of educational systems, and social
systems in general, is that the complexity of their structures does not allow us to assume the
independent operation of units within them. When an RCT changes such a structure in a
research study this implies, in a strict sense, that  its conclusions can be accepted, if at all, only
for populations with a similar structure. In order to generalise beyond such a structure would
require an understanding of the interactions among the units at different levels within a
population. In the case of the STAR study this would require an understanding of how the
interactions among teachers of different sized classes influenced teaching and learning.

If we have a design where randomisation occurs only at the school level, then this avoids
contamination but is then not representative of the real world where, typically, differential sizes
do exist within schools, so that the requirement for representativeness is not fulfilled. Of
course, we could conceive of a target population where schools have equal class sizes and the
results of the study might apply to such a system - but only to such a system so that it would
again be limited. The one population for which it would be useful is that of single class entry
schools.

We see that there are some drawbacks to the use of RCTs in educational research. In
particular, educational systems are ‘hierarchical’ structures. Learning takes place in groups:
group composition and group dynamics involve interactions among the members of groups
which may be important associates of learning. Randomisation, if it eliminates naturally
occurring patterns, may tell us something about the effects associated with the groups
produced by the randomisation procedure, but this may not be all that is required.

Although we have emphasised the problems of RCTs we do not mean to deny that they may be
useful in some situations, although the problem of non-blindness will remain a serious one. A
naturally occurring situation where they assume importance is where the existing variation
does not include the features of interest. Thus, if the educational system being studied has a
very uniform distribution of class sizes, intervention would be needed to set up classes of the
size we wish to investigate and an RCT would be the appropriate approach. To overcome
some of the problems we have described, however, requires a more ‘ruthless’ approach to their
use. Thus, to avoid the problems of self selection, once a target population is selected, all
eligible units would need to be available for inclusion in the sample: the problem is that
schools, unlike cabbages, are actively involved in making autonomous decisions.

5. Questions of causation

Two kinds of questions in this research can be distinguished, the predictive and the descriptive.
The predictive question to which an answer is sought is

• 'If class sizes were reduced by a given amount, what effects would this have on student
achievements?'

The descriptive question to which research addresses itself is

• 'Do students in smaller classes happen to have higher achievements?'

Observational studies attempt to address the descriptive question directly, by seeking first to
determine what differences exist between achievements in classes of different sizes, and then
successively adjusting for factors which may 'explain' observed associations between
achievement and class size. In order to sustain a belief in an underlying connection between
class size and achievement, by careful data collection and modelling, an observational study
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seeks to rule out alternative explanations. It may also look for interactions, that is to establish
whether the size of the relationship between class size and achievement varies according the
values of other variables. If an enduring relationship can be found  then we would want to
assume that this establishes 'causality'. In this sense, therefore, the analysis of observational
studies can be viewed as an attempt to rule out reasons why an answer to the descriptive
question does not also apply to the predictive question.

RCTs directly attempt to answer the predictive question by intervening to change class sizes
and observing the results. Thus, RCTs also attempt to establish 'causality' but they do this by
relying on the random allocation to justify inferences which are correct on average. Such
average effects may, however, mask interesting and important interactions whereby, for
example, the class size effect varies according to initial student achievement or background. In
other words, it is important to distinguish between a causal relationship which holds on
average and a series of factor specific causal relationships.  Such attempts to contextualise
class size effects seem to us to be important. For this reason RCTs should not ignore the
potential effects of interactions, and in so doing they will be using the same kinds of
procedures, typically the same modelling techniques, as observational studies

6. Existing reviews and methodologies of class size research

There are a number of existing reviews of class size research, for example  Glass and Smith
(1979), Glass, Cahen et al. (1982), Slavin (1990), Blatchford and Mortimore (1994) and
NAHT (1996). The first of these references brings together, via a literature search, some 80
existing studies and then carries out a ‘meta analysis’ in order to arrive at an overall judgement.
The second paper is essentially a critique of the first and also introduces a discussion of the
design of the most important of the studies. The third and fourth reviews provide recent
comprehensive summaries of  the results of class size research, especially on younger children.
Before discussing more generally the methodologies employed in class size research studies,
we look at the particular methodology of ‘meta analysis’ and how it has been used to draw
conclusions by summarising existing research.

6.1 Meta analyses of class size

The idea behind meta analysis (Hedges and Olkin 1985) is to combine results from a number of
studies, all addressing ostensibly the same issue, so as to achieve a consensus result which will
also be more precise. For each study a summary ‘effect’ is estimated. In its simplest form this is
just the standardised difference between two groups, say the average achievements of small
and large classes. More accurate approaches set up a formal statistical model which allows for
the differences between and within studies to vary in more or less complicated fashions.

Consider first a single study where a response or outcome variable, such as an achievement test
score, Y , is related to class size, X.   We assume that the response has been standardised so
that the interpretation of the coefficient β  is the same in all studies. A common standardisation
is to divide by the between-student standard deviation of the response. A simple model can be
written as

y x ei i i= + +β β0 1 (1)

In many studies there will be only two or three different class sizes, nevertheless the
interpretation of β  as the estimated effect of  increasing class size by 1 student still holds. This
model is too simple and we should include other variables, most notably a pretest or intake
measure, so that the study is longitudinal, as well as student variables to adjust for factors such
as socio-economic group. We might also wish to allow a more complex relationship with class
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size, for example by including a quadratic term in (1) and possibly interactions with student
variables.

When combining the information from several studies the traditional approach is to obtain an
estimate of β  from each study and then to average these in some suitable manner. A more
elaborate procedure would be to model the estimates as a function of the average class size and
the range of class sizes in each study and perhaps further variables related to the student,
school or teacher characteristics in each study. An example is given by Glass and Smith (1979)
who selected 80 studies from a literature search using the simple criterion that they reported
data on the relationship between class size and achievement. This approach, however, is not
statistically efficient and instead (1) can be extended in the following way by writing

y x u eij ij j ij= + + +β β0 1 (2)

where the second subscript j identifies the study. The uj  can be interpreted as individual study

baseline effects. Equation (2) is now what is known as a multilevel model where both the uj

and the eij  are treated as random variables, between studies and between students respectively.

The advantage of this formulation is that it is statistically efficient and very flexible. Thus it can
be extended to include further variables, measured on students schools or teachers. We can
also allow the class size ‘effect’ to vary across studies, that is we can make it a ‘random
coefficient’ denoted byβ1 j , and we can incorporate mixtures of studies where in some cases

information is available only in terms of an overall class size ‘effect’ (β1 j ), and in other cases

where there are individual student data available. We shall be using such multilevel models
later when we come to look at a reanalysis of the STAR data, and a detailed account can be
found in Goldstein (1995).

An important drawback of the approach used by Glass and Smith (1979) is that they treated
each study which satisfied their basic criteria for inclusion as having the same weight regardless
of the sample size or how many separate comparisons a study contributed. Not only did the
studies vary in size, they also varied in quality and, as we have already emphasised, were
implemented within different educational systems and contexts. Furthermore, they  included
only RCTs. Slavin (1990) adopted stringent quality criteria for inclusion in his combined
analysis, did not exclude observational studies and finished up with ten studies from which an
average ‘effect size’ was calculated. He concluded that effect sizes were moderate for the
achievements studied, and comparable to the later STAR project results.

There appear to be no other studies which have used more careful meta analysis procedures
and to date none appear to have made use of multilevel models. Both the Glass and Smith and
the Slavin studies  used dichotomous weighting functions, either a study was included with a
weight of 1 or excluded with a weight of 0. Such a weighting system, however, is inefficient
and may also be biased by the use only of extreme weights. An adequate weighting system
needs to relate the weights both to the numerical strength of evidence, principally the sample
size, and to the quality of the study. Furthermore, each study will have been conducted at a
particular historical moment in a particular place. Existing evidence suggests that any effects
will be different for different subgroups and in different contexts. This needs to be recognised
in the meta analyses by attempting to allow for such study specific factors when modelling the
effect sizes. Even where this is difficult to do formally in a statistical model, a qualitative
analysis along these lines is important. It is clear that the meta analyses so far conducted are
inadequate in these respects: they concentrate on attempting to establish a single overall effect,
rather than attempting to assess context specificity and variability.
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The conclusion of Slavin (1990), based on comparisons of  three RCTs and seven
observational studies which matched classes or schools in terms of student characteristics, is
that the effect size, for children in the very early years of schooling, is about 0.20 - 0.30
standard deviations and that there is little difference between the RCT results and those from
observational studies. This suggests that the procedures used in the observational studies were
effective in adjusting for non random assignment.

7. Modelling class size effects

In the previous section we introduced  a simple model for studying the effect of class size. In
this section we elaborate this model and show how various hypotheses can be studied. We
begin by considering a simple design where, within a single school, we have information on
some measure of interest from children in classes of different sizes. Following this we extend
the model to one involving samples from several schools. We have already discussed inferential
problems associated with RCTs and observational studies and we shall return to some of these
in our discussion of STAR. In this section we deal only with the specification of the statistical
models themselves.

The literature on class size includes a number of suggestions for the ways in which outcomes
of interest may be influenced by teacher, school or student factors. For simplicity consider a
simple extension of (1),  where the model refers to a single school and Z is a student variable3

y x z ei i i i= + + +β β β0 1 2 (3)

where, as indicated earlier, we can interpret β1 as the ‘effect’ of class size. This can be
elaborated in a number of ways, for example by allowing a nonlinear relationship with class
size and an interaction between class size and the student variable, say

y x z x x z ei i i i i i i= + + + + +β β β β β0 1 2 3
2

4 (4)

For example, if Z is a dummy variable for gender, coded 1 for a boy and 0 for a girl then  β 4

represents the difference between the class size effects for boys and girls.

In both observational studies and RCTs a class size effect may depend on initial status, for
example achievement or attitude measures. In an observational study it is necessary to include
such initial measures in order to adjust for the possibility that assignment to different class sizes
is related to them, and in a RCT it is important because it will improve statistical efficiency and
likewise allow us to investigate whether the effect is related to these measures. Suppose W is
an initial achievement measure. We can write

y x z x x z w g x w ei i i i i i i i i i= + + + + + + +β β β β β β β0 1 2 3
2

4 5 6 ( , ) (5)

where g is a function of  the initial achievement and class size. In the simplest case it may just
be the product of these two variables but generally it may be more complicated. It represents
the possibly differential effect of class size according to initial achievement. A model such as
(5) generally will be the simplest realistic model for a useful analysis.

                                               
3 We shall refer to such explanatory variables or ‘covariates’ in a general way, although in practice they may
be continuously distributed, such as a previous test score or discrete, such as gender or ethnic origin group,
whence they will be specified in terms of a set of dummy variables. Likewise we shall treat the response
variable as continuous and Normally distributed although in practice we may be dealing with, say, binary
outcomes such as passing or failing an examination, whence we may wish to specify, say, a logit response
model. These differences are technically important but do not affect the general interpretations.
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7.1 Incorporating the distribution of initial achievement

Mitchell, Beach et al. (1991) and Preece (1987) suggest that class size effects may be a
function of the lowest and highest attainments of students within a class, or equivalently the
lowest attainment and the range of attainments. While the range is a measure of the spread of
achievement, its value tends to increase as the class size increases, whereas the standard
deviation used as a measure of spread does not do so, and may also be a useful predictor.
These variables are all measured at the level of the class and can be included directly within (5)
together with possible interactions, for example between pretest variability and gender. If
achievement within a class is related to the extreme attainments within that class, this may
explain some of the existing class size findings since in an RCT there will tend to be more
extreme attainments in the larger classes. Mitchell, Beach et al. (1991) explore this possibility,
using such functions, on the STAR data and also speculate on how different interactional
processes among children and between teachers and children may change with changing class
size and how this implies particular mathematical forms of the relationships between
achievement and class size. Unfortunately, their analyses are all at the level of the classroom,
analysing average class scores and gains from one year to the next. The problems associated
with such aggregate level analysis are often characterised by the term ‘ecological fallacy’
(Robinson 1951). The relationships between variables measured on students within classes may
be quite different from the corresponding relationships among the classroom averages of these
variables. Similar difficulties are associated with the interpretations of  Preece (1987).

To see this, suppose we write a simple model involving initial attainment as

y x w w ei i i i= + + + +β β β β0 1 2 3 (6)

where w  is the average of the initial attainment for a class. If we now aggregate up to the
class level we obtain a model of the form

y x w e= + + + +β β β β0 1 2 3( )
(7)

and the coefficient of the average initial attainment from the analysis of the class averages is the
sum of the coefficients of the individual and average effects in (6), whereas we require the
separate estimates for proper inferences about class size effects. The same problem occurs
where there are interactions among student level variables, for example gender and initial
attainment or ethnic background, since the class average of the interaction variables is not the
same as the interaction of their averages and hence not properly interpretable. Inferences about
student level relationships from aggregate level analyses are generally only valid in special
cases. Moreover, they are also statistically inefficient, leading to unnecessarily large standard
errors, because they do not use the full student level data where available. Nevertheless, the
possibility of ‘compositional’ variables, such as the mean or the variability of prior
achievement, being important is an interesting one and in some of our analyses of the STAR
data we shall explore this further.

In the next section we shall explore further the importance of multilevel modelling for class
size studies where the hierarchical nature of educational systems can be handled. First,
however, we look at another suggestion for analysing data where there is no random
assignment, nor is there any prior attainment measure which can be used for adjustment.

7.2 Two stage least squares

Akerhielm (1995) suggests that, in the absence of randomisation and information about
attainment at the time of allocation to classes, a ‘2-stage least squares’ technique can be used
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to obtain unbiased estimates of true class size effects. Essentially the 2-stage least squares
model operates as follows.

Suppose that students are allocated to class sizes in a manner which is related to their initial
achievement and suppose that we wish to estimate the class size effect as in (3) as the
regression coefficientβ1. If xi  is correlated with the residual ei  then the usual regression
analysis of (1) will yield a biased estimate ofβ1. Since we suppose that xi  is correlated with
initial attainment, and since we may suppose that yi  is also strongly correlated with initial
attainment, even after adjusting for any relationship with class size, the residual can be
expected to be correlated with initial attainment and hence with xi . This is clearly the case in
the ‘null’ situation when there is no relationship with class size andβ1 0= .

One procedure for obtaining an unbiased estimate is to find a so-called instrumental variable,
V, correlated with X  but not with the residual, and after regressing xi  on vi  then using the
predicted value of xi , say �x vi i= +α α0 1 , in place of xi  to yield an unbiased estimate of β1

(see for example Johnston, 1972). The main difficulty with this procedure is that it has to
satisfy these two requirements, especially since the correlation with X should be high if an
efficient estimate is required. In the present case the absence of  a measure of initial attainment
makes the application of this procedure dependent on some strong assumptions which cannot
be verified. To illustrate this, suppose initially that class size is unrelated to initial attainment
and that the following model holds

y x z ei i i i= + + +β β β0 1 2 (8)

where zi  is a variable such as socio-economic group. We assume also that this variable is
uncorrelated with class size, which might happen if classes have been formed effectively at
random. Of course, in practice we would expect many variables to enter into such a model,
including school factors, but one will suffice. If we now fit the model as before

y x ei i i= + + ′β β0 1 (9)

then we do obtain an unbiased estimate of β1 because of our assumptions which imply that the
residual is uncorrelated with the class size. If we now choose an instrumental variable for X as
before, we require that it be uncorrelated with′E , namely with E and  Z. Since there are many
possible variables such as Z which may enter into (8) this is clearly a very difficult task. The
same issue remains when class size is correlated with initial attainment since we still need to
satisfy the requirement that any instrumental variable is uncorrelated with any Z.

It is clear therefore, that the use of 2-stage least squares correction procedures does not avoid
the need to obtain relevant longitudinal data which allow direct adjustment for any possible
allocation based upon the values of such variables associated with the outcome of interest.
Nor, of course, does it allow the exploration of  ‘differential’ class size effects whose potential
importance we have stressed.

7.3 The choice of response variable

A final general issue concerns the choice of response variable. We are not here concerned with
the important substantive issue of how to choose or design a suitable measure, whether
cognitive or affective, although this is clearly critical in practice. In the discussion so far we
have considered models where the response is measured at the end of ‘exposure’ to education
in a class of a given size with an adjustment for prior attainment both to eliminate non random
allocation and to study the relationship of any class size effects with that prior attainment. An
alternative approach which has sometimes been advocated is the use of so called ‘gain scores’,
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that is choosing as response the simple difference between a student’s prior measurement and
his or her final one.

To use this approach both measurements need to be measured on the same, standardised,
scale. While this choice of response is possible, and may in some circumstances yield useful
interpretations, it will generally still be important to study, for such a response, whether there
is any interaction between class size and prior achievement. If, in fact, we include prior
attainment in the model then such a model can be made formally equivalent to the model with
the final score as response, and the important thing is to include prior attainment. The proposal
also suffers from the possible disadvantage of having to standardise both prior and final
measurements so that the difference is meaningful, this being unnecessary when the final
measurement alone is used as response.

A more complex situation arises when a study extends over several measurement occasions,
for example with achievement being measured at the end of each year. In this case we can
carry out a series of analyses for each pair of measurements where the earlier one (or several)
is used as an adjustment for the later one. An alternative is to standardise the measurements at
each occasion and then to treat the data as a series of ‘repeated measurements’ as in growth
curve analysis (Goldstein 1995, Chapter 6), and in addition using the first prior measurement
for adjustment. This allows us to study the way in which the mean achievement and, for
example the average rate of change of achievement, are related to class size. We shall be using
both these forms of analysis when studying the STAR data.

8. Multilevel models

We have already introduced a simple multilevel model in our discussion of meta analysis. Here
we set out the use of such a model for the general analysis of class size data, and indeed any
data collected on students grouped within schools. We shall also introduce a more general
notation to avoid too many symbols and to allow for straightforward generalisations. In this we
follow the conventions in Goldstein (1995),

Consider a three level model where an outcome or response measurement is made on students
within classes within schools. We assume that, in general, and after adjustment for other
variables, there remain average differences among schools and among classes. One of the aims
of an analysis might be to explain such differences in terms of other predictor or explanatory
variables, but inevitably there will be a residual amount of unexplained variation which needs
explicitly to be incorporated into the statistical model. Specifically, consider a measurement of
achievement taken at the end of a school year which we relate to class size and to a measure of
attainment made at the beginning of the school year. A model for the response for the i-th
student in the j-th classroom in the k-th school is

y x x v u eijk jk ijk k jk ijk= + + + + +β β β0 1 1 2 2 0 0 0 (10)

where x jk1  is the class size of the j-th class in the k-th school and x ijk2  is the prior attainment

score for the i-th student in the j-th class in the k-th school. The random variables V0, U0, E0

represent the unexplained effects associated with schools, classes and students and are known
as residuals. In the standard model they are assumed to have Normal distributions with zero
mean and to be mutually independent. Such a model, with three separate random components
is an important generalisation of the multiple regression or ordinary least squares model. If
there are non-negligible school and class effects then any model which ignores their existence
will yield inefficient estimates of coefficients and incorrect significance tests and confidence
intervals. Furthermore, the modelling of this residual variation, as we shall see, can be crucial
for making causal inferences. For both these reasons, there has been considerable activity
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during the last decade devoted to developing new statistical methodology and efficient
software for fitting such models.

The model (10) states that the class size effect β1 is constant across all schools. It is possible,
however, that the effect varies from school to school as a result of further, unmeasured,
factors. To incorporate this possibility in our model we specify that this coefficient is a random
variable at the level of the school giving

y x x v u e

v

ijk j jk ijk k jk ijk

j k

= + + + + +

= +

β β β
β β

0 1 1 2 2 0 0 0

1 1 1 (11)

where we now have an extra random variable V1, at the school level. The two school level
variables have zero means and each has a variance with a covariance between them. We can
write

var( ) var( ) cov( , )v v v vk k k k k k k0 0
2

1 1
2

0 1 01= = =σ σ σ,    ,     (12)

The individual values of the school class size effect residuals v k1  can also be estimated having
fitted the model and can be used, for example, for identifying schools with extreme values
which might be caused by other factors.

Model (11) can be extended in a number of directions. For example it can handle multivariate
responses where we have measurements on more than one outcome. It can also handle discrete
responses such as pass rates or ordered rating scales and mixtures of continuous and discrete
responses.

9. Factors which may explain the effect of class size on educational outcomes

We have examined the link between class size differences on the one hand and educational
outcomes on the other. An equally important educational issue involves the identification of
factors that might explain any link found. In other words, it is important to ask what factors
might mediate associations between class size and outcomes. There has been little research that
can provide information on this issue. Almost all the studies are from the U.S.A, and doubts
exist about the reliability of some of the studies (see Blatchford and Mortimore, 1994). The
STAR research was not set up to investigate processes that might explain any differences
found between small and regular classes. This lack of information is unfortunate because, in its
absence, it becomes difficult to offer practical guidance on how to maximise the teaching and
learning opportunities provided by having classes of different sizes.

As discussed in Blatchford and Mortimore (1994), knowledge about mediating processes
might also help to explain why previous research has not always found a link between class
size differences and outcomes. It may be, for example, that when faced with a larger class
teachers might alter their style of teaching: they might tend to use more whole class teaching
and concentrate more on a narrower range of basic topics. In consequence, children's progress
in these areas might not be different (and may even be superior to) children taught in smaller
classes. More generally, it may be that when faced with larger classes teachers 'compensate' in
a number of ways,  for example, by working harder to maximise feedback to individual pupils.
If this is true then pupil progress may not be affected adversely, but there may be more covert
costs, seen in more teacher stress, lower morale and less opportunities for teacher planning.
Another possibility is that some teachers do not alter their teaching to take advantage of
smaller classes (as found in Shapson et al, 1980) and it is this that might explain why class size
differences have little effect.  In order to more closely examine these possibilities, detailed
information on classroom processes would be needed.



13

Although we shall not review the research on mediating factors (for reviews see Blatchford
and Mortimore, 1994, Cooper, 1989, NAHT, 1996) we can identify some relevant
methodological issues.

First, in the case of both experimental and observational studies one basic objective would be
to collect information on classroom processes in order to see if they are affected by class size
differences and whether they then affect educational outcomes. To take a simple example, it
may be that in larger classes teachers have less opportunity to interact with individual pupils
and offer them feedback on their work, and it may be this which explains why children in such
classes make less progress. What would be needed here, therefore, would be identification and
measurement of the mediating variables - in this case the amount of individual attention and
feedback experienced by pupils.

It is important to decide whether a variable is a mediating or an outcome variable and some
may play both roles. Pupil's difficult behaviour or difficulties in adjusting to school, for
example, may be factors affecting the influence of class size - a teacher in a class with more
difficult children may devote less time to the remainder and hence they may make less
progress. On the other hand, difficulties of adjustment to school might be chosen as an
outcome, in the sense that children's difficulties may be brought into being or exacerbated by
larger classes.

Another problem is the difficulty that can be faced in producing reliable and valid measures of
mediating processes. In the review by Blatchford and Mortimore (1994) the following factors
were identified as likely to be important processes: individualisation of teaching, quality of
teaching, curriculum coverage, pupil attention, teacher control and time spent on managing
pupils' behaviour, space, pupil morale, and pupil-pupil relations. In some cases measures may
be tangible and relatively easily measured - for example, the amount of teacher attention to
individual children can be assessed using systematic observation methods, although this is very
time consuming (see Blatchford et al, 1987). Other mediating factors may be less easy to use.
It is difficult, for example, to measure 'quality' of teaching and adequate measures of teacher
morale and stress are difficult to define.

One way of conceiving possible explanatory factors is to divide them, following Mitchell et al
(1991), into 'direct' and 'indirect' effects. 'Direct' effects relate to the kind of processes within
classrooms that we have been discussing in this section. They include such variables as
teaching methods, curriculum coverage, pupil attention, and relationships in class. Mitchell et
al also propose a separate set of explanatory factors, which they call 'indirect' explanations.
These derive from the spread of pupil abilities within a class and comprise what they call 'class
heterogeneity', 'instructional pacing', and student grouping or achievement modelling. There
are a number of models that could be drawn on and the reader is referred to Dunkin and Biddle
(1974), Bennett (1996), Creemers (1994) and Willms (1992). Assuming that mediating
processes can be measured reliably and organised in a conceptual framework then it is possible
to incorporate these into the kinds of statistical models we have discussed.

In addition to the difficulties we have already outlined in interpreting results from experimental
studies, there may be particular difficulties, for example where teachers are asked to teach in a
class of a given size for only a short length of time. In such designs, mediating changes in
behaviour and attitudes may be a function of the change itself. This is particularly likely when
teachers are studied in artificial situations outside their normal classroom experience.

10.  Non cognitive responses

Our discussion has tended to assume that the outcomes of interest are 'cognitive' or 'academic'
measures of subject learning in, for example, Mathematics. Since education is about more than
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cognitive progression, but is also concerned with values of behaviour, citizenship, tolerance
etc., it is relevant to ask whether class size can affect the development of such attributes. Prior
to attempting to answer such questions, it is necessary to develop ways of recognising,
categorising and generally finding suitable ways of measuring these attributes. There is little in
the existing literature, however, which is relevant to such questions, partly because it is
generally felt that these things are more difficult to measure and partly because there appears to
be relatively  little political or public emphasis on studying them. From a methodological
standpoint it is important to decide whether our discussion about procedures for the study of
cognitive measures is equally appropriate for non-cognitive ones.

If agreement can be found about suitable ways of measuring attitudes or behaviour, we see no
fundamental distinction between the ways of handling these measures and those we have been
discussing. At the simplest level, an attitude may be measured as a binary yes/no attribute
which is recognised as being present or absent in a student, or it may be assessed as a grade
along a multicategory scale. Such measures can be handled by the same general class of
statistical models as we have been describing (Goldstein, 1995). We can introduce baseline or
initial attitude measures, as well as other factors such as gender and race. The real difficulty is
that of developing suitable measures, and ensuring that they are both reliable and comparable
among those who use them.

A major advantage which would accrue from the use of such measures is that they could be
used alongside cognitive measures in analyses which studied the interrelationships among them
and also the extent to which a change in, say, an attitude measure, affected a cognitive
outcome, and vice versa.

11. Cost benefit analysis

The principal focus of this paper is on the methodology for making inferences about the effect
of class size. It is, however, worth spending a little time on the economic consequences,
because decisions about implementing class size reductions will need to be taken in the
knowledge of the relative costs and benefits of competing claims. For example one might save
teacher salaries through having fewer teachers with larger classes and use the resources instead
on the provision of textbooks. Likewise, if larger classes affect learning partly through a
reduction in the physical space available to each student, resources might well be used to
increase the space available rather than by reducing the number of students per class. This is a
somewhat neglected area of study, partly because there is a scarcity of information about the
educational benefits which might accrue from the various alternative measures. It is possible
however to set up some simple models and assumptions which might help in understanding the
problem.

Jamison (1987) attempts to do this by studying the trade-off between increasing class size by a
given amount and the equivalent number, say, of textbooks which could be purchased for the
same cost. He illustrates numerically the importance of teacher salaries whereby the lower the
salary the greater the increase in class size is required to equate to a given number of
textbooks. In other words, in poorly resourced systems where teacher salaries tend to be low,
textbooks would seem to be a more effective use of resources where larger classes are
associated with poorer achievement and more textbooks are associated with better
achievement. He also reports the results of a study of textbook use in a poor country and
demonstrates large gains associated with the introduction of such materials.
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12. A reanalysis of the STAR data

The STAR study has been referred to several times as providing perhaps the most important
evidence about class size during the early years of schooling. Its perceived importance stems
from its size, its follow-up of the same children over several years and its randomisation of
students and teachers to classes of differing sizes. Children were randomly allocated within
each of 79 kindergartens to a 'small' class (13-17 children), or a 'regular' or 'regular with extra
teacher aide' class (22-25 students). Unfortunately, the actual class sizes created were not
available for analysis. We have already discussed the strengths and limitations of  RCTs such as
STAR and in the remainder of this paper we shall present a reanalysis of some of the data from
that study in order to illustrate the methodological points we have been making and also to see
what kinds of inferences can be treated as relatively secure. For our purposes we will look only
at Mathematics and Reading achievement throughout the four years of the study. It is, of
course, possible that other 'response' variables of interest such as attitudes or self concept
ratings will show somewhat different patterns, but this will not alter the general
methodological conclusions we shall be drawing. Nor, as we have already argued, do we need
to adopt substantially different statistical methods.

Our analysis looks at a small number of key explanatory variables. It explores the data through
a series of models of increasing complexity in order to illustrate ways in which appropriate
statistical modelling can uncover relationships and test causal hypotheses. In the course of the
analysis we shall also show how the use of multilevel models to analyse these data are more
effective in exploiting their complex structure.

Table 1. Mean Mathematics and Reading score at the end of kindergarten by
grade 1 class type. Numbers of children in brackets. Scores are standardised to
have zero mean and standard deviation 1.

Mathematics

                                        Grade 1

kindergarten small regular missing Total

small 0.26 (1211) 0.02 (101) -0.25 (450) 0.12 (2762)

regular 0.00 (231) 0.08 (2705) -0.35 (1174) -0.04 (4109)

Total 0.22 (1442) 0.07 (2806) -0.32 (1624) 0.00 (6871)

Reading

small 0.25 (1202) -0.14 (100) -0.17 (434) 0.12 (1736)

regular 0.00 (227) 0.07 (2668) -0.33 (1147) -0.05 (4042)

Total 0.21 (1429) 0.05 (2768) -0.29 (1581) 0.00 (5778)

12.1 Achievement at the end of kindergarten

At the end of the kindergarten year, some of the students were reallocated to different class
sizes. The STAR project (Word, 1990) notes that this was to 'achieve sexual and racial balance
and to separate incompatible children'. Table 1 shows the kindergarten class by Grade 1 class
for the small and regular class types, with the numbers and mean standardised score at the end
of kindergarten. Here and in the subsequent analyses we shall group together  the regular and
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regular with aide class types since they exhibit few differences. There is an overall difference in
favour of the small classes whether classified by kindergarten membership or grade 1
membership. For Mathematics those who were in small kindergarten classes had a lower
kindergarten score if they moved to a regular class in grade 1, and likewise for those in regular
kindergarten classes who moved to small grade 1 classes. For Reading those who moved from
small to regular classes had a larger decrease in kindergarten score than those who moved from
regular to small classes. Otherwise, the results are similar for Mathematics and Reading. Those
who were lost to the study after kindergarten (24%) had a markedly lower score than those
who remained. It seems that a change of class size group after kindergarten tended to happen
to those with lower scores and those lost to the study had considerably lower than average
scores. We also note that a higher proportion of those in regular kindergarten classes were lost
to the study than those in small classes and this may reflect external pressures from parents to
remove their children. Such a differential loss may explain some of the subsequent findings
about the relative lack of further differences between class sizes following the kindergarten
year and underlines the importance of retaining participants in a longitudinal study and also
following up those who leave in order to assess their later achievements (see below).  It also
raises the possibility that, consciously or unconsciously, lower achieving children  may have
been lost to the experimental small classes as a result of the anticipated benefits which teachers
of those classes may have assumed would occur and which then failed to materialise. Also,
those teaching regular classes may have tended to reallocate lower achieving children to
smaller classes because of their anticipated benefits.

In subsequent analyses we shall present results for separate Mathematics and Reading scores.
It is possible to carry out a joint 'bivariate' analysis for both scores which would allow us to
investigate the correlation between the scores at the pupil, class and school level, but this is of
secondary interest for our present  purposes. Also, since almost all children have either both
scores or neither, there is little gain in statistical efficiency (smaller standard errors) from a
joint analysis.

In later analyses we shall be studying class size differences in grades 1 to 3 for given
kindergarten scores. Thus, while there is a differential loss in entering grade 1, if we are
prepared to assume that this is random, given the kindergarten score, any analyses which also
adjust for the kindergarten score will provide valid inferences. Nevertheless, we also find
further losses after grade 1. For example, for all those who have a kindergarten score, 20% of
those present at grade 1 are not present at grade 2 and these have grade 1 scores which are an
average of 0.25 standardised score points lower in Mathematics. The scores have been
standardised to have a zero mean and standard deviation of 1.0 separately at each grade using
the information for all those present at that grade. The differential loss for those who do have a
kindergarten score is reflected in Table 6a (below) in that the average standardised scores for
those having a kindergarten score varies from grade to grade. Thus, even carrying out analyses
conditional on kindergarten score does not fully eliminate potential biases. If we only analyse
the subsequent years' differences unconditionally, that is without adjusting for previous
achievement, as in other analyses of the STAR data, then we have the additional biases
associated with the dropout after kindergarten.

Table 2 presents a series of multilevel models for the kindergarten score as response and
formalises the results of Table 1. There are three levels; the student, the class and the school.
The class level variation is that between classes within schools after allowing for the average
difference between small and regular classes and the other variables in the fixed part of the
model. Likewise for the school and student level variation. The STAR project randomised
students at entry to kindergarten, but there was no measurement of initial or 'baseline'
achievement. This means that there is no good way to check the success of the randomisation
and it also means that comparisons at the end of the kindergarten year are more limited. The
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presence of baseline measures would have permitted analyses of differential performance
whereby, for example, the class size differences might vary with the baseline achievements
themselves which may have potentially important practical implications. Although we do not
have such baseline measurements we do know the ages of the students when they started at
kindergarten. Since at this age there is a weak positive correlation between achievement and
age4, we have therefore included age on September 1st prior to the start of kindergarten in all
our analyses as a partial allowance for intake achievement.

                                               
4  We have no direct estimate of this correlation, but, for example, that between Mathematics test score at the
end of Kindergarten and age at start of Kindergarten is 0.11.
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Table 2. Kindergarten Mathematics and Reading score by class size in kindergarten and grade
1 and age. Standard errors in brackets
Mathematics
Fixed A B C D
Intercept (x0) 0.00 0.11 0.11 0.12
Age (x1) 0.29 (0.03) 0.26 (0.03) 0.26 (0.03) 0.26 (0.23)
kindergarten:

regular - small (x2) -0.17 (0.05) -0.14 (0.05) -0.14 (0.05) -0.17 (0.05)
missing - small (x3) -0.41 (0.04) -0.41 (0.04) -0.39 (0.04)

Grade 1:
regular - small (x4) -0.03 (0.04) -0.03 (0.04) -0.18 (0.09)

interaction x4 * x2 0.18 (0.10)
Random:

σv0
2 0.17 (0.03) 0.16 (0.03) 0.15 (0.04) 0.16 (0.03)

σ v01
0.00 (0.03)

σv1
2 0.01 (0.03)

σu0
2 0.12 (0.01) 0.11 (0.01) 0.11 (0.02) 0.11 (0.01)

σe0
2 0.70 (0.01) 0.67 (0.01) 0.67 (0.01) 0.67 (0.01)

-2*(log likelihood) 15100.2 14891.9 14891.6 14888.5

Reading
Fixed
Intercept (x0) 0.05 0.16 0.16 0.17
Age (x1) 0.17 (0.03) 0.15 (0.03) 0.15 (0.03) 0.13 (0.06)
kindergarten:

regular - small (x2) -0.18 (0.04) -0.12 (0.05) -0.12 (0.05) -0.13 (0.06)
missing - small (x3) -0.38 (0.04) -0.38 (0.04) -0.38 (0.04)

Grade 1:
regular - small (x4) -0.07 (0.04) -0.07 (0.04) -0.07 (0.04)

interaction x4 * x2 0.02 (0.07)
Random:

σv0
2 0.17 (0.03) 0.16 (0.03) 0.17 (0.04) 0.16 (0.03)

σ v 02
-0.01 (0.03)

σ v 2
2 0.02 (0.03)

σu0
2 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01)

σe0
2 0.72 (0.01) 0.70 (0.01) 0.70 (0.01) 0.70 (0.01)

-2*(log likelihood) 15044.0 14897.2 14896.7 14897.1

In this and subsequent tables the 'base' category is the small class, so that the coefficients estimate the
regular-small class difference. In the random part of the model we use the subscript v to denote the
school level, u to denote the class level and e  to denote the student level. The subscript 0 refers to

intercept variation, and 1,2... to various random coefficients. Thus, for example, in this table σ v 0
2

 is

the between school intercept variance  and σ v 02  is the covariance at the school level between the

intercept and the coefficient of x2 where it is random at the school level.

In Table 2 we show a number of analyses with different explanatory variables. The age effect is
linear and highly significant. From analysis A we see that the difference between the small and
regular classes is 0.17 and 0.18 units respectively for Mathematics and Reading, although the
relatively large standard errors give a wide 95% confidence interval of  0.08 to 0.26 for
Mathematics and 0.11 to 0.27 for Reading. This analysis, although without the age adjustment
and the multilevel component, is essentially the analysis carried out by the STAR project team
(Word et al., 1990). In analyses B and C we have included a term for those students with data
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missing in grade 1 and also a term for the grade 1 class size. For Mathematics there is little
suggestion of an effect of the grade 1 class size, but in analysis D, where we have fitted an
additional interaction term, this implies that those who change, whether from large to small or
vice versa, are those with lower kindergarten scores. The difference between those who are in
small classes in both years and those in regular classes in both years is estimated to be 0.17,
which is the same difference estimated without fitting the grade 1 class size in analysis A.
Likewise, we see that those missing in grade 1 have a markedly lower kindergarten score. For
Reading, there is little interaction but a suggestion of an additional reduction for those in
regular classes in grade 1 whatever their kindergarten class size. Thus, the central finding of
the original STAR analysis for the outcome of kindergarten is broadly confirmed, at least for
Mathematics, but it reinforces the need for subsequent analyses to adjust for kindergarten
score, as we have already discussed.

The other finding from Table 2 is the absence of any between-school variation in the class size
difference. If there had been any substantial variation it would be difficult to draw causal
conclusions about the effect of class size since we would have then to explain why such
variation occurred. To this extent, therefore, the results are consistent with a causal
interpretation, although we should note that there are only 79 schools in the study so that there
will be considerable uncertainty attached to any estimate of between-school variability as can
be seen in analysis C. We have also looked at the possibility that the between-class variation
was different for small and large classes. There was little indication of this for Mathematics but
some suggestion in the case of Reading that this variation is smaller for the regular classes.
Allowing for this in the model changes the other parameters only very slightly and we do not
fit this in subsequent analyses. We also allowed the coefficient of age to vary between schools,

and although there was evidence for this (χ 2 7 4= .  for Mathematics and 8.0 for Reading with
2 d.f.) the inclusion of this random coefficient did not change the other estimates appreciably
and so we have omitted it from most of the subsequent analyses, although it does reappear in
the final set of ‘repeated measures’ analyses.



20

Table 3. kindergarten Mathematics and Reading score by class size, age, gender, socio-economic
status and race in kindergarten. Standard errors in brackets
Mathematics
Fixed A B C
Intercept (x0) -0.22 -0.19 -0.25
Age (x1) 0.33 (0.03) 0.33 (0.03) 0.33 (0.04)
regular - small class (x2) -0.17 (0.05) -0.20 (0.07) -0.20 (0.06)
black - white (x3) -0.32 (0.04) -0.34 (0.07) -0.14 (0.05)
upper - lower SES (x4) 0.42 (0.03) 0.45 (0.05) 0.44  (0.05)
girls - boys  (x5) 0.14 (0.02) 0.09 (0.04) 0.08  (0.05)
interaction x2 * x3 0.04 (0.08) -0.02 (0.06)
interaction x2 * x4 -0.04 (0.06) -0.03 (0.06)
interaction x2 * x5 0.07 (0.05) 0.14 (0.05)
Random:

σv0
2 0.16 (0.03) 0.16 (0.03)

σu0
2 0.11 (0.01) 0.11 (0.01)

σe0
2 0.65 (0.01) 0.65 (0.01) 0.91 (0.02)

-2*(log likelihood) 14649.9 14646.4 16033.6
Reading
Fixed
Intercept (x0) -0.22 -0.22 -0.26
Age (x1) 0.21 (0.03) 0.21 (0.03) 0.18 (0.04)
regular - small class (x2) -0.18 (0.05) -0.20 (0.07) -0.18 (0.06)
black - white (x3) -0.20 (0.04) -0.19 (0.07) -0.11 (0.05)
upper - lower SES (x4) 0.47 (0.03) 0.45 (0.05) 0.48 (0.05)
girls - boys  (x5) 0.17 (0.02) 0.15 (0.04) 0.16 (0.05)
interaction x2 * x3 -0.01 ( 0.08) -0.03 (0.06)
interaction x2 * x4 0.03 (0.06) 0.00 (0.06)
interaction x2 * x5 0.03 (0.05) 0.06 (0.05)
Random:

σv0
2 0.14 (0.03) 0.14 (0.03)

σu0
2 0.10 (0.01) 0.10 (0.01)

σe0
2 0.67 (0.01) 0.67 (0.01) 0.91 (0.02)

-2*(log likelihood) 14580.4 14579.7 15793.1

In Table 3 we elaborate these basic analyses by including gender, social class and race as
covariates. The grade 1 class size has been omitted for simplicity. We see that there is little
evidence for interactions between any of these variables and the class size effect. There is,
however, a large difference in favour of the white, upper socio-economic group students and
girls: the socio-economic and race differences are larger than the class size effect. We have
also included the results of fitting a single level model in analysis C to illustrate that failure
properly to model higher level variation can result in misleading inferences; in this case that for
Mathematics there is an interaction between gender and class size and that there is an
underestimation of the effect of race.

So far, therefore, we have clear, albeit relatively small, effects for both Reading and
Mathematics of similar sizes, in favour of small classes which are consistent across gender,
socio-economic group, race and school. We now go on to study the subsequent progress of
the students to see whether this difference changes over time.
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12.2 Achievement at the end of grade 1.

Table 4. Grade 1 Mathematics and Reading score by class size, age, gender, socio-economic status,
race and kindergarten score. Standard errors in brackets. Scores are standardised to have zero
mean and standard deviation 1.
Mathematics
Fixed A B C
Intercept (x0) 0.06 0.23 0.19
Age (x1) -0.04 (0.04) -0.01 (0.03) -0.01 (0.03)
regular - small class (x2) -0.29 (0.08) -0.18 (0.06) -0.17 (0.06)
black - white (x3) -0.34 (0.08) -0.11 (0.06) -0.08 (0.06)
upper - lower SES (x4) 0.38 (0.05) 0.15 (0.04) 0.14 (0.04)
girls - boys  (x5) -0.01 (0.04) -0.04 (0.03) -0.04 (0.03)
kindergarten score 0.58 (0.01) 0.59 (0.02)
kindergarten score s.d. -0.18 (0.12) -0.14 (0.12)
interaction x2 * x3 -0.11 (0.09) -0.17 (0.07) -0.18 (0.07)
interaction x2 * x4 0.05 (0.06) 0.08 (0.05) 0.08 (0.05)
interaction x2 * x5 0.07 (0.05) 0.03 (0.04) 0.03 (0.04)
Random:

σv0
2 0.11 (0.03) 0.09 (0.02) 0.07 (0.02)

σ v01
0.01 (0.01)

σv1
2 0.02 (0.005)

σu0
2 0.12 (0.02) 0.12 (0.01) 0.12 (0.01)

σe0
2 0.62 (0.01) 0.38 (0.01) 0.37 (0.01)

-2*(log likelihood) 10321.1 8389.7 8317.1
Reading
Fixed
Intercept (x0) -0.27 -0.25 (0.09) -0.26 (0.08)
Age (x1) 0.02 (0.07) 0.01 (0.03) 0.01 (0.03)
regular - small class (x2) -0.13 (0.07) -0.04 (0.06) -0.04 (0.06)
black - white (x3) -0.06 (0.07) 0.04 (0.06) 0.07 (0.06)
upper - lower SES (x4) 0.52 (0.05) 0.28 (0.04) 0.27 (0.04)
girls - boys  (x5) 0.21 (0.04) 0.12 (0.04) 0.13 (0.04)
kindergarten score 0.56 (0.01) 0.59 (0.02)
kindergarten score s.d. 0.09 (0.07) 0.12 (0.07)
interaction x2 * x3 -0.21 (0.08) -0.17 (0.07) -0.18 (0.07)
interaction x2 * x4 -0.06 (0.06) -0.05 (0.05) -0.05 (0.05)
interaction x2 * x5 0.02 (0.06) 0.01 (0.04) 0.01 (0.04)
Random:

σv0
2 0.11 (0.02) 0.10 (0.02) 0.10 (0.02)

σ v01
0.02 (0.01)

σv1
2 0.02  (0.01)

σu0
2 0.07 (0.01) 0.07 (0.01) 0.07 (0.01)

σe0
2 0.66 (0.02) 0.42 (0.01) 0.41 (0.01)

-2*(log likelihood) 10046.7 8345.1 8277.1

The random coefficient at level 3 is for the kindergarten score. The fixed part relationship with
kindergarten score is not completely linear, with quadratic and cubic terms being significant at the 1%
level. Omitting these, however, does not appreciably alter the remaining estimates and they have been
omitted for simplicity. There are no significant interactions between class size and kindergarten score. The
mean kindergarten score was also fitted in the fixed part of the model, but for both Maths and Reading the
coefficient was small and non significant and the results are not presented.
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Table 4 shows analyses with and without adjusting for achievement at the end of the
kindergarten year. For Mathematics, if no adjustment is made for the kindergarten score, there
is an average class size difference of 0.29 standardised units but no interactions between class
size and gender, SES or race. For Reading there is an interaction between class size and race
so that for a black child in a regular class there is an estimated decrease of 0.21 score points
compared to a white child in a regular class. If the kindergarten score is fitted, however, the
class size effect for Mathematics is comparable with that in kindergarten and this shows clearly
a continuing effect of class size over and above that in kindergarten. After adjusting for
kindergarten score both Mathematics and Reading show an interaction for race and class size,
with an estimated decrease of 0.17 score points for black children in regular classes. For
Reading, however, for white students there is no additional class size effect once adjustment
has been made for kindergarten score. In analysis C we note that there is a between-school
variation in the relationship of grade 1 score with kindergarten score which implies that schools
differ in terms of the amount of progress students make between kindergarten and grade 1,
confirming a common finding from school effectiveness studies. We have included the within-
class standard deviation of the kindergarten score as an explanatory variable and there is some
suggestion that the greater the variability of kindergarten scores the lower the progress,
although not quite statistically significant at the 5% level. The mean kindergarten score was also
fitted in the fixed part of the model, but for both Maths and Reading the coefficient was small in all our
analyses and non significant and the results are not presented. We also need to remember that this
estimate is based upon only those students who were in the STAR study, on average two thirds
of those in the classes, so that there will be some measurement errors in the estimate of this
standard deviation. This relates to our earlier discussion of study design criteria, namely the
importance of having good class level information, sampling whole class units. Finally we note
that there is little age at entry effect.

Table 5 looks at the between-school variation in the class size effects.
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Table 5. Grade 1 Mathematics and Reading score by class size, age, gender, socio-economic status,
race and kindergarten score with class size coefficient random at the school level. Standard errors in
brackets
Mathematics
Fixed A B
Intercept (x0) 0.22 0.22
Age (x1) -0.01 (0.03) -0.01 (0.03)
regular - small class (x2) -0.18 (0.06) -0.19 (0.07)
black - white (x3) -0.11  (0.06) -0.11  (0.06)
upper - lower SES (x4) 0.15 (0.04) 0.15 (0.04)
girls - boys  (x5) -0.04 (0.04) -0.04 (0.04)
kindergarten score 0.58 (0.01) 0.58 (0.01)
kindergarten score s.d. -0.18 (0.12) -0.18 (0.12)
interaction x2 * x3 -0.17 (0.07) -0.16 (0.07)
interaction x2 * x4 0.08 (0.05) 0.08 (0.05)
interaction x2 * x5 0.03 (0.04) 0.03 (0.04)
Random:

σv0
2 0.09 (0.02) 0.08 (0.03)

σ v01
0.00 (0.02)

σv1
2 0.02 (0.03)

σu0
2 0.12 (0.01) 0.12 (0.02)

σe0
2 0.38 (0.01) 0.38 (0.01)

-2*(log likelihood) 8389.7 8388.7
Reading
Fixed
Intercept (x0) -0.25 -0.29
Age (x1) 0.01 (0.03) 0.01 (0.03)
regular - small class (x2) -0.04 (0.06) -0.04 (0.07)
black - white (x3) 0.04 (0.06) 0.03 (0.06)
upper - lower SES (x4) 0.28 (0.04) 0.28 (0.04)
girls - boys  (x5) 0.12 (0.04) 0.12 (0.04)
kindergarten score 0.56 (0.01) 0.56 (0.01)
kindergarten score s.d. 0.09 (0.07) 0.14 (0.07)
interaction x2 * x3 -0.17 (0.070 -0.15 (0.08)
interaction x2 * x4 -0.05 (0.050 -0.04 (0.05)
interaction x2 * x5 0.01 (0.04) 0.02 (0.04)
Random:

σv0
2 0.10 (0.02) 0.12 (0.03)

σ v01
-0.04 (0.02)

σv1
2 0.07 (0.02)

σu0
2 0.07 (0.01) 0.05 (0.01)

σe0
2 0.42 (0.01) 0.42 (0.01)

-2*(log likelihood) 8345.1 8335.4

The term σv1
2

 is the between-school variance of the class size difference. The mean kindergarten score
was also fitted in the fixed part of the model, but for both Maths and Reading the coefficient was small and
non significant and the results are not presented.

For Reading there is evidence, with a between-school standard deviation of  0.26, for the class
size difference,  which implies that for some schools the class size effect is in favour of the
large classes and in others in favour of small classes.5 For Mathematics, however, there is little

                                               
5 If we assume most schools will have a value lying within ± 2 standard deviations this implies a range of from
-0.56 to 0.48.
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evidence of any substantial between-school variation in the class size difference, although the
best estimate yields a standard deviation of 0.15. In both cases there is a substantial standard
error associated with the variance estimate so that we need to be careful in drawing
conclusions. Nevertheless, the result for Reading illustrates an important methodological issue
which can be studied only if multilevel modelling is used: that while there may be a very small
average effect (-0.04 in the case of Reading) this does not necessarily imply no effect at all.
The existence of differential school effects suggests that there may be key explanatory factors
not included in the model. Such factors, possibly related to school organisation or teaching
styles, may explain some or all of the class size effect variation, and possibly any average
effects also. Thus, as has already been pointed out, the existence of between-school variation
means that causal inferences about class size effects are less secure.

12.3 Longitudinal (repeated measures) analysis

The final set of analyses consider the complete set of data from grades 1 - 3, to see if there are
further trends over this period, conditional on the kindergarten score. There are further losses
and movement in and out of the study over this period with some 2% of students, for example,
being present at grade 3 but not grade 2. Of those present at grade 1, 21% have no data on
Mathematics or Reading achievement at grade 2 and of those present at grade 2, 14% have
none at grade three. Those who 'drop out’ after grade 1 and do not return appear to have a
particularly low kindergarten score (-0.32 for Mathematics and -0.25 for Reading). The
dropouts between grades 1 and 2 from regular classes have somewhat lower kindergarten
achievements than those in small classes. (0.08 units for Mathematics and 0.13 for Reading).
For the dropouts from grade 2 to grade 3 the reverse is the case with those dropping out of the
small classes having lower kindergarten Maths scores (0.12 units for Mathematics and 0.05 for
Reading). In the original analyses (Word et al., 1990) only those with complete information
were retained in the longitudinal analyses of grades 1 to 3 and in addition there was no
adjustment for kindergarten score. The differential dropout implies that such an analysis may
be seriously biased and any inferences will need to be treated carefully, in particular those
referring to any widening of the gap between small and large classes after kindergarten. As we
shall show below, the restriction of including those only with complete data is unnecessary
since all students with any data during the period can be retained in the analysis. While this
does not eliminate possible biases, it will mitigate them by including all available information, in
particular when the analysis adjusts for the kindergarten score as we have already discussed. In
some situations it is possible to compensate further for the missingness, but this will not be
attempted here.

The model we shall use is often referred to as a repeated measures model. It consists of four
levels. Level 4 is that of the school, level 3 the class, level 2 the student and level 1 the
repeated measurement occasion within student; in this case grade 1, 2 or 3. The kindergarten
score is an explanatory variable (covariate) as before, as is age at entry. We introduce the
variable 'year' which takes the values 0, 1, 2 for the three grade years and this becomes an
explanatory variable. The intercept term in this model therefore represents the grade 1 year
effect and the 'interaction' between the variable 'year' and class size measures the linear trend in
the class size difference over grades. We are interested in both the overall class size effect,
which is the effect at grade 1 and the trend over time and whether there are further interactions
between year and gender, SES and race. The fixed part of the model can be written as follows,
where for simplicity we have included just the kindergarten score (X3), a linear trend term for
year (X1), class size in grade 1 (X2) and the interaction between class size and year trend (X4).

y x x x xijkl jkl jkl ijkl jkl= + + + +β β β β β0 1 1 2 2 3 3 4 4 (13)
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Year (X3) is coded as 0 for grade 1, 1 for grade 2 and 2 for grade 3. Thus the overall class size
coefficient (β 2 ) represents the additional class size effect in grade 1 and the coefficient of the
class size interaction with the year trend (β 4 ) represents the average yearly increase in the
class size difference after grade 1. In Tables 5a and 5b we have added a number of further
variables including random coefficients.

As already mentioned, in the original STAR analysis (Word et al, 1990) only those students
with measurements at all 4 occasions and who remained in the same class size throughout the
study, were included in the longitudinal analysis. There are two problems with that approach.
Firstly, it is inefficient since the analysis can be carried out using all the available
measurements. That is, even where scores are missing at some occasions, the scores at the
remaining occasions will provide useful information, and also help to reduce any possible
biases. The second problem is that we know from our earlier analyses that those who changed
class size after kindergarten tended to have lower kindergarten test scores. This implies not
only that we should condition on the kindergarten score but also use the class to which the
students belonged after kindergarten. We therefore use the class size in grade 1, as in our
previous analyses, and ignore the reallocations in subsequent grades. A more detailed analysis
would take these reallocations into account also. A discussion of how to make proper
allowance for students who change their group or class during a longitudinal study is given by
Hill and Goldstein (1997).

We should also mention the problem of scaling test scores in repeated measures models such
as these. We have chosen to use 'z' scores, standardised to have the same mean and standard
deviation at each occasion. Alternative scalings, for example using age equivalent scores, will
generally produce somewhat different results and a sensitivity analysis which explores the
results of analyses which use such alternatives will provide useful information.
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Table 6a. Repeated measures analysis of grades 1-3 Mathematics score by class size, age, gender,
socio-economic status, race and kindergarten Mathematics score. Standard errors in brackets.
Scores are standardised to have zero mean and standard deviation 1 separately for those with
scores at each grade.
Fixed A B C D
Intercept (Grade 1) effects:
Overall 0.15 0.14 0.06 0.15
Age -0.11 (0.03) -0.11 (0.03) -0.11 (0.03) -0.11 (0.03)
regular - small class (grade 1) -0.16 (0.04) -0.24 (0.06) -0.17 (0.05)
black - white -0.21 (0.04) -0.21 (0.04) -0.21 (0.04) -0.21 (0.04)
upper - lower SES 0.21 (0.02) 0.21 (0.02) 0.21 (0.02) 0.21 (0.04)
girls - boys -0.02 (0.02) -0.02 (0.02) -0.02 (0.02) -0.02 (0.02)
kindergarten Maths score 0.62 (0.01) 0.62 (0.01) 0.62 (0.01) 0.62 (0.01)
kindergarten Maths score2 -0.05 (0.01) -0.05 (0.01) -0.05 (0.01) -0.05 (0.01)
regular - small class (kinder.) 0.09 (0.04) -0.03 (0.03)
Trend effects:
Linear -0.25 (0.04) -0.25 (0.04) -0.22 (0.04) -0.25 (0.04)
Quadratic 0.03 (0.01) 0.03 (0.01) 0.03 (0.02) 0.03 (0.01)
regular - small class (grade 1) 0.08 (0.03) 0.06 (0.04) 0.08 (0.03)
black - white 0.06 (0.03) 0.06 (0.03) 0.06 (0.03) 0.06 (0.03)
upper - lower SES 0.04 (0.02) 0.04 (0.02) 0.04 (0.02) 0.04 (0.02)
girls - boys 0.02 (0.01) 0.02 (0.01) 0.02 (0.01) 0.02 (0.01)
regular - small class (kinder.) 0.021 (0.028) 0.036 (0.021)
Random:
Between schools:

σ ( )4 0
2 0.10 (0.02) 0.10 (0.02) 0.09  (0.02) 0.10 (0.03)

σ ( )4 01
-0.02 (0.01) -0.02 (0.01) -0.02 (0.01) -0.02 (0.01)

σ ( )4 1
2 0.03 (0.01) 0.03 (0.01) 0.03 (0.01) 0.03 (0.01)

σ ( )4 02
2 -0.01 (0.02)

σ ( )4 12
0.00 (0.01)

σ ( )4 2
2 0.03 (0.02)

Between classes:

σ ( )3 0
2 0.11 (0.01) 0.11 (0.01) 0.11 (0.01) 0.10 (0.01)

σ ( )3 01
-0.05 (0.01) -0.05 (0.01) -0.05 (0.01) -0.05 (0.01)

σ ( )3 1
2 0.04 (0.005) 0.04 (0.005) 0.04 (0.005) 0.04 (0.005)

Between children:

σ ( )2 0
2 0.26 (0.01) 0.26 (0.01) 0.26  (0.01) 0.26 (0.01)

Between years:

σ ( )1 0
2 0.16 (0.01) 0.16 (0.01 0.16 (0.01) 0.16 (0.01)

σ ( )1 01
0.04 (0.003) 0.04 (0.003) 0.04 (0.003) 0.04 (0.003)

-2*(log likelihood) 20074.7 20067.0 20085.7 20070.6
Year is measured from grade 1 as origin. The fixed part is reported for the intercept (grade 1) and
linear trend terms grouped separately.  The existence of an average trend in the grade scores results
from a differential loss of students when those without kindergarten scores are excluded. The notation

σ σ( ) ( ),h l h lm
2  denotes respectively the variance for the l-th random coefficient at level h and the

covariance between the l-th and m-th random coefficients at level h. Thus σ 40
2

 is the variance for the

intercept at level 4. Note that there is no between-year variation at level 2 and no quadratic trend in the
level 1 variance. Number of students in analysis = 4177; number of Maths measurements over all
occasions = 10133; number of students with all four maths measurements = 2665. The subscript 2 at
level 4 refers to the class size difference.
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We see from analysis A in Table 6a that there is an additional effect of being in a small class in
grade 1, but that this tends to be reversed in subsequent grades by virtue of the positive (0.08)
linear trend term for class size. In analysis B there is also an additional contribution from the
kindergarten class size to the grade 1 effect, reflecting the effect of changes after kindergarten.
In analysis C the kindergarten effect on its own is non significant. This latter conclusion is also
reached by Word et al (1990) for their longitudinal analyses which use just the kindergarten
class type to classify the students. This reinforces our earlier remarks about the importance of
taking account of changes which occur over time. The non-white students, the higher SES
students and the girls show a gain after grade 1, given their kindergarten scores. For the non-
white students this reverses to some extent their poorer performance in grade 1.

In addition, there are changes in class allocation between grades 1 and 3; some 6% of those in
small classes in grade 1 changing to regular by grade 3 and 9% vice versa. In addition, those
who change tend to have lower grade 1 scores, especially those who move from small to
regular classes. When we allow for the grade 3 class size, however, there is no important
change to the inferences.

Our final analysis, D, indicates that there is only a very small (non significant) between-school
variation in the class size difference. It is of some interest that we have been unable to fit a
model where the between-student variance changes over grades, indicating that, given the
kindergarten score, students do not make differential progress and thus retain their relative
rank positions. We note the large between-occasion variation: the covariance term at level 1
implies that, relatively speaking, the between-occasion variation increases linearly with grade
so that there is an increasing variability among students over time. At the teacher level,
however, there are differential trends, indicating that the rate of progress varies among
teachers. In any further analyses this would be worth following up to see if there are factors
which might explain these differences, for example teacher qualifications. It is also possible to
estimate teacher level residuals to identify those teachers with very small and very large rates
of progress.
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Table 6b. Repeated measures analysis of grades 1-3 Reading score by class size, age, gender,
socio-economic status, race and kindergarten Reading score. Standard errors in brackets
Fixed A B C D
Intercept (Grade 1) effects:
Overall -0.02 -0.02 -0.06 -0.01
Age -0.14 (0.03) -0.14 (0.03) -0.14 (0.03) -0.15 (0.03)
regular - small class (grade 1) -0.10 (0.04) -0.13 (0.05) -0.10 (0.04)
black - white -0.04 (0.04) -0.04 (0.04) -0.04 (0.04) -0.04 (0.04)
upper - lower SES 0.24 (0.03) 0.24 (0.03) 0.24 (0.03) 0.24 (0.03)
girls - boys 0.12 (0.02 0.12 (0.02) 0.12 (0.02) 0.12 (0.02)
kindergarten Maths score 0.69 90.01) 0.69 (0.01) 0.69 (0.01) 0.69 (0.01)
kindergarten Maths score2 -0.07 (0.01) -0.07 (0.01) -0.07 (0.01) -0.07 (0.01)
regular - small class (kinder.) 0.05 (0.04) -0.03 (0.03)
Trend effects:
Linear -0.13 (0.03) -0.13 (0.03) -0.11 (0.0) -0.13 90.03)
Quadratic 0.01 (0.01) -0.07 (0.01) 0.01 (0.01) 0.01 (0.01)
regular - small class (grade 1) 0.02 (0.02) 0.03 (0.03) 0.02 (0.02)
black - white -0.04 (0.03) -0.04 (0.03) -0.04 (0.03) -0.04 (0.03)
upper - lower SES 0.00 (0.02) 0.00 (0.02) 0.00 (0.02) 0.00 (0.02)
girls - boys 0.03 (0.01) 0.03 (0.01) 0.03 (0.01) 0.03 (0.01)
regular - small class (kinder.) 0.05 (0.04) 0.00 (0.02)
Random:
Between schools:

σ ( )4 0
2 0.11 (0.02) 0.11 (0.02) 0.11 (0.02) 0.14 (0.03)

σ ( )4 01
-0.02 (0.01) -0.02 (0.01) -0.02 (0.01) -0.02 (0.01)

σ ( )4 1
2 0.02 (0.004) 0.02 (0.004) 0.02 (0.004) 0.02 (0.004)

σ ( )4 02
2 -0.03 (0.02)

σ ( )4 12
0.00 (0.01)

σ ( )4 2
2 0.04 (0.02)

Between classes:

σ ( )3 0
2 0.07 (0.01) 0.07 (0.01) 0.07 (0.01) 0.06 90.01)

σ ( )3 01
-0.03 (0.004) -0.03 (0.004) -0.03 (0.005) -0.03 (0.004)

σ ( )3 1
2 0.02 (0.003) 0.02 (0.003) 0.02 (0.003) 0.02 (0.003)

Between children:

σ ( )2 0
2 0.22 (0.01) 0.22 (0.01) 0.22 (0.01) 0.22 (0.01)

σ ( )2 01
0.03 (0.01) 0.03 (0.01) 0.03 (0.01) 0.03 (0.01)

σ ( )2 1
2 0.01 (0.004) 0.01 (0.004) 0.01 (0.004) 0.01 (0.004)

Between years:

σ ( )1 0
2 0.19 (0.01) 0.19 (0.01) 0.19 90.01) 0.19 90.01)

σ ( )1 01
0.01 (0.004) 0.01 (0.004) 0.01 (0.004) 0.01 (0.004)

-2*(log likelihood) 19210.5 19209.3 19216.3 19200.3
Number of students in analysis = 4182; number of measurements over all occasions = 11433; number
of students with all four measurements = 2920.

Table 6b for Reading shows a between-school variation in the grade 1 class size effect, as in
Table 5. It also shows a between-student variation in the trend over time, with students
changing at different rates. The other results are similar to those for Mathematics except that
neither the higher SES nor the black students show a gain after grade 1.

Further elaborations of these analyses are possible, including interactions among the variables
and the introduction of teacher level variables, but we do not pursue these analyses any further
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in this paper. Largely this is because the quality of the data, with the absence of any prior
achievement measure and with differential dropout, does not seem to merit much further
detailed exploration. Also, the main thrust of this paper is methodological and we have
illustrated the major issues in our analyses of Tables 1 - 6.

13. In conclusion

Our examination of the methodology of class size studies can be summarised in two general
conclusions. The first is that too little attention has been paid to the requirements for valid
causal conclusions. These requirements include the need carefully to specify the reference
population of interest, the need for good initial achievement data on students and the
usefulness of measuring the processes occurring within classrooms including the expectations
of teachers.

Secondly, it has often been assumed that randomised controlled trials are the only means of
reaching causal type conclusions: our own analysis suggests that RCTs suffer from both
practical and theoretical drawbacks which have received too little attention. Our reanalysis of
the STAR study, the largest and most comprehensive RCT, has shown that it has limitations
inherent in its initial design as well as its execution. Our analysis has attempted to compensate
for the deficiencies associated with differential dropout and the lack of baseline measures. In
particular, the use of multilevel modelling has shown that inferences about causality should not
be made without studying the variation between schools. While we failed to detect any
significant between-school variation in class size differences for Mathematics there were
differences for Reading. This suggests that while our reanalysis provides corroboration for the
conclusion of a modest but real class size effect, it may not be consistent across all schools nor
for all measurements. More research is needed to further understand this issue.

Perhaps one of the most powerful arguments in favour of RCTs occurs when we wish to study
new situations which do not occur naturally or not in sufficient numbers. This would be the
case where we wished to study the effects of very small classes within a system where these
did not exist, or were provided only for special groups of students such as those with learning
difficulties. It is a common design for the evaluation of new educational or social initiatives and
it is one of the standard situations for the application of RCTs in medicine, especially in the
evaluation of novel drugs or treatments.  On the other hand, it is difficult for RCT designs to
simulate the reality of social systems, for example informative clustering of students, and this
may severely limit the possibilities of generalising from the  results of RCTs to the real world.

Observational studies of class size have also suffered from poor designs and inadequate
analysis, but with careful attention to the requirements as we have outlined them, it should be
possible for such studies to provide useful insights into the effects of class size and in particular
to study the factors associated with differential effects across schools.

If we are to judge by the number of class size studies being carried out and the amount of
political interest, this is an issue which will persist in importance. The limitations of existing
work which we have pointed out have also encouraged us to see whether it is possible to
improve considerably upon existing designs, and a new study has been started with this aim
(Blatchford et al., 1996). This is an observational study with baseline measurements at entry to
school and measures of class composition and change over a two year period. It is also
collecting relevant teacher and school information and will utilise efficient multilevel modelling
techniques for analysis. It will investigate the stability of class size effects across institutions
and by type of student, especially in terms of initial baseline status. Its results, which will be
reported elsewhere, should help further to enhance our understanding of the methodological
issues.
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Finally, we need to point out that our discussion has focused on establishing the minimum
conditions which allow us to draw causal inferences from class size studies. We have said
something about exploring the detailed means by which any change in class size actually
produces changes in cognitive or affective attributes. There is, of course, no reason why a
statistical modelling approach cannot be extended to studying such processes, although this
would typically involve the collection of large amounts of detailed process data. To be
effective, however, such research would benefit by being supplemented by detailed qualitative
and case study research which can attempt to generate the specific theories for further
evaluation and  testing.
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Abstract

The paper reviews research into class size effects from a methodological viewpoint, especially
concentrating on the various strengths and weaknesses of randomised controlled trials and
observational studies. It sets out the criteria for valid inferences from such studies and
illustrates these using a reanalysis of the large data set from the Tennessee STAR study.
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