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TUTORIAL IN BIOSTATISTICS
Multilevel modelling of medical data
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SUMMARY

This tutorial presents an overview of multilevel or hierarchical data modelling and its applications in
medicine. A description of the basic model for nested data is given and it is shown how this can
be extended to �t �exible models for repeated measures data and more complex structures involving
cross-classi�cations and multiple membership patterns within the software package MLwiN. A variety
of response types are covered and both frequentist and Bayesian estimation methods are described.
Copyright ? 2002 John Wiley & Sons, Ltd.
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1. SCOPE OF TUTORIAL

The tutorial covers the following topics

1. The nature of multilevel models with examples.
2. Formal model speci�cation for the basic Normal (nested structure) linear multilevel
model with an example.

3. The MLwiN software.
4. More complex data structures: complex variance, multivariate models and cross-classi�ed
and multiple membership models.

5. Discrete response models, including Poisson, binomial and multinomial error distribu-
tions.

6. Speci�c application areas including survival models, repeated measures models, spatial
models and meta analysis.

7. Estimation methods, including maximum and quasi likelihood, and MCMC.

Further information about multilevel modelling and software details can be obtained from
the web site of the Multilevel Models Project, http://multilevel.ioe.ac.uk/.
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2. THE NATURE OF MULTILEVEL MODELS

Traditional statistical models were developed making certain assumptions about the nature of
the dependency structure among the observed responses. Thus, in the simple regression model
yi=�0 +�1xi+ ei the standard assumption is that the yi given xi are independently identically
distributed (i.i.d.), and the same assumption holds also for generalized linear models. In many
real life situations, however, we have data structures, whether observed or by design, for which
this assumption does not hold.
Suppose, for example, that the response variable is the birthweight of a baby and the

predictor is, say, maternal age, and data are collected from a large number of maternity units
located in di�erent physical and social environments. We would expect that the maternity
units would have di�erent mean birthweights, so that knowledge of the maternity unit already
conveys some information about the baby. A more suitable model for these data is now

yij=�0 + �1xij + uj + eij (1)

where we have added another subscript to identify the maternity unit and included a unit-
speci�c e�ect uj to account for mean di�erences amongst units. If we assume that the maternity
units are randomly sampled from a population of units, then the unit speci�c e�ect is a random
variable and (1) becomes a simple example of a two-level model. Its complete speci�cation,
assuming Normality, can be written as follows:

yij = �0 + �1xij + uj + eij

uj∼N(0; �2u ); eij∼N(0; �2e )
cov(uj; eij) = 0

cov(yi1j; yi2j | xij) = �2u ¿0

(2)

where i1; i2 are two births in the same unit j with, in general, a positive covariance between
the responses. This lack of independence, arising from two sources of variation at di�erent
levels of the data hierarchy (births and maternity units) contradicts the traditional linear model
assumption and leads us to consider a new class of models. Model (2) can be elaborated in
a number of directions, including the addition of further covariates or levels of nesting. An
important direction is where the coe�cient (and any further coe�cients) is allowed to have
a random distribution. Thus, for example the age relationship may vary across clinics and,
with a slight generalization of notation, we may now write (2) as

yij=�0ijx0ij + �1jx1ij

�0ij=�0 + u0j + e0ij

�1j=�1 + u1j

x0ij=1

var(u0j)=�2u0; var(u1j)=�2u1

cov(u0ju1j)=�u01; var(e0ij)=�2e0

(3)
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and in later sections we shall introduce further elaborations. The regression coe�cients �0,
�1 are usually referred to as ‘�xed parameters’ of the model and the set of variances and
covariances as the random parameters. Model (3) is often referred to as a ‘random coe�cient’
or ‘mixed’ model.
At this point we note that we can introduce prior distributions for the parameters of (3), so

allowing Bayesian models. We leave this topic, however, for a later section where we discuss
MCMC estimation.
Another, instructive, example of a two-level data structure for which a multilevel model

provides a powerful tool, is that of repeated measures data. If we measure the weight of a
sample of babies after birth at successive times then the repeated occasion of measurement
becomes the lowest level unit of a two-level hierarchy where the individual baby is the level-2
unit. In this case model (3) would provide a simple description with x1ij being time or age.
In practice linear growth will be an inadequate description and we would wish to �t at least
a (spline) polynomial function, or perhaps a non-linear function where several coe�cients
varied randomly across individual babies, that is each baby has its own growth pattern. We
shall return to this example in more detail later, but for now note that an important feature
of such a characterization is that it makes no particular requirements for every baby to be
measured at the same time points or for the time points to be equally spaced.
The development of techniques for specifying and �tting multilevel models since the mid-

1980s has produced a very large class of useful models. These include models with discrete
responses, multivariate models, survival models, time series models etc. In this tutorial we
cannot cover the full range but will give references to existing and ongoing work that readers
may �nd helpful. In addition the introductory book by Snijders and Bosker [1] and the edited
collection of health applications by Leyland and Goldstein [2] may be found useful by readers.
A detailed introduction to the two-level model with worked examples and discussion of

hypothesis tests and basic estimation techniques is given in an earlier tutorial [3] that also
gives details of two computer packages, HLM and SAS, that can perform some of the analyses
we describe in the present tutorial. The MLwiN software has been speci�cally developed for
�tting very large and complex models, using both frequentist and Bayesian estimation and it
is this particular set of features that we shall concentrate on.

3. MARGINAL VERSUS HIERARCHICAL MODELS

At this stage it is worth emphasizing the distinction between multilevel models and so-called
‘marginal’ models such as the GEE model [4, 5]. When dealing with hierarchical data these
latter models typically start with a formulation for the covariance structure, for example, but
not necessarily based upon a multilevel structure such as (3), and aim to provide estimates
with acceptable properties only for the �xed parameters in the model, treating the existence
of any random parameters as a necessary ‘nuisance’ and without providing explicit estimates
for them. More speci�cally, the estimation procedures used in marginal models are known to
have useful asymptotic properties in the case where the exact form of the random structure
is unknown.
If interest lies only in the �xed parameters, marginal models may be useful. Even here,

however, they may be ine�cient if they utilize a covariance structure that is substantially
incorrect. They are, however, generally more robust than multilevel models to serious mis-
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speci�cation of the covariance structure [6]. Fundamentally, however, marginal models address
di�erent research questions. From a multilevel perspective, the failure explicitly to model the
covariance structure of complex data is to ignore information about variability that, potentially,
is as important as knowledge of the average or �xed e�ects. Thus, in the simple repeated
measures example of baby weights, knowledge of how individual growth rates vary between
babies, possibly di�erentially according to say demographic factors, will be important data
and in a later section we will show how such information can be used to provide e�cient
predictions in the case of human growth.
When we discuss discrete response multilevel models we will show how to obtain informa-

tion equivalent to that obtained from marginal models. Apart from that the remainder of this
paper will be concerned with multilevel models. For a further discussion of the limitations of
marginal models see the paper by Lindsey and Lambert [7].

4. ESTIMATION FOR THE MULTIVARIATE NORMAL MODEL

We write the general Normal two-level model as follows, with natural extensions to three or
more levels:

Y=XR+ E

Y={yij}; X={Xij}; Xij={x0ij ; x1ij ; : : : ; xpij}
E=E(2) + E(1)

E(2)={E(2)j }; E(2)j = z(2)j e
(2)
j ; z(2)j ={z(2)ij }

z(2)ij ={z(2)0j ; z(2)1j ; : : : ; z(2)q2j}; e(2)j ={e(2)0j ; e(2)1j ; : : : ; e(2)q2j}T

E(1)={E(1)ij }; E(1)ij =z
(1)
ij e(1)ij

z(1)ij ={z(1)0j ; z(1)1j ; : : : ; z(1)q1j}; e(1)ij ={e(1)0ij ; e(1)1ij ; : : : ; e(1)q1ij}T

e(2)={e(2)j }; e(1)j ={e(1)ij }
e(2)∼N(0;�2); e(1)j ∼N(0;�1j)

[Typically �1j=�1]

E(e(2)hj e
(2)
h′j′)j �=j′ = E(e

(1)
hij e

(1)
h′i′j)i �=i′=E(e

(2)
hj e

(1)
h′i′j′)=0

yields the block diagonal structure

V= E(ỸỸT)=
⊕
j
(V2j +V1j)

Ỹ=Y −XR (4)

V2j = z
(2)
j �2z

(2)T

j ; V1j=
⊕
i
z(1)ij �1jz

(1)T

ij
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In this formulation we allow any number of random e�ects or coe�cients at each level; we
shall discuss the interpretation of multiple level-1 random coe�cients in a later section.
A number of e�cient algorithms are available for obtaining maximum likelihood (ML)

estimates for (4). One [8] is an iterative generalized least squares procedure (IGLS) that will
also produce restricted maximum likelihood estimates (RIGLS or REML) and is formally
equivalent to a Fisher scoring algorithm [9]. Note that RIGLS or REML should be used in
small samples to correct for the underestimation of IGLS variance estimates. The EM algo-
rithm can also be used [10, 11]. Our examples use RIGLS (REML) estimates as implemented
in the MlwiN software package [12] and we will also discuss Bayesian models. A simple
description of the IGLS algorithm is as follows:
From (4) we have

V= E(ỸỸT)=
⊕
j
(V2j +V1j)

Ỹ=Y −X�

The IGLS algorithm proceeds by �rst carrying out a GLS estimation for the �xed parameters
(�) using a working estimator of V. The vectorized cross-product matrix of ‘raw’ residuals
ˆ̃Y ˆ̃YT where ˆ̃Y=Y−X�̂, is then used as the response in a GLS estimation where the explanatory
variable design matrix is determined by the last line of (4). This provides updated estimates
for the �1j and �2 and hence V . The procedure is repeated until convergence. In the simple
case we have been considering so far where the level 1 residuals are i.i.d., for a level-2 unit
(individual) with just three level-1 units (occasions) there are just six distinct raw residual
terms and the level-1 component V1j is simply �2e I3. Written as a vector of the lower triangle
this becomes

�2e




1
0
1
0
0
1




(5)

and the vector of ones and zeroes becomes the level-1 explanatory variable for the GLS
estimation, in this case providing the coe�cient that is the estimator of �2e . Similarly, for a
model where there is a single variance term at level 2, the level-2 component V2j written as
a lower triangle vector is

�2u




1
1
1
1
1
1




Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3291–3315



3296 H. GOLDSTEIN, W. BROWNE AND J. RASBASH

Goldstein [13] shows that this procedure produces maximum likelihood estimates under Nor-
mality.

5. THE MLwiN SOFTWARE

MLwiN has been under development since the late 1980s, �rst as a command-driven DOS
based program, MLn, and since 1998 in a fully-�edged windows version, currently in release
1.10. It is produced by the Multilevel Models Project based within the Institute of Education,
University of London, and supported largely by project funds from the U.K. Economic and
Social Research Council. The software has been developed alongside advances in methodology
and with the preparation of manuals and other training materials.
Procedures for �tting multilevel models are now available in several major software pack-

ages such as STATA, SAS and S-plus. In addition there are some special purpose packages,
which are tailored to particular kinds of data or models. MIXOR provides ML estimation for
multi-category responses and HLM is used widely for educational data. See Zhou et al. [14]
for a recent review and Sullivan et al. [3] for a description of the use of HLM and SAS.
Many of the models discussed here can also be �tted readily in the general purpose MCMC
software package WinBUGS [15].
MLwiN has some particular advanced features that are not available in other packages and

it also has a user interface designed for fully interactive use. In later sections we will illustrate
some of the special features and models available in MLwiN but �rst give a simple illustration
of the user interface. We shall assume that the user wishes to �t the simple two-level model
given by (1).
In this tutorial we cannot describe all the features of MLwiN, but it does have general

facilities for data editing, graphing, tabulation and simple statistical summaries, all of which
can be accessed through drop-down menus. In addition it has a macro language, which can
be used, for example, to run simulations or to carry out special purpose modelling. One of
the main features is the method MLwiN uses to set up a model, via an ‘equation window’
in which the user speci�es a model in more or less exactly the format it is usually written.
Thus to specify model (1) the user would �rst open the equation window which, prior to any
model being speci�ed, would be as shown in Figure 1.
This is the default null model with a response that is Normal with �xed predictor represented

by X� and covariance matrix represented by �. Clicking on the N symbol delivers a drop

Figure 1. Default equation screen with model unspeci�ed.
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Figure 2. Equation screen with model display.

down menu, which allows the user to change the default distribution to binomial, Poisson or
negative binomial. Clicking on the response y allows the user to identify the response variable
from a list and also the number and identi�cation for the hierarchical levels. Clicking on the
x0 term allows this to be selected from a list and also whether its coe�cient �0 is random at
particular levels of the data hierarchy. Adding a further predictor term is also a simple matter
of clicking an ‘add term’ button and selecting a variable. There are simple procedures for
specifying general interaction terms.
Model (1), including a random coe�cient for x1 in its general form as given by (3), will

be displayed in the equation window as shown in Figure 2. Clicking on the ‘Estimates’ button
will toggle the parameters between their symbolic representations and the actual estimates after
a run. Likewise, the ‘Name’ button will toggle actual variable names on and o�. The ‘Subs’
button allows the user to specify the form of subscripts, for example giving them names such
as in the screen shown in Figure 3, where we also show the estimates and standard errors
from an iterative �t.
In the following sections we will show some further screen shots of models and results.

6. A GROWTH DATA EXAMPLE

We start with some simple repeated measures data and we shall use them to illustrate mod-
els of increasing complexity. The data set consists of nine measurements made on 26 boys
between the ages of 11 and 13.5 years, approximately 3 months apart [16].

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3291–3315
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Figure 3. Equation screen with estimates.

Figure 4.

Figure 4, produced by MLwiN, shows the mean heights by the mean age at each mea-
surement occasion. We assume that growth can be represented by a polynomial function,
whose coe�cients vary from individual to individual. Other functions are possible, including
fractional polynomials or non-linear functions, but for simplicity we con�ne ourselves to ex-
amining a fourth-order polynomial in age (t) centred at an origin of 12.25 years. In some
applications of growth curve modelling transformations of the time scale may be useful, often

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3291–3315
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to orthogonal polynomials. In the present case the use of ordinary polynomials provides an
accessible interpretation and does not lead to computational problems, for example due to
near-collinearities. The model we �t can be written as follows:

yij=
4∑
h=0
�hjthij + eij

�0j=�0 + u0j

�1j=�1 + u1j

�2j=�2 + u2j

�3j=�3

�4j=�4

u0

u1

u2


∼N(0; �u)

�u=



�2u0

�u01 �2u1

�u02 �u12 �2u2




e∼N(0; �2e )

(6)

This is a two-level model with level-1 being ‘measurement occasion’ and level 2 ‘individual
boy’. Note that we allow only the coe�cients up to the second order to vary across individuals;
in the present case this provides an acceptable �t. The level 1 residual term eij represents
the unexplained variation within individuals about each individual’s growth trajectory. Table I
shows the restricted maximum likelihood (REML) parameter estimates for this model. The
log-likelihood is calculated for the ML estimates since this is preferable for purposes of model
comparison [17].
From this table we can compute various features of growth. For example, the average

growth rate (by di�erentiation) at age 13.25 years (t=1) is 6:17 + 2×1:13 + 3×0:45 −
4×0:38=8:26 cm=year. A particular advantage of this formulation is that, for each boy, we
can also estimate his random e�ects or ‘residuals’, u0j; u1j; u2j, and use these to predict their
growth curve at each age [18]. Figure 5, from MLwiN, shows these predicted curves (these
can be produced in di�erent colours on the screen).
Goldstein et al. [16] show that growth over this period exhibits a seasonal pattern with

growth in the summer being about 0:5 cm greater than growth in the winter. Since the period
of the growth cycle is a year, this is modelled by including a simple cosine term, which could
also have a random coe�cient.
In our example we have a set of individuals all of whom have nine measurements. This

restriction, however, is not necessary and (6) does not require either the same number of
occasions per individual or that measurements are made at equal intervals, since time is
modelled as a continuous function. In other words we can combine data from individuals
with very di�erent measurement patterns, some of whom may only have been measured once

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3291–3315



3300 H. GOLDSTEIN, W. BROWNE AND J. RASBASH

Table I. Height modelled as a fourth-degree polynomial on age.
REML estimates.

Fixed e�ects Estimate Standard error

Intercept 149.0 1.57
t 6.17 0.36
t2 1.13 0.35
t3 0.45 0.16
t4 −0:38 0.30

Random: level-2 (individual) correlation matrix, variances on diagonal

Intercept t t2

Intercept 64.0
t 0.61 2.86
t2 0.22 0.66 0.67

Random: level-1 variance=0:22.
−2 log-likelihood(ML)=625:4.

Figure 5.

and some who have been measured several times at irregular intervals. This �exibility, �rst
noted by Laird and Ware [10], means that the multilevel approach to �tting repeated measures
data is to be preferred to previous methods based upon a multivariate formulation assuming
a common set of �xed occasions [19, 20].
In these models it is assumed that the level-1 residual terms are independently distributed.

We may relax this assumption, however, and in the case of repeated measures data this
may be necessary, for example where measurements are taken very close together in time.
Suppose we wish to �t a model that allows for correlations between the level-1 residuals, and
to start with for simplicity let us assume that these correlations are all equal. This is easily

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3291–3315



MULTILEVEL MODELLING OF MEDICAL DATA 3301

Table II. Height modelled as a fourth-degree polynomial on age, including
a seasonal e�ect and serial correlation. REML estimates.

Fixed e�ects Estimate Standard error

Intercept 148.9
t 6.19 0.36
t2 2.16 0.45
t3 0.39 0.17
t4 −1:55 0.43
Cos(t) −0:24 0.07

Random: level-2 (individual) correlation matrix, covariances on diagonal

Intercept t t2

Intercept 63.9
t 0.61 2.78
t2 0.24 0.69 0.59

Random: level 1(SE in brackets)
�2e 0:24(0:05)
� 6:59(1:90)
−2 log-likelihood (ML)=611:5.

accomplished within the GLS step for the random parameters by modifying (5) to

�2e




1

0

1

0

0

1



+ �




0

1

0

1

1

0




(7)

so that the parameter � is the common level-1 covariance (between occasions). Goldstein
et al. [16] show how to model quite general non-linear covariance functions and in partic-
ular those of the form cov(etet−s)=�2e exp(−g(�; s)), where s is the time di�erence between
occasions. This allows the correlation between occasions to vary smoothly as a function of
their (continuous) time di�erence. A simple example is where g=�s, which, in discrete time,
produces an AR(1) model. The GLS step now involves non-linear estimation that is accom-
plished in a standard fashion using a Taylor series approximation within the overall iterative
scheme. Pourahmadi [21, 22] considers similar models but restricted to a �xed set of discrete
occasions.
Table II shows the results of �tting the model with g=�s together with a seasonal compo-

nent. If this component has amplitude, say, � we can write it in the form � cos(t∗+�), where t∗

is measured from the start of the calendar year. Rewriting this in the form �1 cos(t∗)−�2 sin(t∗)
we can incorporate the cos(t∗), sin(t∗) as two further predictor variables in the �xed part of
the model. In the present case �2 is small and non-signi�cant and is omitted. The results
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show that for measurements made three months apart the serial correlation is estimated as
0:19 (e−6:59=4) and as 0:04 (e−6:59=2) for measurements taken at 6-monthly intervals. This sug-
gests, therefore, that in practice, for such data when the intervals are no less than 6 months
apart serial correlation can be ignored, but should be �tted when intervals are as small as 3
months. This will be particularly important in highly unbalanced designs where there are some
individuals with many measurements taken close together in time; ignoring serial correlation
will give too much weight to the observations from such individuals.
Finally, on this topic, there will typically need to be a trade-o� between modelling more

random coe�cients at level 2 in order to simplify or eliminate a level-1 serial correlation
structure, and modelling level 2 in a parsimonious fashion so that a relatively small number
of random coe�cients can be used to summarize each individual. An extreme example of the
latter is given by Diggle [23] who �ts only a random intercept at level 2 and serial correlation
at level 1.

7. MULTIVARIATE RESPONSE DATA

We shall use an extension of the model for repeated measures data to illustrate how to model
multivariate response data. Consider model (6) where we have data on successive occasions
for each individual and in addition, for some or all individuals, we have a measure, say, of
their �nal adult height y(2)3 , and their (log) income at age 25 years, y

(2)
4 , where the superscript

denotes a measurement made at level 2. We can include these variables as further responses
by extending (6) as follows:

y(1)ij =
4∑
h=0
�hjthij + eij

�0j=�0 + u0j

�1j=�1 + u1j

�2j=�2 + u2j

�3j=�3

�4j=�4

y(2)3j =�3 + u3j

y(2)4j =�4 + u4j


u0

u1

u2

u3

u4



∼N(0; �u)

e∼N(0; �2e )

(8)
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We now have a model where there are response variables de�ned at level 1 (with superscript
(1)) and also at level 2 (with superscript (2)). For the level-2 variables we have speci�ed only
an intercept term in the �xed part, but quite general functions of individual level predictors,
such as gender, are possible. The level-2 responses have no component of random variation
at level 1 and their level-2 residuals covary with the polynomial random coe�cients from the
level-1 repeated measures response.
The results of �tting this model allow us to quantify the relationships between growth

events, such as growth acceleration (di�erentiating twice) at t=0, age 12.25 years, (2�2j) and
adult height and also to use measurements taken during the growth period to make e�cient
predictions of adult height or income. We note that for individual j the estimated (posterior)
residuals û3j; û4j are the best linear unbiased predictors of the individual’s adult values; where
we have only a set of growth period measurements for an individual these therefore provide
the required estimates. Given the set of model parameters, therefore, we immediately obtain
a system for e�cient adult measurement prediction given a set of growth measurements [24].
Suppose, now, that we have no growth period measurements and just the two adult mea-

surements for each individual. Model (8) reduces to

y(2)3j =�3 + u3j

y(2)4j =�4 + u4j(
u3

u4

)
∼N(0; �u)

V1j=0; V2j=

(
�2u3

�u34 �2u4

)
(9)

Thus we can think of this as a two-level model with no level-1 variation and every level 2
unit containing just two level 1 units. The explanatory variables for the simple model given
by (9) are just two dummy variables de�ning, alternately, the two responses. Thus we can
write (9) in the more compact general form

yij=
2∑
h=1
�0hjxhij; x1ij=

{
1 if response 1

0 if response 2
; x2ij=1− x1ij

�0hj=�0h + uhj(
u1

u2

)
=

(
�2u1

�u12 �2u2

) (10)

Note that there is no need for every individual to have both responses and so long as we can
consider ‘missing’ responses as random, the IGLS algorithm will supply maximum likelihood
estimates. We can add further covariates to the model in a straightforward manner by forming
interactions between them and the dummy variables de�ning the separate response intercepts.
The ability to �t a multivariate linear model with randomly missing responses �nds a num-

ber of applications, for example where matrix or rotation designs are involved (reference [18],
Chapter 4), each unit being allocated, at random, a subset of responses. The possibility of
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having additionally level-1 responses allows this to be used as a very general model for meta
analysis where there are several studies (level-2 units) for some of which responses are avail-
able only in summary form at level 2 and for others detailed level-1 responses are available.
Goldstein et al. [25] provide a detailed example.

8. CROSS-CLASSIFIED AND MULTIPLE MEMBERSHIP STRUCTURES

Across a wide range of disciplines it is commonly the case that data have a structure that is
not purely hierarchical. Individuals may be clustered not only into hierarchically ordered units
(for example occasions nested within patients nested within clinics), but may also belong to
more than one type of unit at a given level of a hierarchy. Consider the example of a livestock
animal such as a cow where there are a large number of mothers, each producing several
female o�spring that are eventually reared for milk on di�erent farms. Thus, an o�spring
might be classi�ed as belonging to a particular combination of mother and farm, in which
case they will be identi�ed by a cross-classi�cation of these.
Raudenbush [26] and Rasbash and Goldstein [27] present the general structure of a model

for handling complex hierarchical structuring with random cross-classi�cations. For example,
assuming that we wish to formulate a linear model for the milk yield of o�spring taking into
account both the mother and the farm, then we have a cross-classi�ed structure, which can
be modelled as follows:

yi( j1 ; j2)=(X�)i( j1 ; j2) + uj1 + uj2 + ei( j1 j2)

j1=1; : : : ; J1; j2=1; : : : ; J2; i=1; : : : ; N
(11)

in which the yield of o�spring i, belonging to the combination of mother j1 and farm j2, is
predicted by a set of �xed coe�cients (X�)i( j1 ; j2). The random part of the model is given
by two level-2 residual terms, one for the mother (uj1) and one for the farm (uj2), together
with the usual level-1 residual term for each o�spring. Decomposing the variation in such a
fashion allows us to see how much of it is due to the di�erent classi�cations. This particular
example is somewhat oversimpli�ed, since we have ignored paternity and we would also wish
to include factors such as age of mother, parity of o�spring etc. An application of this kind
of modelling to a more complex structure involving Salmonella infection in chickens is given
by Rasbash and Browne [28].
Considering now just the farms, and ignoring the mothers, suppose that the o�spring often

change farms, some not at all and some several times. Suppose also that we know, for each
o�spring, the weight wij2 , associated with the j2th farm for o�spring i with

∑J2
j2=1 wij2 =1.

These weights, for example, may be proportional to the length of time an o�spring stays in
a particular farm during the course of our study. Note that we allow the possibility that for
some (perhaps most) animals only one farm is involved so that one of these probabilities
is one and the remainder are zero. Note that when all level-1 units have a single non-zero
weight of 1 we obtain the usual purely hierarchical model. We can write for the special case
of membership of up to two farms {1; 2}:

yi(1;2)=(X�)i(1;2) + wi1u1 + wi2u2 + ei(1;2)

wi1 + wi2=1
(12)
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and more generally

yi{ j}=(X�)i{ j} +
∑
h∈{ j}

wihuh + ei{ j}

∑
h
wih=1; var(uh)=�2u

var(
∑

h wihuh)=�
2
u
∑
h
w2ih

(13)

Thus, in the particular case of membership of just two farms with equal weights we have

wi1=wi2=0:5; var
(∑

h
wihuh

)
=�2u =2

Further details of this model are given by Hill and Goldstein [29].
An extension of the multiple membership model is also possible and has important appli-

cations, for example in modelling spatial data. In this case we can write

yi{ j1}{ j2}=(X�)i{ j} +
∑

h∈{ j1}
w1ihu1h +

∑
h∈{ j2}

w2ihu2h + ei{ j}

∑
h
w1ih=W1;

∑
h
w2ih=W2; var(u1h)=�2u1; var(u2h)=�2u2

cov(u1h; u2h)=�u12; j={j1; j2}

(14)

There are now two sets of higher level units that in�uence the response and in general we can
have more than two such sets. In spatial models one of these sets is commonly taken to be the
area where an individual (level 1) unit occurs and so does not have a multiple membership
structure (since each individual belongs to just one area, that is we replace

∑
h w1ihu1h by u1j1).

The other set consists of those neighbouring units that are assumed to have an e�ect. The
weights will need to be carefully chosen; in spatial models W2 is typically chosen to be equal
to 1 (see Langford et al. [30] for an example). Another application for a model such as (14)
is for household data where households share facilities, for example an address. In this case
the household that an individual resides in will belong to one set and the other households
at the address will belong to the other set. Goldstein et al. [31] give an application of this
model to complex household data.

9. META-ANALYSIS

Meta-analysis involves the pooling of information across studies in order to provide both
greater e�ciency for estimating treatment e�ects and also for investigating why treatments
e�ects may vary. By formulating a general multilevel model we can do both of these e�-
ciently within a single-model framework, as has already been indicated and was suggested by
several authors [32, 33]. In addition we can combine data that are provided at either individual
subject level or aggregate level or both. We shall look at a simple case but this generalizes
readily [25].
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Consider an underlying model for individual level data where a pair of treatments are being
compared and results from a number of studies or centres are available. We write a basic
model, with a continuous response Y as

yij=(X�)ij + �2tij + uj + eij

var(uj)=�2u; var(eij)=�2e
(15)

with the usual assumptions of Normality etc. The covariate function is designed to adjust for
initial clinic and subject conditions. The term tij is a dummy variable de�ning the treatment
(0 for treatment A, 1 for treatment B). The random e�ect uj is a study e�ect and the eij
are individual-level residuals. Clearly this model can be elaborated in a number of ways, by
including random coe�cients at level 2 so that the e�ect of treatment varies across studies,
and by allowing the level-1 variance to depend on other factors such as gender or age.
Suppose now that we do not have individual data available but only means at the study

level. If we average (15) to the study level we obtain

y:j=(X�): j + �2t: j + uj + e: j (16)

where y:j is the mean response for the jth study etc. The total residual variance for study j
in this model is �2u + �

2
e =nj where nj is the size of the jth study. It is worth noting at this

point that we are ignoring, for simplicity, levels of variation that might exist within studies,
such as that between sites for a multi-site study. If we have the values of y:j; (X�): j ; t: j where
the latter is simply the proportion of subjects with treatment B in the jth study, and also the
value of nj then we will be able to obtain estimates for the model parameters, so long as the
nj di�er. Such estimates, however, may not be very precise and extra information, especially
about the value of �2e , will improve them.
Model (16) therefore forms the basis for the multilevel modelling of aggregate level data.

In practice the results of studies will often be reported in non-standard form, for example
with no estimate of �2e but it may be possible to estimate this from reported test statistics. In
some cases, however, the reporting may be such that the study cannot be incorporated in a
model such as (16). Goldstein et al. [25] set out a set of minimum reporting conventions for
meta-analysis studies subsequently to be carried out.
While it is possible to perform a meta-analysis with only aggregate level data, it is clearly

more e�cient to utilize individual-level data where these are available. In general, therefore,
we will need to consider models that have mixtures of individual and aggregate data, even
perhaps within the same study. We can do this straightforwardly by specifying a model which
is just the combination of (15) and (16), namely

yij=�0 + �1xij + �2tij + uj + eij

y:j=�0 + �1x: j + �2t: j + uj + ejzj

zj=
√
n−1j ; ej ≡ eij

(17)

What we see is that the common level-1 and level-2 random terms link together the separate
models and allow a joint analysis that makes fully e�cient use of the data. Several issues
immediately arise from (17). One is that the same covariates are involved. This is also a
requirement for the separate models. If some covariate values are missing at either level then
it is possible to use an imputation technique to obtain estimates, assuming a suitable random
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missingness mechanism. The paper by Goldstein et al. [25] discusses generalizations of (17)
for several treatments and the procedure can be extended to generalized linear models.

10. GENERALIZED LINEAR MODELS

So far we have dealt with linear models, but all of those so far discussed can be modi�ed using
non-linear link functions to give generalized linear multilevel models. We shall not discuss
these in detail (see Goldstein [18] for details and some applications) but for illustration we
will describe a two-level model with a binary response.
Suppose the outcome of patients in intensive care is recorded simply as survived (0) or

died (1) within 24 hours of admission. Given a sample of patients from a sample of intensive
care units we can write one model for the probability of survival as

logit(�ij)=(X�)ij + uj

yij∼Bin(�ij; 1)
(18)

Equation (18) uses a standard logit link function assuming binomial (Bernoulli) error dis-
tribution for the (0,1) response yij. The level-2 random variation is described by the term
uj within the linear predictor. The general interpretation is similar to that for a continuous
response model, except that the level-1 variation is now a function of the predicted value
�ij. While in (18) there is no separate estimate for the level-1 variance, we may wish to �t
extrabinomial variation which will involve a further parameter.
We can modify (18) using alternative link functions, for example the logarithm if the re-

sponse is a count, and can allow further random coe�cients at level 2. The response can
be a multi-category variable, either ordered or unordered, and this provides an analogue to
the multivariate models for continuously distributed responses. As an example of an ordered
categorical response, consider extending the previous outcome to three categories: survival
without impairment (1); survival with impairment (2); death (3). If �(h)ij ; h=1; 2; 3 are, re-
spectively, the probabilities for each of these categories, we can write a proportional odds
model using a logit link as

logit(�(1)ij )=�
(1) + (X�)ij + u

(1)
j

logit(�(1)ij + �
(2)
ij )=�

(2) + (X�)ij + u
(2)
j

(19)

and the set of three (0,1) observed responses for each patient is assumed to have a multinomial
distribution with mean vector given by �(h)ij ; h=1; 2; 3. Since the probabilities add to 1 we
require two lines in (19) which di�er only in terms of the overall level given by the intercept
term as well as allowing for these to vary across units.
Unlike in the continuous Normal response case, maximum likelihood estimation is not

straightforward and beyond fairly simple two-level models involves a considerable computa-
tional load typically using numerical integration procedures [34]. For this reason approximate
methods have been developed based upon series expansions and using quasi-likelihood ap-
proaches [18] which perform well under a wide range of circumstances but can break down in
certain conditions, especially when data are sparse with binary responses. High-order Laplace
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approximations have been found to perform well [35] as have simulation-based procedures
such as MCMC (see below).
It is worth mentioning one particular situation where care is required in using generalized

linear multilevel models. In (15) and (16) we assume that the level-1 responses are inde-
pendently distributed with probabilities distributed according to the speci�ed model. In some
circumstances such an assumption may not be sensible. Consider a repeated measures model
where the health status (satisfactory/not satisfactory) of individuals is repeatedly assessed.
Some individuals will typically always respond ‘satisfactory’ whereas some others can be ex-
pected to respond always ‘not satisfactory’. For these individuals the underlying probabilities
are either zero or one, which violates the model assumptions and what one �nds if one tries to
�t a model where there are non-negligible numbers of such individuals are noticeable amounts
of underdispersion. Barbosa and Goldstein [36] discuss this problem and propose a solution
based upon �tting a serial correlation structure.
We can also have multivariate multilevel models with mixtures of discrete and continuous

responses. Certain of these can be �tted in MLwiN using quasi-likelihood procedures [12]
and MCMC procedures for such models are currently being implemented. See also Olsen and
Schafer [37] for an alternative approach.

11. SURVIVAL MODELS

Several di�erent formulations for survival data modelling are available; to illustrate how these
can be extended to multilevel structures, where they are often referred to as frailty models
[38], we consider the proportional hazards (Cox) model and a piecewise discrete time model.
Goldstein [18] gives other examples.
Consider a simple two-level model with, say, patients within hospitals or occasions within

subjects. As in the standard single-level case we consider each time point in the data as
de�ning a block indicated by l at which some observations come to the end of their duration
due to either failure or censoring and some remain to the next time or block. At each block
there is therefore a set of observations – the total risk set. To illustrate how the model is set
up we can think of the data sorted so that each observation within a block is a level-1 unit,
above which, in the repeated measures case, there are occasions at level 2 and subjects at
level 3. The ratio of the hazard for the unit which experiences a failure at a given occasion
referred to by (j; k) to the sum of the hazards of the remaining risk set units [39] is

exp(�1x1ijk + ujk)∑
j; k
exp(�1x1ijk + ujk)

(20)

where j and k refer to the real levels 2 and 3, for example occasion and subject. At each
block denoted by l the response variable may be de�ned for each member of the risk set as

yijk(l)=

{
1 failed

0 not
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Because of equivalence between the likelihood for the multinomial and Poisson distributions,
the latter is used to �t model (20). This can be written as

E(yijk(l))= exp(�l + Xjk�k) (21)

Where there are ties within a block then more than one response will be non-zero. The
terms �l �t the underlying hazard function as a ‘blocking factor’, and can be estimated by
�tting either a set of parameters, one for each block, or a smoothed polynomial curve over the
blocks numbered 1; : : : ; p. Thus if the hth block is denoted by h, �l is replaced by a low-order
polynomial, order m,

∑m
t=0 �th

t , where the �t are (nuisance) parameters to be estimated.
Having set up this model, the data are now sorted into the real two-level structure, for

example in the repeated measures case by failure times within subjects with occasions within
the failure times. This retains proportional hazards within subjects. In this formulation the
Poisson variation is de�ned at level 1, there is no variation at level 2 and the between-subject
variation is at level 3. Alternatively we may wish to preserve overall proportionality, in which
case the failure times de�ne level 3 with no variation at that level. See Goldstein [18] for a
further discussion of this.
Consider now a piecewise survival model. Here the total time interval is divided into short

intervals during which the probability of failure, given survival up to that point, is assumed
constant. Denote these intervals by t (1; 2; : : : ; T ) so that the hazard at time t is the probability
that, given survival up to the end of time interval t − 1, failure occurs in the next interval.
At the start of each interval we have a ‘risk set’ nt consisting of the survivors and during the
interval rt fail. If censoring occurs during interval t then this observation is removed from that
interval (and subsequent ones) and does not form part of the risk set. A simple, single-level,
model for the probability can be written as

�i(t)=f[�tzit ; (�X )it] (22)

where zt={zit} is a dummy variable for the tth interval and �t , as before, is a ‘blocking
factor’ de�ning the underlying hazard function at time t. The second term is a function of
covariates. A common formulation would be the logit model and a simple such model in
which the �rst blocking factor has been absorbed into the intercept term could be written as

logit(�i(t))=�0 + �tzit + �1x1i ; (z2; z3; : : : ; zT ) (23)

Since the covariate varies across individuals, in general the data matrix will consist of one
record for each individual within each interval, with a (0,1) response indicating survival or
failure. The model can now be �tted using standard procedures, assuming a binomial error
distribution. As before, instead of �tting T − 1 blocking factors, we can �t a low-order
polynomial to the sequentially numbered time indicator. The logit function can be replaced
by, for example, the complementary log-log function that gives a proportional hazards model,
or, say, the probit function and note that we can incorporate time-varying covariates such
as age.
For the extension to a two-level model we write

logit(�ij(t))=�0 +
p∑
h=1
�∗h (z

∗
it)
h + �1x1ij + uj (24)
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where uj is the ‘e�ect’, for example, of the jth clinic, and is typically assumed to be distributed
normally with zero mean and variance �2u . We can elaborate (24) using random coe�cients,
resulting in a heterogeneous variance structure, further levels of nesting etc. This is just a
two-level binary response model and can be �tted as described earlier. The data structure
has two levels so that individuals will be grouped (sorted) within clinics. For a compet-
ing risks model with more than one outcome we can use the two-level formulation for a
multi-category response described above. The model can be used with repeated measures data
where there are repeated survival times within individuals, for example multiple pregnancy
states.

12. BAYESIAN MODELLING

So far we have considered the classical approach to �tting multilevel models. If we add prior
distributional assumptions to the parameters of the models so far considered we can �t the
same range of models from a Bayesian perspective, and in most applications this will be
based upon MCMC methods. A detailed comparison of Bayesian and likelihood procedures
for �tting multilevel models is given in Browne and Draper [40]. A particular advantage of
MCMC methods is that they yield inferences based upon samples from the full posterior
distribution and allow exact inference in cases where, as mentioned above, the likelihood
based methods yield approximations.
Owing also to their approach of generating a sample of points from the full posterior dis-

tributions, they can give accurate interval estimates for non-Gaussian parameter distributions.
In MCMC sampling we are interested in generating samples of values from the joint pos-

terior distribution of all the unknown parameters rather than �nding the maximum of this
distribution. Generally it is not possible to generate directly from this joint distribution, so
instead the parameters are split into groups and for each group in turn we generate a set
of values from its conditional posterior distribution. This can be shown to be equivalent to
sampling directly from the joint posterior distribution.
There are two main MCMC procedures that are used in practice: Gibbs sampling [41] and

Metropolis–Hastings (MH) [42, 43] sampling. When the conditional posterior for a group of
parameters has a standard form, for example a Normal distribution, then we can generate
values from it directly and this is known as Gibbs sampling. When the distribution is not
of standard form then it may still be possible to use Gibbs sampling by constructing the
distribution using forms of Gibbs sampling such as adaptive rejection sampling [44].
The alternative approach is to use MH sampling where values are generated from another

distribution called a proposal distribution rather than the conditional posterior distribution.
These values are then either accepted or rejected in favour of the current values by comparing
the posterior probabilities of the joint posterior at the current and proposed new values. The
acceptance rule is designed so that MH is e�ectively sampling from the conditional posterior
even though we have used an arbitrary proposal distribution; nevertheless, choice of this
proposal distribution is important for e�ciency of the algorithm.
MCMC algorithms produce chains of serially correlated parameter estimates and conse-

quently often have to be run for many iterations to get accurate estimates. Many diagnostics
are available to gauge approximately for how long to run the MCMC methods. The chains
are also started from arbitrary parameter values and so it is common practice to ignore the
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�rst N iterations (known as a burn-in period) to allow the chains to move away from the
starting value and settle at the parameters’ equilibrium distribution.
We give here an outline of the Gibbs sampling procedure for �tting a general Normal

two-level model

yij = Xij�+Zijuj + eij

uj ∼ N(0;�u); eij∼N(0; �2e );
i = 1; : : : ; nj; j=1; : : : ; J;

∑
j
nj=N

We will include generic conjugate prior distributions for the �xed e�ects and variance param-
eters as follows:

�∼N(�p; Sp);�u∼W−1(�u; Su); �2e ∼SI	2(�e; s2e )
The Gibbs sampling algorithm then involves simulating from the following four sets of con-
ditional distributions:

p(� |y; �2e ; u)∼N
(
D̂
�2e

(
J∑
j=1

nj∑
i=1
XTij(yij −Zijuj) + S−1p �p

)
; D̂

)

p(uj |y;�u; �2e ; �) ∼ N
(
D̂j
�2e

nj∑
i=1
ZTij(yij −Xij�); D̂j

)

p(�u | u)∼W−1
(
J + �u;

J∑
j=1
ujuTj + Su

)

p(�2e |y; �; u) ∼ �−1
(
N + �e
2

;
1
2

(
�es2e +

J∑
j=1

nj∑
i=1
e2ij

))

where

D̂=

(∑
ij

XTijXij
�2e

+ S−1p

)−1

and

D̂j=
(
1
�2e

nj∑
i=1
ZTijZij +�

−1
u

)−1

Note that in this algorithm we have used generic prior distributions. This allows the incorpo-
ration of informative prior information but generally we will not have this information and so
will use so-called ‘di�use’ prior distributions that re�ect our lack of knowledge. Since there
are only 26 level-2 units from which we are estimating a 3×3 covariance matrix, the exact
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Table III. Height modelled as a fourth-degree polynomial on age using
MCMC sampling.

Fixed e�ects MCMC Estimate Standard error

Intercept 149.2 1.58
t 6.21 0.38
t2 1.14 0.36
t3 0.45 0.17
t4 −0:38 0.30

Random: level-2 (individual) correlation matrix, variances on diagonal, estimates
are mean(mode)

Intercept t t2

Intercept 74.4 (68.6)
t 0.61 3.34 (3.06)
t2 0.22 0.66 0.67 (0.70)

Random: level-1 variance=0:23(0:22).

choice of prior is important. We here use the following set of priors for the child growth
example considered in Section 6:

p(�0) ∝ 1; p(�1)∝1; p(�2)∝1; p(�3)∝1; p(�4)∝1; p(�5)∝1

p(�u) ∼ inverse Wishart3[3; 3×Su]; Su=



64:0

8:32 2:86

1:42 0:92 0:67




p(�2e0) ∼ inverse gamma(0:001; 0:001)

The inverse Wishart prior matrix is based upon the REML estimates, chosen to be ‘minimally
informative’, with degrees of freedom equal to the order of the covariance matrix.
The results of running model (5) for 50000 iterations after a burn-in of 500 can be seen in

Table III. Here we see that the �xed e�ect estimates are very similar to the estimates obtained
by the maximum likelihood method. The variance (chain mean) estimates are however in�ated
due to the skewness of the variance parameters. Modal estimates of the variance parameters,
apart from that for the quadratic coe�cient, are closer, as is to be expected. If we had used
the uniform prior p(�u)∝1 for the covariance matrix, the estimates of the �xed coe�cients
are little changed but the covariance matrix estimates are noticeably di�erent. For example,
the variance associated with the intercept is now 93.0 and those for the linear and quadratic
coe�cients become 4.2 and 1.1, respectively.
Figure 6 shows the diagnostic screen produced by MLwiN following this MCMC run. The

top left hand box shows the trace for this parameter, the level-2 intercept variance. This looks
satisfactory and this is con�rmed by the estimated autocorrelation function (ACF) and partial
autocorrelation function (PACF) below. A kernel density estimate is given at the top right and
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Figure 6. MCMC summary screen.

the bottom left box is a plot of the Monte Carlo standard error against number of iterations
in the chain. The summary statistics give quantiles, mean and mode together with accuracy
diagnostics that indicate the required chain length.
The MCMC methods are particularly useful in models like the cross-classi�ed and multiple

membership models discussed in Section 8. This is because whereas the maximum likelihood
methods involve constructing large constrained variance matrices for these models, the MCMC
methods simulate conditional distributions in turn and so do not have to adjust to the structure
of the model.
For model �tting, one strategy (but not the only one) is to use the maximum or quasi-

likelihood methods for performing model exploration and selection due to speed. Then MCMC
methods could be used for inference on the �nal model to obtain accurate interval estimates.

13. BOOTSTRAPPING

Like MCMC the bootstrap allows inferences to be based upon (independent) chains of values
and can be used to provide exact inferences and corrections for bias. Two forms of boot-
strapping have been studied to date: parametric bootstrapping, especially for correcting biases
in generalized linear models [45], and non-parametric bootstrapping based upon estimated
residuals [46]. The fully parametric bootstrap for a multilevel model works as for a single-
level model with simulated values generated from the estimated covariance matrices at each
level. Thus, for example, for model (2) each bootstrap sample is created using a set of uj; eij
sampled from N(0; �2u );N(0; �

2
e ), respectively.
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In the non-parametric case, full ‘unit resampling’ is generally only possible by resampling
units at the highest level. For generalized linear models, however, we can resample posterior
residuals, once they have been adjusted to have the correct (estimated) covariance structures
and this can be shown to possess particular advantages over a fully parametric bootstrap where
asymmetric distributions are involved [46].

14. IN CONCLUSION

The models that we have described in this paper represent a powerful set of tools available
to the data analyst for exploring complex data structures. They are being used in many areas,
including health, with great success in providing insights that are unavailable with more
conventional methods. There is a growing literature extending these models, for example
to multilevel structural equation models, and especially to the application of the multiple
membership models in areas such as population demography [31]. An active e-mail discussion
group exists which welcomes new members (www.jiscmail.ac.uk/multilevel). The data set
used for illustration in this paper is available on the Centre for Multilevel Modelling website
(multilevel.ioe.ac.uk/download/macros.html) as an MLwiN worksheet.
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