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1. Introduction 
This review is based upon the beta release of WINBUGS 1.4 which has several 
enhancements over version 1.3.  

WINBUGS, a Bayesian MCMC package, is distributed freely and is the result of 
many years of development by a team of statisticians and programmers at the Medical 
research Council Biostatistics Research Unit in Cambridge (http://www.mrc-
bsu.cam.ac.uk/bugs/). Models are represented by a flexible language, and there is also 
a graphical feature, DOODLEBUGS, that allows users to specify their model in terms 
of a directed graph. For complex models the latter can be extremely useful, but we 
will not use it in this review since all the models dealt with are relatively 
straightforwardly expressed using the command language. 

The topic of Bayesian estimation using Markov Chain Monte Carlo (MCMC) 
methods has an extensive literature and users are well advised to introduce themselves 
to this before using these methods. The WINBUGS manual provides a good starting 
place. In this review we shall not be exploring the full range of possibilities provided 
by WINBUGS, although, where appropriate these will be referred to. We shall give 
examples of WINBUGS code where this is illuminative, but since this review is not a 
guide to using WINBUGS, we will not be exhaustive. 

Users of simulation based methods such as MCMC should remember that, unlike 
maximum likelihood procedures, there is a stochastic element to the estimates 
obtained and that procedures for judging convergence and accuracy are more complex 
and a certain amount of judgement and experience is involved. The WINBUGS 
manual is a useful source here.  

The advantage of MCMC estimation, apart from the obvious one for those who wish 
to adopt a Bayesian approach, is that, like bootstrapping, it provides accurate 
estimates for parameter quantiles. One disadvantage is the time taken to obtain results 
and often the use of likelihood based methods for initial model exploration prior to 
using MCMC will be efficient. Also, there are still many issues whose solution is less 
than clearcut. For multilevel models, one of these is the issue of choice of priors for 
variance and covariance parameters; we have adopted the WINBUGS gamma and 
Wishart defaults, but see Browne (1998) for a further discussion. Another issue is that 
of model comparison and we have used the Bayesian Deviance Information Criterion 
for this (Spiegelhalter et al. 2002). 
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1.1 Data interface 
Data is input to WINBUGS as three components that can be in the same of different 
files. The first is a series of model specification instructions, the second contains the 
observed data and the third contains a set of starting values. In fact WINBUGS will 
itself obtain starting values if required, but generally it is better for the user to specify 
these. We shall illustrate the use of these components in the first example below. 
WINBUGS runs under various versions of windows. Older versions will also run 
under other operating systems such as LINUX – see the WINBUGS website for more 
information. While WINBUGS 1.4 has many useful graphical tools, there is also a 
suite of routines, CODA, that can provide additional plotting features for WINBUGS 
output in SPLUS or R. The principal features will be illustrated in our first example. 

1.2 Model types 
The range of model types that can be fitted in WINBUGS is very large. The language 
allows a wide variety of linear and nonlinear model forms, including the standard set 
of generalised linear models. For the random effects a variety of distributional forms 
can be specified, including the multivariate Normal and T-distributions. Spatial 
models and latent variable models can be fitted. In addition a range of prior 
distributions is available with standard defaults. All of the models in this set of 
reviews can be fitted in WINBUGS. 

2. Examples 
2.1 Two and three level Normal models 

 

The first model we fit is a variance components 2-level model using the EXAM data 
set and we shall use it to illustrate the use of the WINBUGS modelling language. 

The model is 
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where i,j respectively index level 1 and level 2 and ijX )( β  represents the fixed part 
contribution for the  i,j - th record. The fixed part here includes the intercept ( 0β ) and 
four covariates, 4321 ,,, ββββ , being LRT score, gender, school gender composition 
(2 dummy variables; boys school and girls school contrasted with base category, 
mixed school). We discuss priors below. 

The WINBUGS model specification code for fitting this model is as follows: 

http://multilevel.ioe.ac.uk/softrev/exam.html


model 
{ 
# Level 1 definition 
for(i in 1:N) { 
normexam[i] ~ dnorm(mu[i],tau) 
mu[i]<- beta[1] * cons[i]   
+ beta[2] * standlrt[i] 
+ beta[3] * gender[i] 
+ beta[4] * boysch[i] 
+ beta[5] * girlsch[i] 
+ u2[school[i]] * cons[i]  
} 
# Higher level definitions 
for (j in 1:n2) { 
u2[j] ~ dnorm(0,tau.u2) 
} 
# Priors for fixed effects 
for (k in 1:5) { beta[k] ~ dflat() } 
# Priors for random terms 
tau ~ dgamma(0.001,0.001) 
sigma2 <- 1/tau 
tau.u2 ~ dgamma(0.001,0.001) 
sigma2.u2 <- 1/tau.u2 

} 
 

Notes: 

• Comments (starting with #) are inserted for ease of reading 

• Line 5 specify that the response is Normal, and has a mean mu(i) and precision 
tau. The precision is simply the inverse of the variance and this relationship as 
specified in the penultimate line by the logical or deterministic (i.e. non-
stochastic) relationship sigma2.u2 <- 1/tau.u2. 

• Lines 6 – 10 specify mu(i) as a linear additive function of the intercept and four 
covariates and line 11 adds the set of random effects where school(i) is the school 
ID (1….65) for record i and is multiplied by u2 which is a random variable (see 
below). This product is also multiplied by cons(i) which here is strictly 
uneccessary but is retained for consistency with general random coefficient 
models where the explanatory variable associated with a random coefficient is 
required. 

• Note that constants N, n2 used here have values that are input with the data (see 
later), but we could have specified the values, 4059, 65, instead. 

• Under  priors for the fixed effects we use a ‘flat’ i.e. uniform prior across the 
whole real line, for each regression (fixed effect) coefficient. An alternative, 
‘proper prior’ which is functionally equivalent is a Normal with a very large 
variance, e.g.  which is used in WINBUGS tutorials. )10*1,0( 6N

• Under priors for random terms we give the precisions Gamma (0.001,0.001) priors 
– the WINBUGS default. Other choices are available – see Browne (1998) for 
more discussion. 

• Under ‘higher level definitions’ the distribution of  u2(j) (j=1…n2) is specified as 
Normal mean 0 and precision tau.u2. The final line relates the level 2 variance to 
this precision parameter. 

• We can also specify further logically derived parameters. For example the 
variance partition coefficient (VPC – Goldstein et al, 2002) which is here 



equivalent to the intra-cluster correlation can be specified using the logical 
relationship: vpc <- sigma2.u2/(sigma2.u2+sigma2). We can then monitor this 
(see below) and obtain any required estimates. 

 

WINBUGS will calculate starting values but it is better to input sensible values and 
we use those from an ML fit using another package. In fact, MlwiN will also provide 
the WINBUGS code for many of the multilevel models that it can fit and this can 
provide MlwiN users with a useful shortcut to setting up the specification as well as 
providing starting values. The starting values for the parameters (including the 
random effects – residual estimates) can be placed in the same or a different file form 
the model specification. The following are the REML parameter estimates together 
with the estimated residuals. 

 
list(beta= c(-0.164732,0.559421,0.167223,0.168344,0.153508), 
u2 = c( 0.468199,0.364100,0.587048,0.106513,0.304638,0.400167,0.234818,-0.170901,-0.049196,-0.243258, 
0.179955,0.010356,-0.088045,-0.088991,-0.100905,-0.551233,-0.133893,-0.229703,0.079768,0.292407, 
0.102806,-0.351851,-0.438656,0.206019,-0.373602,0.064497,0.019811,-0.527619,0.096585,0.025284, 
-0.104574,0.084659,0.117995,-0.045188,-0.003997,-0.182345,-0.191037,-0.067494,-0.006536,-0.235014, 
0.070951,0.182898,-0.085722,-0.247971,-0.096026,-0.264599,0.110196,-0.081244,-0.102682,-0.227963, 
0.014859,0.380415,0.581980,-0.491883,0.578435,0.069899,0.030463,0.007052,-0.563880,0.082485, 
0.043607,0.039601,0.593009,0.087875,-0.308585), 
tau= 1.776247, 

tau.u2= 11.255164) 
 

The data can also be placed in a separate file or the same file and the following is the 
start of this file 

 
list(N= 4059, n2 = 65,  
school = c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2, 
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 

2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3, 
 

Under the specification menu the user first checks the syntax of the model. Assuming 
it is syntactivcally correct (message appears) the data are loaded and then the initial 
values. The user chooses which parameters to monitor from the inference menu and 
chooses the number of iterations to convergence to a stationary chain (the burn in). 
The number of following iterations upon which the estimates are based is then chosen 
and the user can also observe the chains. In the present case we therefore begin to 
sample from iteration 501 (set beg to 501 (leave end at default) and choose to include 
all the fixed and random parameters as nodes to sample. We could also sample the 
residuals u2 if we wished. In the model window we select 5500 updates.  

The output choices are flexible in terms of the parameter estimates and statistics 
derived from the chain such as quantiles. A fit statistic is also available (DIC) which 
allows model comparisons. To use this we need to first carry out the burn in, then set 
DIC under the inference menu and then sample the 5000 updates. When these are 
complete we can click on DIC to obtain the value. 

After estimation has finished we can obtain our estimates, traces and kernel density 



plots for the parameter posterior distributions. 

Table 1 compares two WINBUGS runs with a 500 burn in and 5000 and 10000 
following iterations, together with the REML estimates. 

 

Table 1. Two level Normal response model for EXAM data 
Parameter REML estimator (s.e.) WINBUGS (5000) 

(95% interval) 
WINBUGS (10000) (95% 
interval) 

0β  -0.168 -0.171 -0.171 

1β  0.560 (0.013) 0.560 (0.535, 0.584) 0.560(0.535, 0.584) 

2β  0.167 (0.034) 0.167 (0.099, 0.234) 0.167 (0.098, 0.233) 

3β  0.178 (0.114) 0.176 (-0.036, 0.383) 0.180 (-0.033, 0.394) 

4β  0.159 (0.089) 0.162 (-0.006, 0.329) 0.162 (-0.012, 0.338) 

2
0uσ  0.086 (0.017) 0.088 (0.057, 0.131) 0.088 (0.058, 0.131) 

2
0eσ  0.563 (0.013) 0.563 (0.539, 0.588) 0.563 (0.539, 0.588) 

DIC  9245.7 9245.6 

Time 0.4 secs (SAS) 7 mins. 12 secs* 11 mins. 45 secs* 

*includes 500 iterations to convergence (Burn in). MCMC estimates are the chain means. Converted to 
equivalent time on 433Mhz Pentium II under Windows. 

 

As can be seen there is very little change between 5000 and 10000 iterations. The 
point estimates are similar to the REML estimates and 95% confidence intervals using 
a Normal approximation are also close, except for the level 2 variance parameter. If 
the modal or median rather than mean are used from MCMC we would expect closer 
agreement with REML; in the present case the median for the level 2 variance is 
0.086.  

The following are the trace and kernel density plot for the level 2 variance for the 
analysis using 10000 iterations. The kernel density is unsmoothed; this may be 
changed in later versions. 

 

Trace for level 2 variance 
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In the remaining examples we shall give results from running 10000 iterations with a 
500 burn in. 

We now fit a model where the level 1 variance is a function of gender and this is 
followed by a model where the log(level 1 variance) is a function of STANDLRT. 
The model specifications are given in the following boxes and the results in Table 2. 

Finally we show below the model specification for a model where STANDLRT has a 
coefficient random at the school level. 
model 
{ 
# Level 1 definition 
for(i in 1:N) { 
normexam[i] ~ dnorm(mu[i],tau) 
mu[i]<- beta[1] * cons[i]   
+ beta[2] * standlrt[i] 
+ beta[3] * gender[i] 
+ beta[4] * boysch[i] 
+ beta[5] * girlsch[i] 
+ u2[school[i],1] * cons[i]  
+ u2[school[i],2] * standlrt[i]  
} 
# Higher level definitions 
for (j in 1:n2) { 
u2[j,1:2] ~ dmnorm(zero2[1:2],tau.u2[1:2,1:2]) 
} 
# Priors for fixed effects 
for (k in 1:5) { beta[k] ~ dflat() } 
# Priors for random terms 
tau ~ dgamma(0.001000,0.001000) 
sigma2 <- 1/tau 
for (i in 1:2) {zero2[i] <- 0} 
tau.u2[1:2,1:2] ~ dwish(R2[1:2, 1:2],2) 
sigma2.u2[1:2,1:2] <- inverse(tau.u2[,]) 

} 
Note that we have used a ‘minimally informative’ Wishart distribution as prior for the 
inverse covariance matrix by giving it degrees of freedom equal to the order of the 
matrix and we can choose the Wishart matrix parameters as equal to the (inverse) 
covariance matrix based upon ML. These values, R2, will be declared with the data. 
Other priors are possible including a uniform. 

 

2.2 Complex level 1 variation 
We fit a separate variance for boys and girls as follows: 
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Note that WINBUGS can fit other complex level 1 variance functions. A useful one is 
the logarithm of the level 1 variance as a linear function of the STANDLRT score 
which guarantees a positive variance. This would be written 
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Note that in WINBUGS we need to express the precision as a linear function, in 
which case the coefficients simply reverse their sign. 

For the first model the WINBUGS specification would be 
model 
{ 
# Level 1 definition 
for(i in 1:N) { 
normexam[i] ~ dnorm(mu[i],tau[i]) 
mu[i]<- beta[1] * cons[i]   
+ beta[2] * standlrt[i] 
+ beta[3] * boysch[i] 
+ beta[4] * girlsch[i] 
+ beta[5] * girl[i] 
+ u2[school[i]] * cons[i]  
} 
# Higher level definitions 
for (j in 1:n2) { 
u2[j] ~ dnorm(0,tau.u2) 
} 
# Priors for fixed effects 
for (k in 1:5) { beta[k] ~ dflat() } 
# Priors for random terms 
for(i in 1:N) { 
tau[i] <- 1/sigma2[i] 
sigma2[i] <- va0[1] * girl[i] * girl[i] 
+ va0[2] * boy[i] * boy[i] 
} 
for(i in 1:2) { 
va0[i] ~ dflat() 
} 
tau.u2 ~ dgamma(0.001000,0.001000) 
sigma2.u2 <- 1/tau.u2 

} 
 

Note that we use ‘girl’ in the fixed part and both the dummy variables ‘girl’ and ‘boy’ 
for level 1. This requires that the data for ‘boy’ is also entered. Note also that we have 
used flat priors for the level 1 variance parameters; when we have a general function 
of  explanatory variables - we cannot use gamma priors for variances. In fact in the 
gender case we could have specified gamma priors since we are really fitting two 
separate variances. 

 



Table 2. Two level Normal response model 
for EXAM data with complex level 1 
variance 

 Separate gender variances 

Parameter Estimate (95% interval) 

0β  -0.196 

1β  0.548 (0.493, 0.603) 

2β  0.169 (0.102, 0.232) 

3β  0.193 (-0.003, 0.430) 

4β  0.189 (0.022, 0.340) 

5β  0.008 (-0.051, 0.064) 

2
0uσ  0.088 (0.058, 0.128) 

01uσ  0.022 (0.010, 0.038) 

2
1uσ  0.005 (0.009, 0.027) 

2
1eσ  0.589 (0.551, 0.631) 

2
2eσ  0.524 (0.499, 0.556) 

0α   

1α   

DIC 9187.2 

Time 2 mins 31 secs. 

 

2.3 Three level Normal response model 
For this example we use the chem97 data set consisting of 31022 students nested 
within 2279 schools within 130 Education authorities. 
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where we have the intercept and GCSE average score as predictors. 

Table 3 presents the results. 

http://multilevel.ioe.ac.uk/softrev/chem97.html


Table 3. Three level Normal response model for 
CHEM97 data 
Parameter WINBUGS (10000) (95% interval) 

0β  5.635 

1β  2.473 (2.440, 2.505) 

2
0vσ  0.009 (0.001, 0.045) 

2
0uσ  1.170 (1.066, 1.281) 

2
0eσ  5.155 (5.069, 5.241) 

DIC 140415.3 

Time 82 mins.  

 

The level 3 variance is very poorly estimated, and in fact the mode of the distribution 
is at zero as is shown by the following kernel density estimate. 
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2.4 A binary response model 

The dataset used is the fertility survey data BANG. In the fixed part the intercept and 
four covariates are fitted; urban, age, and four dummy variables for number of 
children in family (1, 2, 3+) with no children as base category. The logit link function 
model is 
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For the probit link function we can write the model as: 
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but we can also estimate the parameters of the underlying Normal.  

Consider the 2-level model 
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where  is the probit that determines the probability of a correct response, namely ijy

( ) ,   ( ) is pdf of (0,1)
ijy

t dt t Nφ φ
−∞
∫       (8) 

By inserting another step into the MCMC algorithm we can generate a chain from the 
underlying Normal distribution at level 1. Threshold models such as (7) & (8) have a 
number of uses where the binary responses can be thought of as generated from 
truncation of an underlying continuous distribution. Furthermore, estimation using 
this procedure is often faster since Gibbs sampling rather than, say, Metroplois 
Hastings or adaptive rejection methods can be used. A similar device can be used with 
the logistic link where we define an underlying logistic distribution. See Browne 
(2003) for more details. 

In the present case we use the standard WINBUGS probit function and the model 
specification is as follows: 

 
model 
{ 
# Level 1 definition 
for(i in 1:N) { 
use[i] ~ dbin(p[i],denom[i]) 
probit(p[i]) <- beta[1] * cons[i]   
+ beta[2] * urban[i] 
+ beta[3] * agecentered[i] 
+ beta[4] * one[i] 
+ beta[5] * two[i] 
+ beta[6] * three_[i] 
+ u2[district[i]] * cons[i]  
} 
# Higher level definitions 
for (j in 1:n2) { 
u2[j] ~ dnorm(0,tau.u2) 
} 
# Priors for fixed effects 
for (k in 1:6) { beta[k] ~ dflat() } 
# Priors for random terms 
tau.u2 ~ dgamma(0.001000,0.001000) 
sigma2.u2 <- 1/tau.u2 

} 
 

 

 



Table 4. Two level binary response model for BANG data with logistic and 
probit link functions. 
 Logit Probit 

Parameter Estimate (95% interval) Estimate (95% interval) 

0β  -1.732 -1.039 

1β  0.735 (0.501, 0.963) 0.450 (0.308, 0.588) 

2β  -0.028 (-0.043, -0.012) -0.017 (-0.026, -0.007) 

3β  1.132 (0.834, 1.448) 0.676 (0.486, 0.855) 

4β  1.403 (1.063, 1.750) 0.842 (0.632, 1.048) 

5β  1.382 (1.022, 1.728) 0.825 (0.600, 1.053) 

2
0uσ  0.241 (0.117, 0.437) 0.086 (0.041, 0.156) 

DIC 2407.1 2406.8 

Time 41mins. 20 secs. 60 mins. 

 

Note that the DIC values are almost identical suggesting that the models fit equally 
well. 

 

2.5 A multivariate model with missing responses 
The data set is GCSEMV, with two responses from pupils to a written and 
coursework assessment. 

The model used is as follows: 
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The model specification is as follows, using a similar formulation for the Wishart 
priors as with the random coefficient model. We have called the response vector 
MV_RESP. The covariate is gender (girls=1). 



model 
{ 
# Level 1 definition 
for(i in 1:N) { 
MV_RESP[i,1:2] ~ dmnorm(mu[i,1:2],tau.u2[1:2,1:2]) 
mu[i,1] <- beta[1] * CONS[i]   
+ beta[3] * FEMALE[i] 
+ u3[MV_SCHOO[i],1] * CONS[i]  
mu[i,2] <- beta[2] * CONS[i]   
+ beta[4] * FEMALE[i] 
+ u3[MV_SCHOO[i],2] * CONS[i]  
} 
# Higher level definitions 
for (j in 1:n3) { 
u3[j,1:2] ~ dmnorm(zero3[1:2],tau.u3[1:2,1:2]) 
} 
# Priors for fixed effects 
for (k in 1:4) { beta[k] ~ dflat() } 
# Priors for random terms 
tau.u2[1:2,1:2] ~ dwish(R2[1:2,1:2],2) 
sigma2.u2[1:2,1:2] <- inverse(tau.u2[,]) 
for (i in 1:2) {zero3[i] <- 0} 
tau.u3[1:2,1:2] ~ dwish(R3[1:2, 1:2],2) 
sigma2.u3[1:2,1:2] <- inverse(tau.u3[,]) 

} 
In WINBUGS missing values are denoted by NA and are handled using imputation 
for a multivariate Normal response, although this is not available for a multivariate t-
distribution response. 

Table 5 gives the results 

 

Table 5. Bivariate Normal response for written and coursework assessment. 
 Written Coursework 

Parameter Estimate (95% interval) Estimate (95% interval) 

0β  49.6 (47.8, 51.4) 69.7 (67.5, 72.1) 

1β  -2.53 (-3.60, -1.38) 6.73 (5.37, 8.04) 

2
1uσ  49.7 (33.2, 72.7) 

12uσ  26.4 (10.2, 47.7) 

2
2uσ  79.6 (54.4, 115.5) 

2
1eσ  124.9 (116.8, 133.7) 

12eσ  73.2 (65.2, 81.6) 

2
2eσ  180.6 (169.9, 193.4) 

DIC 29900.3 

Time 2 mins. 30 secs. 

 



 
2.6 Cross classified data 

The data set is 2LEV-XC consisting of examination results for students cross 
classified by primary and secondary school. The model is 
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This uses the ‘classification notation’ introduced by Browne et al. (2001). The 
superscript denotes the classification number (not the level) where the pupil level term 
is at level 1, and the superscript is omitted for convenience. The term sec(i)denotes 
the secondary school to which pupil I belongs and similarly prim(i) the primary 
school. The covariate  is a dummy variable for gender (girl=1). 1x

The WINBUGS model specification is as follows 
model 
{ 
# Level 1 definition 
for(i in 1:N) { 
ATTAIN[i] ~ dnorm(mu[i],tau) 
mu[i]<- beta[1] * CONS[i]   
+ beta[2] * SEX[i] 
+ u2[PID[i]] * CONS[i]  
+ u3[SID[i]] * CONS[i]  
} 
# Higher level definitions 
for (j in 1:n2) { 
u2[j] ~ dnorm(0,tau.u2) 
} 
for (j in 1:n3) { 
u3[j] ~ dnorm(0,tau.u3) 
} 
# Priors for fixed effects 
for (k in 1:2) { beta[k] ~ dflat() } 
# Priors for random terms 
tau ~ dgamma(0.001000,0.001000) 
sigma2 <- 1/tau 
tau.u2 ~ dgamma(0.001000,0.001000) 
sigma2.u2 <- 1/tau.u2 
tau.u3 ~ dgamma(0.001000,0.001000) 
sigma2.u3 <- 1/tau.u3 

} 
Where PID is the pupil identification. The data are sorted on secondary school within 
primary school so that the first few pupil records for the secondary school data and for 
the primary school data are respectively 

 
9,9,9,9,9,9,1,1,9,9, 
9,9,9,9,9,9,1,9,9,9, 
9,9,9,9,9,9,9,9,9,9, 
9,9,9,9,9,9,1,18,1,9, 
1,9,9,9,9,9,9,1,9,1, 
9,9,9,9,7,7,7,7,7,7, 
7,5,5,5,9,9,9,9,9,9, 

6,1,1,1,1,1,1,1,1,1, 
 
1,1,1,1,1,1,1,1,1,1, 



1,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1,1,1, 
1,1,1,1,2,2,2,2,2,2, 
2,3,3,3,4,4,4,4,4,4, 

4,5,5,5,5,5,5,5,5,5, 
The results are given in Table 6. 

 

Table 6. Two level cross classified model using 
2LEV-XC attainment data. 
Parameter Estimate (95% interval) 

0β  5.253 

1β  0.498 (0.304, 0.690) 

2
)3(0uσ  0.411 (0.138, 0.940) 

2
)2(0uσ  1.130 (0.770, 1.600) 

2
0eσ  8.062 (7.687, 8.457) 

DIC 17024.8 

Time 8mins. 2 secs. 

 

The wide interval estimate for the secondary school variance reflects the fact that 
there are only 19 such schools in the data set.  

 

2.7 Multicategorical response models 
 

The dataset used is the social attitudes data with the response being the number of 
positive answers to seven questions with seven codes being 0 or 1, 2, 3, 4, 5, 6, 7. 
This scale is ordered but for illustration we shall fit both ordered and unordered 
models. Each respondent has a response in each of 4 years. For the purpose of the 
present analysis we treat the years as independent replications so that there are just 4 
‘trials’ for each respondent. 

For the unordered case we fit the multivariate logit model for t categories 
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where we fit only intercept terms. The covariance matrix  
but for present purposes we assume a common generalin  )1()1(order  of is −×−Ω ttu



single variance at level 2. 

For the ordered case we fit the model for the cumulative probabilities defined as 

E y s tij
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with 
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where we have included three covariates which are dummy variables for the religious 
categories Roman Catholic, Protestant and others and where only the intercept 
(threshold) term varies across categories. 

The WINBUGS model specification code for the unordered and ordered models 
respectively is  

 

 

 

and 

 

 

 

The results are given in Table 7. 

 



Table 7. Two level ordered and unordered multinomial response model for 
SOCATT attitude data with logistic link function. Category 7 is the base 
category. 
 Unordered Ordered (20,000 iterations) 

Parameter Estimate (95% interval) Estimate (95% interval) 
)1(

0β  -1.923 (-2.456, -1.410) -3.952 (-5.273, -2.695) 

)2(
0β  -1.258 (-1.697, -0.833) -2.161 (-3.450, -0.952) 

)3(
0β  0.312 (-0.072, 0.687) 0.669 (-0.607, 1.871) 

)4(
0β  -0.360 (-0.760, 0.047) 1.617 (0.332, 2.831) 

)5(
0β  -0.382 (-0.782, 0.014) 2.518 (1.229, 3.746) 

)6(
0β  -0.264 (-0.653, 0.133) 3.571 (2.284, 4.803) 

1β   -2.248 (-3.519, -0.862) 

2β   -0.976 (-2.332, 0.554) 

3β   -3.086 (-4.396, -1.669) 

2
0uσ  5.945 (3.962, 8.609) 5.438 (4.164, 7.002) 

DIC 3292.2 2929.5 

Time   

 

3. Documentation, user support and general conclusions 
There is an on line manual supplied with the software which is a fairly basic 
description of the packages features. There is no HELP system, and this would be a 
very welcome future addition. There is a useful tutorial example in the manual which, 
together with a series of worked examples with real datasets should enable new users 
to get started. 

There is a discussion list for users of WINBUGS where issues are discussed. To 
access this go to http://www.jiscmail.ac.uk/lists/BUGS.html. This is an active list 
where users share ideas and problems. In addition the developers of WINBUGS are 
happy to receive feedback; go to http://www.mrc-
bsu.cam.ac.uk/bugs/overview/list.shtml.  

WINBUGS is a very impressive package, especially given its free distribution policy. 
It is perhaps the best known Bayesian modelling package and is flexible enough to 
handle a very wide range of models. In this review we have only touched upon a few 
of its facilities. Because of its generality it is not necessarily as computationally 
efficient as other packages which can fit MCMC models, such as MlwiN (see the 
comparative tables) but its greater model flexibility does allow new models to be 
developed. One drawback of WINBUGS is that is rather cumbersome to use if one 
wishes to carry out extensive model exploration trying different model formulations. 
For this purpose one of the likelihood based packages could be used with final 

http://www.jiscmail.ac.uk/lists/BUGS.html
http://www.mrc-bsu.cam.ac.uk/bugs/overview/list.shtml
http://www.mrc-bsu.cam.ac.uk/bugs/overview/list.shtml


estimates obtained from WINBUGS. Another issue is that there is a great deal of 
embedded statistical theory within WINBUGS which will make considerable 
demands on less statistically experienced users. There are other issues associated with 
Bayesian modelling, such as choice of priors, but it is not the purpose of this review to 
enter into these.  

If you want a very flexible MCMC Bayesian package for multilevel modelling, 
WINBUGS is an excellent choice. 
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