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1. Introduction to the software

1.1 Background

This review is based on SPSS version 12.0. The three SPSS commands of interest for
multilevel modelling are all contained in the Advanced Models module, these being MIXED
and VARCOMP. (An additional procedure GLM fits repeated measures models; however, random
effects cannot be included in repeated measures designs in version 12.0.) The Advanced
Models add capability to the SPSS Base system to conduct a range of additional analyses
including generalised linear models and Cox regression; they complement the capabilities of
the popular SPSS Base system. A major statistical package, SPSS is available in several
languages. Most commands are available either through the graphical user interface or
through the use of command syntax.

1.2 Software and hardware requirements

SPSS Advanced Models 12.0 requires an installation of SPSS Base 12.0. The system
requirements for SPSS Base 12.0 are:
• Microsoft Windows 98, Me, NT 4.0, 2000 or XP
• Pentium®-class processor
• 200MB hard drive space
• 128MB RAM minimum
• SVGA monitor
SPSS Advanced Models 12.0 requires an additional 20MB of hard drive space, with the exact
nature of other requirements varying according to the platform.

1.3 Data input/output

Data files may be opened using the Open Data command from the File menu. The range of
file types supported makes SPSS compatible with many other packages; data files can be in
any one of the following formats:
• SPSS, including SPSS for Windows, Macintosh, UNIX and SPSS portable
• SYSTAT
• Excel
• Lotus 1-2-3
• SYLK (Symbolic Link)
• dBASE
• a variety of SAS formats
• text (ASCII; fixed width or delimited)
By selecting the Open Database command from the File menu the user also has the facility to
create a query to read in data from any database format for which they have a driver. Data can
also be pasted from the clipboard.



The commands used to open data files are:
Data type Command Subcommand
SPSS GET FILE = filename

SPSS portable IMPORT FILE = filename

SYSTAT GET TRANSLATE FILE = filename /TYPE = SYS

Excel 5 or later GET DATA /FILE = filename
/TYPE = XLS

Excel GET TRANSLATE FILE = filename /TYPE = XLS

Lotus 1-2-3 or Symphony GET TRANSLATE FILE = filename /TYPE = WK

SYLK format GET TRANSLATE FILE = filename /TYPE = SLK

dBASE GET TRANSLATE FILE = filename /TYPE = DBF

SAS GET SAS DATA = filename

ASCII GET DATA /FILE = filename
/TYPE = TXT

ASCII (tab delimited) GET TRANSLATE FILE = filename /TYPE = TAB

Data accessed with ODBC driver GET DATA /FILE = filename
/TYPE = ODBC

The data can be saved in a similar variety of formats by choosing Save As from the File
menu. Alternatively, command syntax can be written using the SAVE, EXPORT and SAVE
TRANSLATE commands.

1.4 Interface features

SPSS commands are written using a syntax language. All commands begin with a keyword
which is the name of the command. Many commands also take subcommands and some may
require additional specifications. For the purpose of this review all SPSS language is written
in upper case, whilst user-defined variables are in lower case. Most command lines can be
split into two or more lines at any point where a space could normally be inserted. Commands
can be run from either batch (also known as production) or interactive modes; any command
in interactive mode must finish with a full stop (period).
Although the use of syntax is essential to many users who want to ensure the replicability of
their research, most SPSS commands are available through pointing and clicking in the menu-
driven graphical user interface. The two commands identified as relating to multilevel
modelling are available under the Analyze menu. MIXED can be found by selecting Mixed
Models and then Linear (the only option available under Mixed Models in version 12.0). The
VARCOMP command is obtained through Generalized Linear Model, selecting Variance
Components.

2. Standard modelling tools for multilevel analysis

2.1 Fitting variance components using the VARCOMP command

The syntax of the VARCOMP command is
VARCOMP dependent variable BY factor list [WITH covariate list]
/RANDOM = factor [factor…]
[/METHOD = {MINQUE({1})*}]

{0}
{ML }
{REML }
{SSTYPE({3}) }

{1}
[/INTERCEPT = {INCLUDE*}]

{EXCLUDE }
[/MISSING = {EXCLUDE*}]

{INCLUDE }
[/REGWGT = varname]
[/CRITERIA = [CONVERGE({1.0E-8*})] [EPS({1.0E-8*})] [ITERATE({50*})]

{n } {n } {n }
[/PRINT = [EMS] [HISTORY({1*})] [SS]]

{n }



[/OUTFILE = [VAREST] [{COVB}] (filename)]
{CORB}

[/DESIGN = {[INTERCEPT] [effect effect …]}]

*Default if subcommand or keyword is omitted.

The VARCOMP command requires the higher level units to be specified as a factor in the main
command line, with these units then specified as random effects (random factors) using the
RANDOM subcommand. Further factors and covariates can be included in the main command.
The default estimation method is the minimum norm quadratic unbiased estimator with unit
prior weights. Alternative estimation methods – specified using the METHOD subcommand –
are maximum likelihood (ML), restricted maximum likelihood (REML), or ANOVA method
based on type I or type III sum of squares (SSTYPE(1) or SSTYPE(3)). The INTERCEPT
subcommand determines whether or not the intercept is to be included in the model, and the
MISSING subcommand determines the treatment of missing values. The REGWGT
subcommand is used to specify regression weights in a weighted least squares regression
model. CRITERIA is used to specify the convergence criterion in terms of the relative change
in the objective function between iterations (CONVERGE), the tolerance for checking for
singularity (EPS) and the maximum number of iterations (ITERATE). The PRINT
subcommand is used to request output in terms of the objective function and variance
components estimates at every n iterations (HISTORY(n), available only for maximum
likelihood or restricted maximum likelihood estimation), the expected mean squares and the
sums of squares (EMS and SS respectively, both available only for ANOVA estimation).
OUTFILE is used to save the results of the estimation; VAREST will save the variance
components estimates and COVB and CORB the covariance and correlation matrices (for ML
and REML estimation only). The DESIGN subcommand is used to specify the effects
(including interactions) included in a model, drawing from variables specified in the main
command. The default is to include the intercept all covariates on the variable list, the main
factorial effects and all orders of factor-by-factor interaction. Note that the VARCOMP
procedure therefore provides only estimates of the variance components, not estimates of the
regression coefficients. For this reason the rest of the review concentrates on the more general
MIXED command.

2.2 Fitting multilevel models using the MIXED command

The syntax of the MIXED command is
MIXED dependent variable [BY factor list] [WITH covariate list]
[/CRITERIA = [CIN({95*})] [MXITER({100*})] [MXSTEP({10*})] [SCORING({1*})]

{n } {n } {n } {n }
[SINGULAR({1E-12*})]

{n }
[{HCONVERGE({0*} {ABSOLUTE*}) }]

{n } {RELATIVE }
{LCONVERGE({0*} {ABSOLUTE*}) }

{n } {RELATIVE }
{PCONVERGE({1E-6*} {ABSOLUTE*})}

{n } {RELATIVE }
[/EMMEANS = TABLES({OVERALL })]

{factor }
{factor*factor…}

[WITH(covariate={n } [covariate={n }…])
{MEAN} {MEAN}

[COMPARE [({factor})] [REFCAT({n })] [ADJ({LSD* })] ]
{FIRST} {BONFERRONI}
{LAST } {SIDAK }

[/FIXED = [effect [effect…]] [| [NOINT] [SSTYPE({1 })] ] ]
{3*}

[/METHOD = {ML }]
{REML*}

[/MISSING = {EXCLUDE*}]
{INCLUDE }



[/PRINT = [CORB] [COVB] [CPS] [DESCRIPTIVES] [G] [HISTORY({1*})] [LMATRIX] [R]
{n }

[SOLUTION] [TESTCOV] ]
[/RANDOM = effect [effect…]

[| [SUBJECT(varname[*varname[*…]])] [COVTYPE({VC* })]] ]
{covstruct†}

[/REGWGT = varname]
[/REPEATED = varname[*varname[*…]] | SUBJECT(varname[*varname[*…]])

[COVTYPE({DIAG* })] ]
{covstruct†}

[/SAVE = [tempvar [(name)] [tempvar [(name)]] …] ]
[/TEST[(valuelist)]=[‘label’] effect valuelist … [| effect valuelist …] [divisor=n]]

[; effect valuelist … [| effect valuelist …] [divisor=n] ]
[/TEST[(valuelist)] = [‘label’] ALL list [| list] [divisor=n]

[; ALL list [| list] [divisor=n]] ]

*Default if subcommand or keyword is omitted.
†covstruct can take one of the following values: AD1, AR1, ARH1, ARMA11, CS, CSH, CSR,
DIAG, FA1, FAH1, HF, ID, TP, TPH, UN, UNR, VC.

The MIXED procedure can be used to fit a variety of mixed linear models including multilevel
models. The command line is used to identify the dependent variable together with any
factors and covariates to be included in the analysis. Note that, unlike the VARCOMP
command, the MIXED command line does not require the specification of higher level units as
factors. The CRITERIA subcommand is used to control the algorithm used for estimation and
associated tolerance. Convergence can be determined by reference to the Hessian
(HCONVERGE), the log-likelihood function (LCONVERGE) or the parameter estimates
(PCONVERGE). The EMMEANS subcommand is used to provide the estimated marginal means
for specific factors (or an overall mean if TABLES(OVERALL) is specified). The subcommand
FIXED is used to specify which of the factors and covariates are to be included as fixed
effects. Interactions can be included by using the BY keyword or, alternatively, an asterisk (*).
An intercept is included unless the NOINT keyword is used. The METHOD subcommand is used
to specify whether estimation is maximum likelihood or restricted maximum likelihood (the
default), and the MISSING subcommand determines the treatment of missing values. The
PRINT subcommand dictates the output of the MIXED analysis; options include printing the
correlation and covariance matrices of the fixed parameter estimates (CORB and COVB),
summary statistics of the dependent variable and any covariates for all combinations of
factors including the higher level units specified using the RANDOM subcommand, the
covariance matrix of the random effects (G), fixed and random parameter estimates
(SOLUTION) and standard errors and Wald tests for the covariance parameters (TESTCOV).
The RANDOM subcommand is used to specify the random part of the model; it specifies which
factors or covariates are to be treated as random effects and at which level. To include a
random intercept the keyword INTERCEPT must be specified as the first random effect in the
RANDOM subcommand (the default is to exclude the intercept). There are a number of ways of
specifying some models; for example, a random intercept model with higher level units
defined by “L2_units” can be specified either by declaring “L2_units” to be a factor on the
command line and entering “L2_units” as a random factor:
MIXED yvar BY L2_units

/RANDOM = L2_units .

or by entering a random intercept and using the SUBJECT keyword of the RANDOM
subcommand to identify the higher level units:
MIXED yvar

/RANDOM = INTERCEPT | SUBJECT(L2_units) .
The RANDOM subcommand can be called repeatedly to configure complex random structures.
The COVTYPE keyword specifies which of a list of pre-defined covariance structures is to be
used. Many of the covariance structures allowed will be of interest for fitting growth curve or
repeated measures models (e.g. first order ante-dependence AD1, first order autoregressive
AR1, and diagonal or heterogeneous variances DIAG). For random effect models the common



choice will be an unstructured covariance matrix (UN) which will fit all variances and
covariances between random effects. The REGWGT subcommand can be used to apply
regression weights to the analysis. The REPEATED subcommand can be used to specify the
covariance structure at level 1 in much the same way as the RANDOM subcommand. The
SUBJECT keyword must be used to identify the hierarchical structure and must contain all of
the variables specified as the subject (using the SUBJECT keyword) in any RANDOM
subcommands. The SAVE subcommand can be used to save various case-specific statistics
depending on the keywords used; the options are to save any of the predicted values based on
the fixed part of the model (FIXPRED) or the fixed and higher level random parts (PRED),
together with their standard errors (SEFIXP and SEPRED) and Satterthwaite degrees of
freedom (DFFIXP and DFPRED) and the (composite level 1) residuals (RESID). Finally, the
TEST subcommand allows the specification of null hypotheses as linear combination of
parameters for both the fixed and random parts of the model. This subcommand conducts the
F-test proposed by Fai and Cornelius (1996).

2.3 Information criteria available through the MIXED command

In addition to –2 log likelihood (or –2 restricted log likelihood if the METHOD is set to REML),
the MIXED command gives four information criteria to assist model selection and comparison.
These are the Akaike information criterion or AIC (Akaike, 1973):

2 2AIC d= − +l

the finite sample corrected AIC, or AICC (Hurvich and Tsai, 1989):

( )
22

1C
dnAIC

n d
= − +

− −
l

the consistent AIC (CAIC; Bozdogan, 1987):

( )2 log 1CAIC d n= − + +  l

and the Bayesian information criterion or BIC (Schwarz, 1978):

( )2 logBIC d n= − +l

When using maximum likelihood estimation, n  is taken to be the total number of level 1
units and d  the number of fixed parameters plus the number of random parameters. For
REML estimation, n  is taken to be the total number of level 1 units minus the number of
fixed parameters and d  the number of random parameters.

2.4 Algorithm used by the MIXED command

The MIXED command uses Newton and scoring algorithms to maximise the likelihood (or
restricted likelihood in the case of REML estimation). The algorithms used are those outlined
by Wolfinger et al. (1994).



3. Model specifications – basic models

3.1 2-level normal models

The dataset used to illustrate the fitting of a 2-level normal model is the example taken from
the user’s guide to MLwiN (Rasbash et al., 2000), and comprises a sample of examination
results from schools in six inner London Education Authorities (school boards). There are
results for 4,059 students (level 1) nested within 65 schools (level 2), with between 2 and 198
students per school. The outcome for the ith pupil in the jth school, ijy , has been standardised
to a normal score with zero mean and unit variance, as has one of the covariates relating to
prior ability (the London Reading Test score, 1ijx ). The other individual covariate is the sex of
the student, taking the value 0 for boys and 1 for girls. There is also an indicator of the sex
mix in the school, taking the value 1 for a mixed school, 2 for a boys’ school and 3 for a girls’
school. Fitting such a categorical variable requires the creation of two dummy variables, 3 jx
and 4 jx , indicating membership of two of these categories (the third category being used as
the baseline or comparison group). These data have already been read into SPSS.
We start by fitting a variance components model to the data to estimate the effect of the
covariates on the standardised exam score and to partition the variance between that arising
due to differences between schools and that due to differences between students within
schools. This model can be written as
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The parameters that we will estimate are the 5 fixed parameters 0β ,…, 4β  and the two

variances 2
0uσ  and 2

0eσ .
SPSS fits categorical variables as factors through the use of the BY keyword of the VARCOMP
and MIXED commands. This creates the dummy variables necessary, using the last category as
the comparison group. The reference category can therefore be changed by using the RECODE
command. In equation (1) 2ijx  has been coded as a dummy variable indicating the mean

effect of girls relative to boys (so for SPSS we have 2ijx  = 1 indicating a girl, 2ijx  = 2

indicating a boy), and 3 jx  and 4 jx  indicate whether the school was a boys’ school or a girls’
school respectively. (Note that, in general, such factors can be numeric or string variables.)
We can fit model (1) using the code
MIXED normexam BY sex schlsex WITH standlrt

/EMMEANS TABLES(sex*schlsex) WITH(standlrt=0)
/FIXED = standlrt sex schlsex
/RANDOM = INTERCEPT | SUBJECT(school)
/METHOD = ML
/PRINT = COVB G HISTORY SOLUTION TESTCOV
/SAVE = FIXPRED (fix_pred) PRED (tot_pred) RESID (resid) .

EXECUTE .

The EMMEANS and PRINT subcommands are not required for this analysis – the code above is
intended to illustrate their use. The SAVE command requests the predicted values from the
fixed part of the model (saved in fix_pred), the predicted values from the fixed and random
parts of the model (tot_pred) and the level 1 residuals (resid); this could again be omitted.



The estimates for this model (using both maximum likelihood ML and restricted maximum
likelihood REML) estimation are given in table 1.
The next model includes an interaction between the two student level variables, the London
Reading Test score and gender, in the fixed part of the model.

0 1 1 2 2 3 3 4 4 5 1 2 0 0ij ij ij j j ij ij j ijy x x x x x x u eβ β β β β β= + + + + + + + (2)

In equation (2) the parameter 5β  fits the difference between the slope with the London
Reading Test score for girls (compared to boys). This model can be fitted by including an
interaction term in the FIXED subcommand

/FIXED = standlrt sex standlrt*sex schlsex

The resulting parameter estimates are again shown in table 1.
The next model extends model (2) by allowing the coefficient of the London Reading Test
score to vary at random across schools.
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(3)

This model can be specified by changing the RANDOM subcommand
/RANDOM = INTERCEPT standlrt | SUBJECT(school) COVTYPE(UN)

Note that the default covariance structure for the RANDOM subcommand is variance
components (VC); this means that, if the specification COVTYPE(UN) is omitted from the
above command, SPSS will by default fit independent variances for the intercept and prior
ability (i.e. the covariance term 01uσ  in (3) will be omitted). The parameter estimates are
given in table 1.
It does not appear possible in SPSS to model heterogeneity by fitting different variances for
men and women:
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(4)

where 6ijx  is an indicator variable taking the value 1 for boys, 0 for girls i.e. 6 21ij ijx x= − .
Such a model can be fitted in other standard software packages such as MLwiN (Rasbash et
al., 2000) and SAS (SAS Institute Inc., 1999).

3.2 3-level normal models

The dataset used to illustrate the 3-level normal response model is that previously analysed by
Fielding et al.(2003) and refers to A/AS level examinations. The results for a Chemistry
exam, in terms of the point score (0, 2, 4, … 10) are given for 31,022 individuals from 2280
schools in 131 Local Education Authorities in England. The covariate we use for student i
from school j  in Education Authority k  is an intake score (average GCSE score, 1ijkx ). The
model we consider is a variance components model:
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The addition of further levels to a model can be accomplished by using multiple RANDOM
subcommands:
MIXED chem WITH gcse

/FIXED = gcse
/RANDOM = INTERCEPT | SUBJECT(lea) COVTYPE(ID)
/RANDOM = INTERCEPT | SUBJECT(school*lea) COVTYPE(ID)
/METHOD = ML
/PRINT = COVB G HISTORY SOLUTION TESTCOV
/SAVE = FIXPRED (fix_pred) PRED (tot_pred) RESID (resid) .

EXECUTE .

The declaration of SUBJECT(school*lea) following the previous SUBJECT(lea)
indicates that schools are nested within Local Education Authorities. If the schools are given
unique identifiers 1,…,2280 then the second RANDOM subcommand could be replaced by
/RANDOM = INTERCEPT | SUBJECT(school) COVTYPE(ID)

This second RANDOM subcommand then fits a cross-classification of schools by Local
Education Authorities (see section 4.1), but the unique labelling of schools means that it fits a
model identical to that specified in the previous syntax – the only difference being that the
cross-classified model takes about 16 hours to converge instead of under 2 minutes for the
nested model.
When fitting the nested model it makes no difference in theory whether unique identifiers are
used for the schools or not; in practice, however, the use of unique identifiers for a large
dataset such as this one is likely to result in memory problems. The solution is to recode the
school identifier such that it runs from 1,…, kn  within each Local Education Authority. If the
original coding of the schools is 1,…,2280 then one way of recoding them is as follows:
AGGREGATE OUTFILE = 'Temp.sav'

/BREAK = lea
/minschl = MIN(school) .

MATCH FILES /FILE = *
/TABLE = 'Temp.sav'
/BY lea .

COMPUTE school = school - minschl + 1 .
EXECUTE .
DELETE VARIABLES minschl .
EXECUTE .

3.3 Models for repeated measures data

Repeated measures models can be fitted using the MIXED command to balanced or
unbalanced datasets, with or without time variant covariates. The REPEATED subcommand is
used to specify the observations and the hierarchy (in addition to the RANDOM subcommand)
as well as the covariance structure.
The data used to illustrate the repeated measures models is that analysed by Goldstein et al.
(1994) and refer to the height of 26 boys aged 11 to 13 measured over 9 occasions



approximately 3 months apart. The data are balanced i.e. there are exactly 9 measurements
made on each boy with no missing values.
We can first consider fitting a quartic polynomial to the height (cm) of the j th boy measured
on occasion i  (at age ijt , centred around 12 years), ijy , with the coefficients of the intercept,
linear and quadratic terms varying at random across the boys:
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(6)

This model can be fitted using:
MIXED height WITH age

/FIXED = age age*age age*age*age age*age*age*age
/RANDOM = INTERCEPT age age*age | SUBJECT(id) COVTYPE(UN)
/METHOD = ML
/PRINT = COVB G HISTORY SOLUTION TESTCOV
/SAVE = FIXPRED (fix_pred) PRED (tot_pred) RESID (resid) .

EXECUTE .

We can now extend model (6) to fit first order autoregressive AR(1) errors at level 1.
Goldstein et al. (1994) found evidence of seasonal effects on height; to counter this we
include the sine and cosine of a seasonal (calendar year) time component ijT  in the fixed part
of the model. Our model then becomes:
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Fitting this model requires, in addition to the declaration of the additional fixed parameters, a
REPEATED subcommand specifying the measurement occasion i  (coded 1 to 9 for each
subject and called ‘occasion’) and an AR(1) covariance matrix at level 1.
COMPUTE sinT = sin(season) .
COMPUTE cosT = cos(season) .
MIXED height WITH age sinT cosT

/CRITERIA = MXSTEP(25)
/FIXED = age age*age age*age*age age*age*age*age sinT cosT
/RANDOM = INTERCEPT age age*age | SUBJECT(id) COVTYPE(UN)
/REPEATED = occasion | SUBJECT(id) COVTYPE(AR1)
/METHOD = ML
/PRINT = COVB G HISTORY SOLUTION TESTCOV
/SAVE = FIXPRED (fix_pred) PRED (tot_pred) RESID (resid) .

EXECUTE .

If the data are unbalanced – if there aren’t the same number of observations for each
individual – SPSS is still able to fit the above repeated measures models.



4. Model specifications – more complex models

4.1 Cross-classified random effects models

As shown in section 3.2 above it is easy to fit cross-classified multilevel models using the
MIXED command simply by adding another RANDOM subcommand and declaring an additional
(non-nested) hierarchy. The data used to illustrate such a model relate to the exam scores of
3435 16 year old students in Fife, Scotland, with a view to disentangling the effects on
educational attainment of the 148 primary schools and 19 secondary schools attended. The
score of the i th child who attended primary school j  and secondary school k , ijky , is

modelled in terms of the student’s sex 1ijkx  (taking the value 1 for girls, 0 for boys) only:
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This model can be fitted using:
MIXED attain BY sex

/FIXED = sex
/RANDOM = INTERCEPT | SUBJECT(sid)
/RANDOM = INTERCEPT | SUBJECT(pid)
/METHOD = ML
/PRINT = COVB G HISTORY SOLUTION TESTCOV .

EXECUTE .

where sid and pid are the identifying codes for secondary school and primary school
respectively. Note that the order of the RANDOM subcommands is not important. (The order of
the subcommands is not important for any of these models fitted using the MIXED command.)
For this model SPSS v12.0 would not let me save predicted values or residuals.
A model with the gender effect varying randomly across primary school:
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(9)

where 2 11ijk ijkx x= −  is a dummy variable taking the value 1 for boys and 0 for girls, can be
fitted by changing the relevant RANDOM subcommand:

/RANDOM = sex | SUBJECT(pid) COVTYPE(UN)

Since sex has been declared as a factor on the MIXED command, the above RANDOM
subcommand will allow both factors (boys and girls) to vary at random across primary
schools and so the INTERCEPT should not be included. The covariance type needs to be
specified as unstructured (UN) to estimate the covariance term 01uσ  as described in section
3.1.



4.2 Multivariate normal response models

The multiple response model can be thought of as an extension of a repeated measures model
– instead of a number of measurements of the same item made at different points in time we
have measurements of a number of different items. We can use fixed effects to control for
differences in the means between responses and random effects to model the different
variances, but the real advantage of fitting multivariate response models is the ability to
model the correlation between responses.
The data used to illustrate this model are examination scores for 1905 16 year old students
from 73 schools in England, where results are available both for a written paper Wjky  and for

coursework Cjky  for pupil j  in school k . The fitted model is then
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(10)

where 1 jkx  is a dummy variable taking the value 1 for boys, 0 for girls. The trick to fitting

such a model is to stack the responses into a single column ijky  and introduce an indicator

variable ijkI  taking the value 1 for the written exam ( i W= ), 0 otherwise. Then we can write

( )1ijk ijk Wjk ijk Cjky I y I y= + − (11)

If the data have multiple responses per record they need to be transformed from a format such
as:
school student sex writnexm courswk
2 37 2 33 47.2
2 38 1 64 .

to a format with one response per record:
school student sex index y
2 37 2 1 33
2 37 2 2 47.2
2 38 1 1 64
2 38 1 2 .

This can be done with the following syntax:
COMPUTE index = 2 .
AGGREGATE OUTFILE = 'Temp.sav'

/BREAK = school student
/sex = MEAN(sex)
/index = MEAN(index)
/y = MEAN(courswk) .

COMPUTE y = writnexm .
COMPUTE index = 1 .
EXECUTE .
DELETE VARIABLES writnexm courswk .
EXECUTE .



ADD FILES /FILE = *
/FILE = 'Temp.sav' .

SORT CASES BY school student (A) .
EXECUTE .

Note that the data may contain missing values; in the above example there is no score for
coursework for student 38 in school 2. As mentioned in section 3.3 SPSS can analyse
unbalanced repeated measures data, and since we use the REPEATED subcommand here this
extends to missing multivariate responses.
To fit the model in SPSS we declare a 3-level model, with schools at the highest level and
repeated measures on students at levels 1 and 2. There is, however, no modelling of the
variance at the student level (there is no RANDOM subcommand with the keyword
SUBJECT(student)).
MIXED y BY index sex

/FIXED = index index*sex | NOINT
/RANDOM = index | SUBJECT(school) COVTYPE(UN)
/REPEATED = index | SUBJECT(school*student) COVTYPE(UN)
/METHOD = ML
/PRINT = COVB G HISTORY SOLUTION TESTCOV
/SAVE = FIXPRED (fix_pred) PRED (tot_pred) RESID (resid) .

EXECUTE .

The use of school*student on the REPEATED subcommand indicates the nesting of
students within schools as discussed in section 3.2, and assumes that the students are
numbered from 1 to kn  within each school. Specifying no intercept on the FIXED
subcommand (using the NOINT keyword) ensures that separate estimates are obtained for
each of the written exam and coursework components. Similarly there is no intercept included
on the RANDOM subcommands – the variable index distinguishes between the two responses
and will therefore fit separate random intercepts. Using the COVTYPE(UN) keyword specifies
an unstructured covariance matrix for responses and schools.
This model can be extended and generalised as required.

5. Obtaining residuals in SPSS

SPSS 12.0 does not provide the higher level residuals directly, presumably because these are
seen as some kind of nuisance terms. However, in many cases there will be substantive
interest in the residuals and the SAVE subcommand can be used to save the fixed part
predictions (FIXPRED) as well as the predictions from the fixed and random parts of the
model (PRED).  For the general linear multilevel model, written in matrix form,

= + +Y Xβ Zγ e (12)

where γ  is a stacked vector of all residuals (slopes and intercepts) at all levels and Z  is the
corresponding design matrix, the predictions from the fixed part correspond to

ˆˆ =*Y Xβ (13)

and the predictions from the fixed and random parts are given by

ˆˆ ˆ= +Y Xβ Zγ (14)

It follows from (13) and (14) that the predicted residuals γ̂  are given by



( ) ( )ˆ ˆˆ = −
-1T T *γ Z Z Z Y Y (15)

For the trivial example of a 2-level variance components model given by (1) or (2), the
following code uses the MATRIX command (and, in particular, the SOLVE function) in SPSS to
obtain estimates of the school-level residuals.
AUTORECODE VARIABLES = school
/INTO l2id .

SORT CASES BY l2id .
* get composite residuals .
COMPUTE comp_res = tot_pred - fix_pred .
* make sure MXLOOP is greater than the number of schools .
SET MXLOOP = 100 .
MATRIX .

GET l2id
/FILE = *
/VARIABLES = l2id .

GET school
/FILE = *
/VARIABLES = school .

GET comp_res
/FILE = *
/VARIABLES = comp_res .

COMPUTE temp_mat = (l2id = 1) .
COMPUTE zmat = {temp_mat} .
LOOP i = 2 TO l2id(NROW(l2id)) .

COMPUTE temp_mat = (l2id = i) .
COMPUTE zmat = {zmat, temp_mat} .

END LOOP .
COMPUTE zTz = T(zmat)*zmat .
COMPUTE zTy = T(zmat)*comp_res .
COMPUTE res_2 = SOLVE(zTz,zTy) .
COMPUTE zTy = T(zmat)*school .
COMPUTE schl_2 = SOLVE(zTz,zTy) .
SAVE {schl_2,res_2}
/OUTFILE = *
/VARIABLES = school res_2_1 .

END MATRIX .
EXECUTE .

The MATRIX command of this code can be modified to estimate, for example, residuals for the
2-level random slopes model given by (3):
MATRIX .

GET l2id
/FILE = *
/VARIABLES = l2id .

GET school
/FILE = *
/VARIABLES = school .

GET comp_res
/FILE = *
/VARIABLES = comp_res .

GET standlrt
/FILE = *
/VARIABLES = standlrt .

COMPUTE temp_mat = (l2id = 1) .
COMPUTE zmat = {temp_mat} .
LOOP i = 2 TO l2id(NROW(l2id)) .

COMPUTE temp_mat = (l2id = i) .



COMPUTE zmat = {zmat, temp_mat} .
END LOOP .
COMPUTE zTz = T(zmat)*zmat .
COMPUTE zTy = T(zmat)*school .
COMPUTE schl_2 = SOLVE(zTz,zTy) .
LOOP i = 1 TO l2id(NROW(l2id)) .

COMPUTE temp_mat = (l2id = i)&*standlrt .
COMPUTE zmat = {zmat, temp_mat} .

END LOOP .
COMPUTE zTz = T(zmat)*zmat .
COMPUTE zTy = T(zmat)*comp_res .
COMPUTE res_2 = SOLVE(zTz,zTy) .
COMPUTE temp_mat = IDENT(l2id(NROW(l2id)),2*l2id(NROW(l2id))) .
COMPUTE res_2_1 = temp_mat*res_2 .
COMPUTE temp_mat = {0*IDENT(l2id(NROW(l2id))),

IDENT(l2id(NROW(l2id)))} .
COMPUTE res_2_2 = temp_mat*res_2 .
SAVE {schl_2,res_2_1,res_2_2}
/OUTFILE = *
/VARIABLES = school res_2_1 res_2_2 .

END MATRIX .
EXECUTE .

Of course the residuals are of little use in themselves without their corresponding standard
errors. The dispersion matrix of the residuals can be estimated using formulae given by e.g.
Goldstein (2003).

6. Conclusions

Multilevel modelling in SPSS has definite limitations; in particular, the restriction to normal
response models means that several classes of model cannot be fitted. These include such
common models as multilevel logistic regression and multilevel Poisson regression models
and, through these, developments such as multilevel categorical responses or multilevel Cox
regression.
The major limitation to the normal response models is the restricted ability to specify the
covariance matrix at the lowest level. In particular, this means that SPSS is not able to fit
models with heterogeneous variances as in equation (4). This may seem like a minor
limitation but in effect it means that the user must hypothesise that the lowest level variance is
the same for all subgroups (and that it is independent of the value of any covariate) without
being able to test these hypotheses. This becomes particularly important when testing for
random slopes at higher levels, since the inability to model the variance at the lowest level
may effect the outcome of such tests. Moreover, although it is possible to obtain higher level
residuals from the models that SPSS fits, it is unduly cumbersome at present.
However, there are some strengths to the SPSS MIXED command. The alteration or addition
of RANDOM subcommands makes it easy to change the random specification of a model (at the
higher levels) or to add further levels, and it is as straightforward to fit cross-classified models
as it is to fit hierarchical models. The REPEATED subcommand provides a wide range of
correlation functions, and the use of these makes it simple to fit normal multivariate response
models. There is no requirement for datasets to be balanced or complete, the information
criteria provided are fairly comprehensive and the algorithm used is fast. The MIXED
command is also available through the Windows interface (as opposed to through the use of
the command syntax); a description of the use of the MIXED command through the Windows
interface can be found elsewhere (Landau and Everitt, 2004).
The widespread use of SPSS means that, if it to be taken seriously as a statistical package, it
is important that multilevel data analysis should be available. The MIXED command already
covers most of the multilevel analyses that most users will require for (normally distributed)



continuous outcomes. However, in many disciplines continuous measures will be the
exception rather than the rule and SPSS will remain limited until it introduces commands to
fit generalised discrete response multilevel models. Put it like this: unless all of your
(multilevel) data have normally distributed responses you are going to need to use a package
other than SPSS to analyse them. In which case, is it worth taking the time to learn how to use
the MIXED command in SPSS when you are also going to have to learn to use other software?
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Table 1: parameter estimates for 2-level models

ML REML
Model Parameter Estimate SE Time Estimate SE Time
(1)

0β -0.0091 0.0763 1s -0.0094 0.0779 1s

1β 0.5600 0.0124 0.5598 0.0125

2β 0.1672 0.0341 0.1674 0.0341

3β -0.1590 0.0873 -0.1590 0.0894

4β 0.0187 0.1232 0.0187 0.1261
2
0uσ 0.0811 0.0165 0.0858 0.0178

2
0eσ 0.5623 0.0126 0.5625 0.0126

-2 log like 9325.43 9347.67
(2)

0β -0.0091 0.0763 1s -0.0094 0.0779 1s

1β 0.5628 0.0184 0.5626 0.0184

2β 0.1672 0.0341 0.1673 0.0341

3β -0.1588 0.0873 -0.1588 0.0894

4β 0.0188 0.1232 0.0189 0.1261

5β -0.0051 0.0246 -0.0051 0.0246
2
0uσ 0.0811 0.0166 0.0859 0.0178

2
0eσ 0.5623 0.0126 0.5627 0.0126

-2 log like 9325.39 9353.20
(3)

0β -0.0114 0.0728 2s -0.0120 0.0742 2s

1β 0.5507 0.0255 0.5503 0.0257

2β 0.1683 0.0338 0.1686 0.0338

3β -0.1784 0.0801 -0.1779 0.0821

4β -0.0007 0.1136 -0.0004 0.1163

5β 0.0069 0.0294 0.0069 0.0295
2
0uσ 0.0795 0.0164 0.0837 0.0175

01uσ 0.0202 0.0067 0.0205 0.0070
2
1uσ 0.0147 0.0046 0.0152 0.0047

2
0eσ 0.5502 0.0124 0.5504 0.0124

-2 log like 9281.07 9308.24



Table 2: parameter estimates for 3-level model

ML REML
Model Parameter Estimate SE Time Estimate SE Time
(5)

0β -9.9067 0.1089 112s -9.9063 0.1090 120s

1β 2.4726 0.0169 2.4726 0.0169
2
0vσ 0.0136 0.0135 0.0148 0.0139

2
0uσ 1.1662 0.0555 1.1662 0.0555

2
0eσ 5.1541 0.0431 5.1542 0.0555

-2 log like 141685.6 141728.0



Table 3: parameter estimates for repeated measures models

ML REML
Model Parameter Estimate SE Time Estimate SE Time
(6)

0β 148.9753 1.5396 1s 148.9753 1.5701 1s

1β 6.1659 0.3510 6.1658 0.3574

2β 1.0906 0.3490 1.0905 0.3525

3β 0.4678 0.1625 0.4678 0.1635

4β -0.3404 0.3002 -0.3404 0.3021
2
0uσ 61.5486 17.0858 64.0120 18.1211

2
1uσ 2.7627 0.7823 2.8748 0.8297

2
2uσ 0.6304 0.2248 0.6604 0.2384

01uσ 7.9922 3.0232 8.3119 3.2063

02uσ 1.3633 1.4058 1.4158 1.4910

12uσ 0.8747 0.3419 0.9096 0.3626
2
0eσ 0.2175 0.0246 0.2203 0.0251

-2 log like 627.278 629.825
(7)

0β 148.8878 1.5350 4s 148.8877 1.5656 4s

1β 6.2528 0.3741 6.2522 0.3812

2β 1.9434 0.5035 1.9437 0.5107

3β 0.1855 0.2410 0.1857 0.2444

4β -1.1160 0.4307 -1.1162 0.4365

5β -0.2736 0.0972 -0.2737 0.0986

6β 0.1212 0.0613 0.1212 0.0622
2
0uσ 60.6582 16.9393 63.0951 17.9734

2
1uσ 2.2110 0.6972 2.3051 0.7425

2
2uσ 0.3116 0.2730 0.3235 0.2861

01uσ 7.7376 2.8631 8.0443 3.0412

02uσ 2.0516 1.5335 2.1305 1.6179

12uσ 0.8061 0.3424 0.8390 0.3623
2
0eσ 0.7334 0.0837 0.7626 0.0882

ρ 0.7084 0.7116
-2 log like 622.136 631.602



Table 4: parameter estimates for cross-classified model

ML REML
Model Parameter Estimate SE Time Estimate SE Time
(8)

0β 5.2574 0.1807 12s 5.2552 0.1843 12s

1β 0.4986 0.0982 0.4985 0.0983
2
0vσ 0.3457 0.1609 0.3697 0.1733

2
0uσ 1.1043 0.2023 1.1096 0.2036

2
0eσ 8.0534 0.1990 8.0551 0.1991

-2 log like 17123.5 17127.9
0β 5.2605 0.1783 1m30s 5.2580 0.1821 1m37s

1β 0.4939 0.1072 0.4940 0.1078
2
0vσ 0.3409 0.1602 0.3652 0.1727

2
1uσ 1.2960 0.2810 1.3066 0.2837

12uσ 1.0652 0.2085 1.0667 0.2100
2
2uσ 1.0258 0.2224 1.0324 0.2242

2
0eσ 8.0062 0.2013 8.0050 0.2013

-2 log like 17121.4 17125.7



Table 5: parameter estimates for multivariate response model

ML REML
Model Parameter Estimate SE Time Estimate SE Time
(8)

0Wβ 49.0084 0.9318 3s 49.0096 0.9380 3s

0Cβ 69.6230 1.1719 69.6211 1.1795

1Wβ -2.4930 0.5603 -2.4913 0.5605

1Cβ 6.7567 0.6706 6.7574 0.6709
2
Wvσ 46.5648 9.3531 47.3794 9.5623

WCvσ 24.9371 8.9916 25.3663 9.1903
2
Cvσ 75.1936 14.6729 76.4476 14.9919
2
Wuσ 124.4335 4.3363 124.5024 4.3400

WCuσ 72.7489 4.1521 72.7841 4.1555
2
Cuσ 180.0697 6.2499 180.1729 6.2553

-2 log like 26799.5 26794.6
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