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Overview of Course

Multilevel discrete-time models for recurrent events

- Time-to-event (duration) models

Models for transitions between states

- Event history models for transitions between two states
- Multiple states and competing risks models
- State dependence (autoregressive) models

Methods to handle endogenous predictors

- Simultaneous equation models
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Modelling Recurrent Events
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Multilevel Event History Data

Multilevel event history data arise when events are repeatable (e.g.
births, partnership dissolution) or individuals are organised in
groups.

Suppose events are repeatable, and define an episode as a
continuous period for which an individual is at risk of experiencing
an event, e.g.

Event Episode duration

Birth Duration between birth k − 1 and birth k

Marital dissolution Duration of marriage

Denote by yij the duration of episode i of individual j , which is
fully observed if an event occurs (δij = 1) and right-censored if not
(δij = 0).
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Discrete-Time Data

In this course, we focus on discrete-time methods.

In social research, event history data are usually collected:

retrospectively in a cross-sectional survey, where dates are
recorded to the nearest month or year, OR

prospectively in irregularly-spaced waves of a panel study (e.g.
annually)

Both give rise to discretely-measured durations.

We can convert the observed data (yij , δij) to a sequence of binary
responses {ytij} where ytij indicates whether an event has occurred
in time interval [t, t + 1).
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Data Structure: The Person-Period-Episode File

individual j episode i yij δij

1 1 2 1

1 2 3 0

↓
individual j episode i t ytij

1 1 1 0

1 1 2 1

1 2 1 0

1 2 2 0

1 2 3 0
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Discrete-Time Hazard Function

Denote by ptij the probability that individual j has an event during
interval t of episode i , given that no event has occurred before the
start of t.

ptij = Pr(ytij = 1|yt−1,ij = 0)

ptij is a discrete-time approximation to the continuous-time hazard
function.

Call ptij the discrete-time hazard function.
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Problem with Analysing Recurrent Events

We cannot assume that the durations of episodes from the same
individual are independent.

There may be unobserved individual-specific factors (i.e. constant
across episodes) which affect the hazard of an event for all
episodes, e.g. ‘taste for stability’ may influence risk of leaving a
job.

The presence of such unobservables, and failure to account for
them in the model, will lead to correlation between durations of
episodes from the same individual.
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Multilevel Discrete-time Model for Recurrent Events

Multilevel (random effects) discrete-time logit model:

log

(
ptij

1− ptij

)
= Dtijα + xtijβ + uj

ptij is the probability of an event during interval t

Dtij is a vector of functions of the cumulative duration by interval
t with coefficients α

xtij a vector of covariates (time-varying or defined at the episode or
individual level) with coefficients β

uj ∼ N(0, σ2
u) allows for unobserved heterogeneity (‘shared frailty’)

between individuals due to time-invariant omitted variables
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Multilevel Model for Recurrent Events: Notes

The model for recurrent events is essentially the same as the
(single-level) model for unobserved heterogeneity

- Both can be estimated using multilevel modelling software

Recurrent events allow better identification of the random
effect variance σ2

u

Allow for non-proportional effects of covariate x by including
interaction between x and functions of t in D

Can allow duration and covariate effects to vary across
episodes

- Include a dummy for order of event and interact with t and x
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Modelling the Time-Dependency of the Hazard

Changes in ptij with t are captured in the model by Dtijα, the
baseline hazard function.

Dtij has to be specified by the user. Options include:

Polynomial of order p

Dtijα = α0 + α1t + . . .+ αpt
p

Step function

Dtijα = α1D1 + α2D2 + . . .+ αqDq

where D1, . . . ,Dq are dummies for time intervals t = 1, . . . , q and
q is the maximum observed event time. If q large, categories may
be grouped to give a piecewise constant hazard model.
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Testing for Unobserved Heterogeneity (H0 : σ2
u = 0)

Likelihood ratio test

Preferred method if maximum likelihood (usually via
numerical quadrature) used

Compare multilevel model (σ2
u 6= 0) with single-level model

(σ2
u = 0), and compare difference in model deviances to χ2 on

1 d.f. Take p-value/2 for one-sided test as σ2
u must be > 0

Software: Stata (xtlogit, xtmelogit, gllamm), aML, SAS

Bayesian credible intervals for σ2
u

Analogous to classical confidence intervals

Available if model estimated using Markov Chain Monte Carlo
(MCMC) methods

Software: MLwiN and WinBUGS
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Example: Women’s Employment Transitions

Analyse duration of non-employment (unemployed or out of
labour market) episodes

- Event is entry (1st episode) or re-entry (2nd + episodes) into
employment

Data are subsample from British Household Panel Study
(BHPS): 1399 women and 2284 episodes

Durations grouped into years ⇒ 15,297 person-year records

Baseline hazard is step function with yearly dummies for
durations up to 9 years, then single dummy for 9+ years

Covariates include time-varying indicators of number and age
of children, age, marital status and characteristics of previous
job (if any)
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Multilevel Logit Results for Transition to Employment:

Baseline Hazard and Unobserved Heterogeneity

Variable Est. (se)

Duration non-employed (ref is < 1 year)

[1,2) years −0.646* (0.104)

[2,3) −0.934* (0.135)

[3,4) −1.233* (0.168)

[4,5) −1.099* (0.184)

[5,6) −0.944* (0.195)

[6,7) −1.011* (0.215)

[7,8) −1.238* (0.249)

[8,9) −1.339* (0.274)

≥ 9 years −1.785* (0.175)

σu (SD of woman random effect) 0.662* (0.090)

* p < 0.5
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Multilevel Logit Results for Transition to Employment:

Presence and Age of Children

Variable Est. (se)

Imminent birth (within 1 year) −0.842* (0.125)

No. children age ≤ 5 yrs (ref=0)

1 child −0.212* (0.097)

≥ 2 −0.346* (0.143)

No. children age > 5 yrs (ref=0)

1 child 0.251 (0.118)

≥ 2 0.446* (0.117)

* p < 0.5
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Multilevel Logit Analysis of Employment:

Main Conclusions

Unobserved heterogeneity. Significant variation between
women. Deviance = 23.5 on 1 df; p<0.01

Duration effects. Probability of getting a job decreases with
duration out of employment

Presence/age of children. Probability of entering employment
lower for women who will give birth in next year or with young
children, but higher for those with older children

Other covariates. Little effect of age, but increased chance of
entering employment for women who are cohabiting, have
previously worked, whose last job was full-time, and whose
occupation is ‘professional, managerial or technical’
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Impact of Adding Individual Random Effects

Coefficients in a random effects (RE) model may be different from
those in the corresponding single-level (SL) model for two reasons:

RE model allows for selection effect due to unobserved
heterogeneity

- Most impact on duration effects α
- Estimates of α can increase or decrease depending on direction

of α

Scaling effect of introducing random effect

- Impact on both α and β
- Estimates will usually increase in magnitude
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Consequences of Unobserved Heterogeneity

If there are individual-specific unobserved factors that affect the
hazard, the observed form of the hazard function at the aggregate
population level will tend to be different from the individual-level
hazards.

For example, even if the hazards of individuals in a population are
constant over time, the population hazard (averaged across
individuals) will be time-dependent, typically decreasing. This may
be explained by a selection effect operating on individuals.
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Selection Effect of Unobserved Heterogeneity

If a population is heterogeneous in its susceptibility to experiencing
an event, high risk individuals will tend to have the event first,
leaving behind lower risk individuals.

Therefore as t increases the population is increasingly depleted of
those individuals most likely to experience the event, leading to a
decrease in the population hazard.

Because of this selection, we may see a decrease in the population
hazard even if individual hazards are constant (or even increasing).

19 / 141

Illustration of Selection for Constant Individual Hazards
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Impact of Unobserved Heterogeneity on

Duration Effects

If unobserved heterogeneity is incorrectly ignored:

A positive duration dependence will be understated (so
positive α become more strongly positive when uj added)

A negative duration dependence will be overstated

Changes in β are more likely to be due to scaling.

Note also that coefficients from random effects and single-level
models have a different interpretation (see later).
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Scaling Effect of Introducing uj (1)

To see the scaling effect, consider the latent variable (threshold)
representation of the discrete-time logit model.

Consider a latent continuous variable y∗ that underlies observed
binary y such that:

ytij =

{
1 if y∗tij ≥ 0

0 if y∗tij < 0

Threshold model

y∗tij = Dtijα + xtijβ + uj + e∗tij

e∗tij ∼ standard logistic (with variance ' 3.29) → logit model

e∗tij ∼ N(0, 1) → probit model

So the level 1 residual variance, var(e∗tij), is fixed.
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Scaling Effect of Introducing uj (2)

Single-level logit model expressed as a threshold model:

y∗ti = Dtiα + xtiβ + e∗ti

var(y∗ti |xti ) = var(e∗ti ) = 3.29

Now add random effects:

y∗tij = Dtijα + xtijβ + uj + e∗tij

var(y∗tij |xtij) = var(uj) + var(e∗tij) = σ2
u + 3.29

Adding random effects has increased the residual variance
→ scale of y∗ stretched out
→ α and β increase in absolute value.
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Scaling Effect of Introducing uj (3)

Denote by βRE the coefficient from a random effects model, and
βSL the coefficient from the corresponding single-level model.

The approximate relationship between these coefficients (for a logit
model) is:

βRE = βSL

√
σ2

u + 3.29

3.29

Replace 3.29 by 1 to get expression for relationship between probit
coefficients.

Note that the same relationship would hold for duration effects α if
there was no selection effect. In general, both selection and scaling
effects will operate on α.
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Interpretation of Coefficients (1)

Suppose we have a continuous x with coefficient β.

In single-level model, β compares the log-odds of an event for two
randomly selected individuals with x-values 1 unit apart (and with
the same values for all other covariates). exp(β) is the odds ratio.
We call β from this model the population-averaged or marginal
effect of x .

In a random effects model, exp(β) compares the odds of an event
for two hypothetical individuals with the same value of uj . If x
varies within individuals, β is the effect on the log-odds of a 1-unit
increase in x for a given individual. We call β from this model the
cluster-specific or individual-specific effect of x .

For an individual-level x (i.e. with no within-individual variation),
the population-averaged effect may be of more interest.
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Population-Averaged Predicted Probabilities (1)

Fortunately we can calculate predicted probabilities from a random
effects model that have a population-averaged interpretation.

The probability of an event in interval t of episode i for individual j
is:

ptij =
exp(Dtijα + xtijβ + uj)

1 + exp(Dtijα + xtijβ + uj)

where we substitute estimates of α, β, and uj to get predicted
probabilities.

Rather than calculating probabilities for each record tij , however,
we often want predictions for specific values of x. But what do we
substitute for uj?
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Population-Averaged Predicted Probabilities (2)

Suppose we want predictions for a particular combination of values
of x denoted by x∗. What do we do about the individual random
effects u?

1. Substitute the mean u = 0. But predictions are not the mean
response probabilities for x = x∗. Because pt is a nonlinear
function of u, the value of pt at mean of u 6= mean of pt .
Predictions at u = 0 are medians.

2. Integrate out u to obtain an expression for mean pt that does
not involve u. Leads to mean predicted pt that have a PA
interpretation, but requires some approximation.

3. Average over simulated values of u. Also gives PA
probabilities, but easier to implement.
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Population-Averaged Predictions via Simulation

Suppose we have 2 covariates, x1 and x2, and we want mean pt for
values of x1 holding x2 constant.

To get predictions for t = 1, . . . , q and x1 = 0, 1:

1. Set t = 1 and x1tij=0 for each record tij , retaining observed
x2tij

2. Generate uj for each individual j from N(0, σ̂2
u)

3. Compute predicted pt for each record tij based on x1tij = 0,

observed x2tij , generated uj , and (α̂, β̂)

4. Take mean of predictions to get mean pt for t = 1 and x1 = 0

5. Repeat 1-4 for t = 2, . . . , q

6. Repeat 1-5 for x1tij = 1
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Transitions to Employment: Duration Effects

Single-level Random effects

Variable Est. (se) Est. (se)

Duration non-employed

(ref is < 1 year)

[1,2) years −0.788* (0.095) −0.646* (0.104)

[2,3) −1.144* (0.122) −0.934* (0.135)

[3,4) −1.499* (0.154) −1.233* (0.168)

[4,5) −1.400* (0.167) −1.099* (0.184)

[5,6) −1.276* (0.177) −0.944* (0.195)

[6,7) −1.346* (0.197) −1.011* (0.215)

[7,8) −1.573* (0.233) −1.238* (0.249)

[8,9) −1.686* (0.258) −1.339* (0.274)

≥ 9 years −2.156* (0.143) −1.785* (0.175)

* p < 0.5
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Transitions to Employment: Selected Covariate Effects

Single-level Random effects

Variable Est. (se) Est. (se)

Imminent birth (within 1 year) −0.798* (0.116) −0.842* (0.125)

No. children ≤ 5 yrs (ref=0)

1 child −0.151 (0.088) −0.212* (0.097)

≥ 2 −0.240 (0.128) −0.346* (0.143)

No. children > 5 yrs (ref=0)

1 child 0.234* (0.107) 0.251* (0.118)

≥ 2 0.413* (0.101) 0.446* (0.117)

Ever worked 2.675* (0.121) 2.936* (0.151)

Previous job part-time −0.339* (0.085) −0.441* (0.100)

* p < 0.5
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Transitions to Employment:

Comparison of SL and RE Coefficients

Negative duration dependence is overstated in SL model

All covariate effects are larger in magnitude in RE model

Coefficients from the two models have a different
interpretation, e.g. for imminent birth

- Population-averaged estimate of −0.798 compares two
randomly selected women, one who is due to give birth and
one who is not. Alternatively, it is the average birth effect.

- Cluster-specific estimate of −0.842 is the effect of changing
‘birth status’ for a given woman.
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Predicted Probabilities of Entering Employment by

Duration Non-Employed and Imminent Birth

Duration (yrs) Median, u = 0 Mean, u ∼ N(0, σ2
u)

No birth Birth No birth Birth

< 1 0.165 0.092 0.177 0.099

[1,2) 0.106 0.055 0.114 0.061

[2,3) 0.086 0.043 0.095 0.051

[3,4) 0.068 0.033 0.077 0.039

[4,5) 0.076 0.037 0.083 0.043

[5,6) 0.085 0.043 0.095 0.050

[6,7) 0.081 0.040 0.089 0.046

[7,8) 0.068 0.033 0.073 0.038

[8,9) 0.062 0.030 0.070 0.035

≥ 9 0.043 0.020 0.049 0.025
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Predicted Survival Probabilities

We can calculate survival probabilities St from pt .

St = probability event occurs during or after interval t

= probability no event before start of t

= (1− p1)(1− p2) . . . (1− pt−1)

= St−1(1− pt−1)
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Mean pt and St for No Birth

St = probability of entering employment during or after interval t

Duration (yrs) pt St

< 1 0.177 1

[1,2) 0.114 0.823

[2,3) 0.095 0.730

[3,4) 0.077 0.660

[4,5) 0.083 0.609

[5,6) 0.095 0.559

[6,7) 0.089 0.506

[7,8) 0.073 0.461

[8,9) 0.070 0.427

≥ 9 0.049 0.397
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The Proportional Odds Assumption

The discrete-time logit models considered so far assume that the
effects of covariates x are constant over time. This is known as the
proportional odds assumption. (Analogous to the proportional
hazards assumption in models where the log-hazard is modeled,
and exp(β) is a ratio of hazards rather than odds.)

We can relax this assumption by introducing interactions between
the duration variables D and x.
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Testing for an Interaction between Duration

Non-Employed and Ever Worked

In our transitions to employment example, we will test whether the
effect of duration non-employed on the probability of entering
employment depends on whether a woman has worked before.
(Equivalently, we are testing whether the effect of having worked
before depends on the duration non-employed.)

We need to include the products of the ‘ever worked’ dummy with
each of the 9 duration dummies.

Using a likelihood ratio test, the change in deviance is 68.1 which
is compared to a χ2

9 distribution. The p-value is 4× 10−11, so
strong evidence of non-proportional effects of ‘ever worked’.
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Log-odds of Employment by Duration and Ever Worked

Stronger negative effects of duration non-employed if previously worked.

Gap between previously and never worked decreases with duration.

Note: Log-odds calculated at observed values of other x and u=0.
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Grouping Time Intervals

When we move to more complex models, a potential problem with
the discrete-time approach is that the person-episode-period file
can be very large. The size of the file will depend on sample size
and the length of the observation period relative to the width of
discrete-time intervals.

It may be possible to group time intervals, e.g. using 6-month
rather than monthly intervals. In doing so, we must assume the
hazard and values of covariates are constant within grouped
intervals.
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Analysing Grouped Intervals

If we have grouped time intervals, we need to allow for different
lengths of exposure time within these intervals. For example, for
any 6-month interval, some individuals will have the event or be
censored after the 1st month while others will be exposed for the
full 6 months.

Denote by ntij the exposure time for individual j in grouped
interval t of episode i . (Note: Intervals do not need to be the
same width.)

Fit binomial logit model for grouped binary data, with response ytij

and denominator ntij . Currently random effects binomial logit
models can be fitted in Stata (xtmelogit), MLwiN and SAS
(PROC NLMIXED).
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Example of Grouped Time Intervals

Suppose an individual is observed to have an event during the 17th
month of exposure, and we group durations into six-month
intervals (t). Instead of 17 monthly records we would have three
six-monthly records:

j i t ntij ytij

1 1 1 6 0

1 1 2 6 0

1 1 3 5 1
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Modelling Transitions Between States
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States in Event Histories

In the models considered so far, there is a single event (or
transition) of interest. We model the duration to this event from
the point at which an individual becomes “at risk”. We can think
of this as the duration spent in the same state.

E.g.

In the analysis of transitions into employment we model the
duration in the non-employment state

In a study of marital dissolution we model the duration in the
marriage state

More generally, we may wish to model transitions in the other
direction (e.g. into non-employment or marriage formation) and
possibly other transitions.

42 / 141

Examples of Multiple States

Usually individuals will move in and out of different states over
time, and we wish to model these transitions.

Examples:

Employment states: employed full-time, employed part-time,
unemployed, out of the labour market

Partnership states: marriage, cohabitation, single (not in
co-residential union)

We will begin with models for transitions between two states, e.g.
non-employment (NE) ↔ employment (E)

43 / 141

Transition Probabilities for Two States

Suppose there are two states indexed by s (s = 1, 2), and Stij

indicates the state occupied by individual j during interval t of
episode i .

Denote by ytij a binary variable indicating whether any transition
has occurred during interval t, i.e. from state 1 to 2 or from state
2 to 1.

The probability of a transition from state s during interval t, given
that no transition has occurred before the start of t is:

pstij = Pr(ytij = 1|yt−1,ij = 0, Stij = s), s = 1, 2

Call pstij a transition probability or discrete-time hazard for state s.

44 / 141



Event History Model for Transitions between 2 States

Multilevel two-state logit model:

log

(
pstij

1− pstij

)
= Dstijαs + xstijβs + usj ,

pstij is the probability of a transition from state s during interval t

Dstij is a vector of functions of cumulative duration in state s by
interval t with coefficients αs

xstij a vector of covariates affecting the transition from state s with
coefficients βs

usj allows for unobserved heterogeneity between individuals in their
probability of moving from state s. Assume uj = (u1j , u2j) ∼
bivariate normal.
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Random Effect Covariance in a Two-State Model

We assume the state-specific random effects usj follow a bivariate
normal distribution to allow for correlation between the
unmeasured time-invariant influences on each transition.

For example, a highly employable person may have a low chance of
leaving employment and a high chance of entering employment,
leading to cov(u1j , u2j) < 0.

Allowing for cov(u1j , u2j) 6= 0 means that the equations for states
s = 1, 2 must be estimated jointly. Estimating equations separately
assumes that cov(u1j , u2j) = 0.
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Data Structure for Two-State Model (1)

Start with an episode-based file.

E.g. employment (E) ↔ non-employment (NE) transitions

j i Stateij tij yij Ageij

1 1 E 3 1 16

1 2 NE 2 0 19

Note: (i) t in years; (ii) yij = 1 if a transition (event) occurs, 0 if
censored; (iii) Age in years at start of episode
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Data Structure for Two-State Model (2)

Convert episode-based file to discrete-time format with one record
per interval t:

t ytij Eij NEij EijAgeij NEijAgeij

1 0 1 0 16 0

2 0 1 0 16 0

3 1 1 0 16 0

1 0 0 1 0 19

2 0 0 1 0 19

Note: Eij a dummy for employment, NEij a dummy for
non-employment.
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Example: Non-Employment ↔ Employment

corr(u1j , u2j)=0.59, se=0.13, so large positive residual
correlation between E → NE and NE → E

Women with high (low) chance of entering E tend to have a
high (low) chance of leaving E

Positive correlation arises from two sub-groups: short spells of
E and NE, and longer spells of both types
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Comparison of Selected Coefficients for NE → E

Only coefficients of covariates relating to employment history
change:

Single-state Multistate

Ever worked 2.936 2.677

Previous job part-time −0.441 −0.460

So positive effect of ‘ever worked’ has weakened, and negative
effect of ‘part-time’ has strengthened.
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Why Decrease in Effect of ‘Ever Worked’ on NE → E?

Direction of change from single-state to multistate (2.936 to
2.677) is in line with positive corr(u1j , u2j) in multistate model.

Women in ‘ever worked’ must have made E → NE transition

Positive correlation between E → NE and NE → E leads to
disproportionate presence of women with high NE → E rate
among ‘ever worked’

These women push up odds of NE → E among ‘ever worked’
(inflating estimate) if residual correlation uncontrolled
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Why Increase in Effect of Previous Part-Time Job on

NE → E?

Strengthening of negative effect when moving to the multistate
model (−0.441 to −0.460) is also in line with positive
corr(u1j , u2j).

Women with tendency towards less stable employment (with
high rate of E → NE) selected into part-time work

Positive correlation between E → NE and NE → E leads to
disproportionate presence of women with high NE → E rate in
‘previous PT’ category

These women push up odds of NE → E in ‘previous PT’
(reducing ‘true’ negative effect of PT) if residual correlation
uncontrolled
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Autoregressive Models for Two States

An alternative way of modelling transitions between states is to
include the lagged response as a predictor rather than the duration
in the current state.

The response ytij now indicates the state occupied at the start of
interval t rather than whether a transition has occurred, i.e.

ytij =

{
1 if in state 1

0 if in state 2
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1st Order Autoregressive Model

An AR(1) model for the probability that individual j is in state 1 at
t, ptj is:

log

(
ptj

1− ptj

)
= α + xtjβ + γyt−1,j + uj

α is an intercept term

γ is the effect of the state occupied at t − 1 on the log-odds of
being in state 1 at t

uj ∼ N(0, σ2
u) is an individual-specific random effect

54 / 141

Interpretation of AR(1) Model

Suppose states are employment and unemployment. Common to
find those who have been unemployed in the past are more likely to
be unemployed in the future. Three potential explanations:

A causal effect or state dependence (γ)

Unobserved heterogeneity, i.e. unmeasured individual
characteristics affecting unemployment probability at all t
(stable traits uj)

Non-stationarity, e.g. seasonality (not in current model)

The AR(1) model is commonly referred to as a state dependence
model.
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Transition Probabilities from the AR(1) Model

We model ptj = Pr(state 1 at start of interval t) = Pr(ytj = 1)

Suppose we fix xtj = 0 and uj = 0.

Probability of moving from state 1 to 2

Pr(ytj = 0|yt−1,j = 1) = 1− Pr(ytj = 1|yt−1,j = 1)

= 1− exp(α+γ)
1+exp(α+γ)

Probability of moving from state 2 to 1

Pr(ytj = 1|yt−1,j = 0) =
exp(α)

1 + exp(α)
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Initial Conditions (1)

y may not be measured at the start of the process, e.g. we may
not have entire employment histories.

Can view as a missing data problem. Suppose we observe y at the
start of T intervals:

Observed (y1, . . . , yT )

Actual (y−k , . . . , y0,y1, . . . , yT )

where first k + 1 measures are missing.

We need to specify a model for y1 (not just condition on y1).
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Initial Conditions (2)

In a random effects framework, we can specify a model for y1j and
estimate jointly with the model for (y2j , . . . , yTj), e.g.

logit(p1j) = α1 + xt1jβ1 + λuj

logit(ptj) = α + xtjβ + γyt−1,j + uj , t > 1

Variants on the above are to set λ = 1 or to include different
random effect in equation for t = 1, e.g. u1j , and allow for
correlation with uj in equation for t > 1.
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Initial Conditions (3)

Initial conditions may also be a problem in the duration model.

If we do not observe an individual from the start of the process of
interest, the state occupied at t = 1 may be informative.

As in the AR(1) model, we can model the initial state jointly with
subsequent transitions.
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Key Features of the AR(1) Model

All relevant information about the process up to t is captured
by yt−1 (1st order Markov assumption). This is why duration
effects are not included.

Because of the 1st order Markov assumption, there is no
concept of an ‘episode’ (which is why we drop the i subscript)

Effects of x (and time-invariant characteristics uj) are the
same for transitions from state 1 to 2, and from state 2 to 1
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Which Model?

Consider AR(1) model when:

Interested in separation of causal effect of yt−1 on yt from
unobserved heterogeneity

Frequent movement between states (high transition
probabilities)

Duration in state at t = 1 is unknown, e.g. in panel data

Consider duration model when:

Expect duration in state to have an effect on chance of
transition

More stable processes with long periods in the same state
(low transition probabilities)
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More than Two states

In general there may be multiple states, possibly with different
destinations from each state. E.g. consider transitions between
marriage (M), cohabitation (C) and single (S).
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Competing risks

We will begin with the special case where we are interested in
transitions from one origin state, but there is more than one
destination or type of transition.

Assume these destinations are mutually exclusive. We call these
‘competing risks’.

Origin state Competing risks

Alive Different causes of death

Employed Sacked, redundancy, switch job, leave labour market

Single Marriage, cohabitation
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Approaches to Modelling Competing Risks

Suppose there are R types of transition/event. For each interval t
(of episode i of individual j) we can define a categorical response
ytij :

ytij =

{
0 if no event in t

r if event of type r in t (r = 1, . . . ,R)

Analysis approaches

1. Multinomial model for ytij

2. Define binary response y
(r)
tij for event type r , treating all other

types of event as censored. Analyse using multivariate
response model
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Multinomial Logit Model

Define p
(r)
tij = Pr(ytij = r |yt−1,ij = 0) for r = 1, . . . ,R.

Estimate R equations contrasting event type r with ‘no event’:

log

p
(r)
tij

p
(0)
tij

 = D
(r)
tij α

(r) + x
(r)
tij β

(r) + u
(r)
j , r = 1, . . . ,R

where (u
(1)
j , u

(2)
j , . . . , u

(R)
j ) ∼ multivariate normal.

Correlated random effects allows for shared unobserved risk factors.
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Multivariate Binary Response Model

In the second approach to modelling competing risks we define, for
each interval t, R binary responses coded as:

y
(r)
tij =

{
1 if event of type r in t

0 if event of any type other than r or no event in t

and estimate equations for each event type:

log

 p
(r)
tij

1− p
(r)
tij

 = D
(r)
tij α

(r) + x
(r)
tij β

(r) + u
(r)
j , r = 1, . . . ,R

where (u
(1)
j , u

(2)
j , . . . , u

(R)
j ) ∼ multivariate normal.
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Logic Behind Treating Other Events as Censored

Suppose we are interested in modelling partnership formation,
where an episode in the ‘single’ state can end in marriage or
cohabitation.

For each single episode we can think of durations to marriage and
cohabitation, t(M) and t(C).

We cannot observe both of these. If a single episode ends in
marriage, we observe only t(M) and the duration to cohabitation is
censored at t(M). A person who marries is removed from the risk
of cohabiting (until they become single again).

For uncensored episodes we observe min(t(M), t(C)).
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Comparing Methods

Coefficients and random effect variances and covariances will be
different for the two models because the reference category is
different:

‘No event’ in the multinomial model

- Coefficients are effects on the log-odds of an event of type r
relative to ‘no event’

‘No event + any event other than r ’ in the multivariate binary
model

- Coefficients are effects on the log-odds of an event of type r
relative to ‘no event of type r ’

However, predicted transition probabilities will in general be similar
for the two models.
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Transition Probabilities

Multinomial model

p
(r)
tij =

exp(D
(r)
tij α

(r) + x
(r)
tij β

(r) + u
(r)
j )

1 +
∑R

k=1 exp(D
(k)
tij α

(k) + x
(k)
tij β

(k) + u
(k)
j )

Multivariate binary model

p
(r)
tij =

exp(D
(r)
tij α

(r) + x
(r)
tij β

(r) + u
(r)
j )

1 + exp(D
(r)
tij α

(r) + x
(r)
tij β

(r) + u
(r)
j )

In each case, the ‘no event’ probability is p(0) = 1−
∑R

k=1 p(k).

To calculate probabilities for specific values of x, substitute
u(r) = 0 or generate u(r) from multivariate normal distribution.
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Example: Transitions to Full-time and Part-time Work

Selected results from bivariate model for binary responses, y (FT )

and y (PT )

NE → FT NE → PT

Variable Est (se) Est (se)

Imminent birth −1.19* (0.18) −0.26 (0.15)

1 kid ≤ 5 −1.27* (0.15) 0.60* (0.12)

2+ kids ≤ 5 −1.94* (0.27) 0.81* (0.17)

1 kid > 5 −0.42* (0.19) 0.80* (0.14)

2+ kids > 5 −0.26 (0.18) 1.24* (0.15)

So having kids (especially young ones) reduces chance of returning
to FT work, but increases chance of returning to PT work.
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Example: Random Effect Covariance Matrix

NE → FT NE → PT

NE → FT 1.49 (0.13)

NE → PT −0.05 (0.11) 0.98 (0.11)

Note: Parameters on diagonal are standard deviations, and
off-diagonal parameter is the correlation. Standard errors in
parentheses.

Correlation is not significant (deviance test statistic is < 1 on 1
d.f.).
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Dependency between Competing Risks

A well-known problem with the multinomial logit model is the
‘independence of irrelevant alternatives’ (IIA) assumption

In the context of competing risks, IIA implies that the
probability of one event relative to ‘no event’ is independent
of the probabilities of each of the other events relative to ‘no
event’

This may be unreasonable if some types of event can be
regarded as similar

Note that the multivariate binary model makes the same
assumption
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Dependency between Competing Risks: Example

Suppose we wish to study partnership formation: transitions from
single (S) to marriage (M) or to cohabitation (C).

Under IIA, assume probability of C vs. S is uncorrelated with
probability of M vs. S

E.g. if there is something unobserved (not in x) that made M
infeasible, we assume those who would have married distribute
themselves between C and S in the same proportions as those
who originally chose not to marry

But as M and C are similar, we might expect those who are
precluded from marriage to be more likely to cohabit rather
than remain single (Hill, Axinn and Thornton, 1993,
Sociological Methodology
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Relaxing the Independence Assumption

Including individual-specific random effects allows for
dependence due to time-invariant individual characteristics
(e.g. attitudes towards marriage/cohabitation)

But it does not allow for unmeasured factors that vary across
episodes (e.g. marriage is not an option if respondent or their
partner is already married)
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Modelling Transitions between More than 2 States

So far we have considered (i) transitions between two states, and
(ii) transitions from a single state with multiple destinations.

We can bring these together in a general model, allowing for
different destinations from each state.

Example: partnership transitions

Formation: S → M, S → C

Conversion of C to M (same partner)

Dissolution: M → S, C → S (or straight to new partnership)

Estimate 5 equations simultaneously (with correlated random
effects)
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Example of Multiple States with Competing Risks

Contraceptive use dynamics in Indonesia. Define episode of
use as continuous period of using same method of
contraception

- 2 states: use and nonuse
- Episode of use can end in 2 ways: discontinuation (transition

to nonuse), or method switch (transition within ‘use’ state)

Estimate 3 equations jointly: binary logit for nonuse → use,
and multinomial logit for transitions from use

Details in Steele et al. (2004) Statistical Modelling
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Selected Results: Coefficients and SEs

Use → nonuse Use → new method Nonuse → use

(Discontinuation) (Method switch)

Urban 0.13 (0.14) 0.06 (0.05) 0.26 (0.04)

SES

Medium −0.12 (0.05) 0.35 (0.07) 0.24 (0.05)

High −0.20 (0.05) 0.29 (0.08) 0.45 (0.05)
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Random Effect Correlations from Alternative Models

Discontinuation Method switch Nonuse → use

Discontinuation 1

Method switch 0.020 1

0.011

Nonuse → use −0.783* 0.165* 1

−0.052 0.095

Model 1: Duration effects only
Model 2: Duration + covariate effects

*Correlation significantly different from zero at 5% level
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Random Effect Correlations: Interpretation

In ‘duration effects only’ model, there is a large negative
correlation between random effects for nonuse → use and use
→ nonuse

- Long durations of use associated with short durations of
nonuse

This is due to short episodes of postnatal nonuse followed by
long episodes of use (to space or limit future births)

- Correlation is effectively zero when we control for whether
episode of nonuse follows a live birth (one of the covariates)
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Software for Recurrent Events and Multiple States

Recurrent events

- Essentially multilevel models for binary responses
- Stata (xtlogit), SAS (proc nlmixed) and all specialist multilevel

modelling software (e.g. MLwiN, SABRE, aML)

Multiple states

- Two-state and bivariate competing risks fitted as random
coefficient models; options as above but xtmelogit in Stata

- Multinomial competing risks in SAS, MLwiN and aML
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Modelling Interdependent Events
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Endogeneity in a 2-Level Continuous Response Model

Consider a 2-level random effects model for a continuous response:

yij = xijβ + uj + eij

where xij is a set of covariates with coefficients β, uj is the level 2
random effect (residual) ∼ N(0, σ2

u) and eij is the level 1 residual
∼ N(0, σ2

e ).

One assumption of the model is that xij is uncorrelated with both
uj and eij , i.e. we assume that xij is exogenous.

This may be too strong an assumption. If unmeasured variables
affecting yij also affect one or more covariates, then those
covariates will be endogenous.
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2-Level Endogeneity: Example

Suppose yij is birth weight of child i of woman j , and zij is the
number of antenatal visits during pregnancy (an element of xij).

Some of the factors that influence birth weight may also influence
uptake of antenatal care; these may be characteristics of the
particular pregnancy (e.g. woman’s health during pregnancy) or of
the woman (health-related attitudes/behaviour). Some of these
may be unobserved.

i.e. y and z are to some extent jointly determined, and z is
endogenous.

This will lead to correlation between z and u and/or e and, if
ignored, a biased estimate of the coefficient of z and possibly
covariates correlated with z .
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Illustration of Impact of Endogeneity at Level 1

Suppose the ‘true’ effect of zij on yij is positive, i.e. more
antenatal visits is associated with a higher birth weight.

Suppose that wij is ‘difficulty of pregnancy’. We would expect
corr(w , y) < 0, and corr(w , z) > 0.

If w is unmeasured it is absorbed into e, leading to corr(z , e) < 0.

If we ignore corr(z , e) < 0, the estimated effect of z on y will be
biased downwards.

The disproportionate presence of high w women among those
getting more antenatal care (high z) suppresses the positive effect
of z on y .
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Illustration of Impact of Endogeneity at Level 2

As before, suppose the ‘true’ effect of z on y is positive, i.e. more
antenatal visits is associated with a higher birth weight.

Suppose that wj is ‘healthcare knowledge’ which is constant across
the observation period. We would expect corr(w , y) > 0, and
corr(w , z) > 0.

If w is unmeasured it is absorbed into u, leading to corr(z , u) > 0.

Question: What effect would ignoring corr(z , u) > 0 have on the
estimated effect of z on y?
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Handling Endogeneity in a Single-Level Model

To fix ideas, we will start with the simplest case: outcome y and
endogenous predictor z both continuous.

E.g. yi birth weight of last born child of woman i , zi number of
antenatal visits.

We specify a simultaneous equations model for z and y :

zi = xz
i β

z + ez
i

yi = xy
i β

y + ziγ + ey
i

where xz
i and xy

i are exogenous covariates (assumed to be
uncorrelated with ez

i and ey
i ).
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Estimation

If corr(ez
i , e

y
i ) = 0, OLS of the equation for yi is optimal.

Endogeneity of zi will lead to corr(ez
i , e

y
i ) 6= 0 and an alternative

estimation procedure is required. The most widely used approaches
are:

2-stage least squares (2SLS)

Joint estimation of equations for z and y (Full Information
Maximum Likelihood, FIML)
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Estimation: 2-Stage Least Squares

1. OLS estimation of equation for zi and compute ẑi = xz
i β̂

z

2. OLS estimation of equation for yi replacing zi by prediction ẑi

3. Adjust standard errors in (2) to allow for uncertainty in
estimation of ẑi

Idea: ẑi is ‘purged’ of the correlated unobservables ez
i , so ẑi

uncorrelated with ey
i .
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Estimation: FIML

Treat zi and yi as a bivariate response and estimate equations
jointly.

Usually assume ez
i and ey

i follow a bivariate normal distribution
with correlation ρzy

e .

Can be estimated in a number of software packages (e.g.
mvreg in Stata or Sabre)

Sign of ρ̂zy
e signals direction of bias

Generalises to mixed response types (e.g. binary z and
duration y)

Generalises to clustered data (multilevel multivariate model)
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Testing for Exogeneity of z

To test the null hypothesis that z is exogenous:

2SLS

Estimate yi = xy
i β

y + ziγ + êz
i δ + ey

i via OLS

where êz
i is the estimated residual from fitting the 1st stage

equation for zi

Test H0 : δ = 0 using t (or Z) test.

FIML

Jointly estimate equations for zi and yi to get estimate of residual
correlation ρzy

e .

Test H0 : ρzy
e = 0 using likelihood ratio test.
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Identification

Whatever estimation approach is used, identification of the
simultaneous equations model for z and y requires covariate
exclusion restrictions.

xz
i should contain at least one variable that is not in xy

i .

In our birth weight example, need to find variable(s) that predict
antenatal visits (z) but not birth weight (y).

Call such variables instruments.

Note: The term ‘IV estimation’ is commonly used interchangeably
with 2SLS, but both methods require instruments.
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Requirements of an Instrument (1)

Need to be able to justify, on theoretical grounds, that the
instrument affects z but not y (after controlling for z and other
covariates).

E.g. indicator of access to antenatal care may be suitable
instrument for no. visits, but only if services are allocated
randomly (rare). Instruments can be very difficult to find.

If there is > 1 instrument, the model is said to be over-identified.
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Requirements of an Instrument (1)

Testing over-identifying restrictions

Instruments should not affect y after controlling for z .

Fit the SEM with all but one instrument in the equation for y and
carry out a joint significance test of the included instruments. If the
restrictions are valid, they should not have significant effects on y .

Instruments should be correlated with z

Carry out joint significance test of effects of instruments on z .

Also check how well instruments (together with other covariates)
predict z . Bollen et al. (1995) suggest a simple probit for y is
preferred if R2 < 0.1.
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Effect of Fertility Desires on Contraceptive Use (1)

Reference: Bollen, Guilkey and Mroz (1995), Demography.

Interested in the impact of number of additional children desired
(z , continuous) on use of contraception (y , binary).

Unmeasured variable affecting both z and y could be ‘perceived
fecundity’.

Women who believe they have low chance of having a(nother)
child may lower fertility desires and not use contraception →
corr(ez

i , e
y
i ) > 0.
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Effect of Fertility Desires on Contraceptive Use (2)

Expect ‘true’ effect of fertility desires (z) on contraceptive use (y)
to be negative.

If residual correlation ignored, negative effect of z on y will be
understated (may even estimate a positive effect)

Estimated effects of covariates correlated with z also biased
(e.g. whether heard family planning message)
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Effect of Fertility Desires on Contraceptive Use (3)

Cross-sectional data: z and y refer to time of survey.

Use 2SLS: OLS for z equation, probit for y .

Instruments: Indicators of health care facilities in community when
woman was age 20 (supplementary data).

Results:

Residual correlation estimated as 0.07

Stronger negative effect of z after allowing for endogeneity
(changes from −0.17 to −0.28), but large increase in SE

But fail to reject null that z is exogenous, so simple probit for
contraceptive use is preferred
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Handling Endogeneity in a Multilevel Model

Let’s return to the multilevel case with yij the birth weight of child
i of woman j , zij number of antenatal visits.

We specify a multilevel simultaneous equations (multiprocess)
model for z and y :

zij = xz
ijβ

z + uz
j + ez

ij

yij = xy
ijβ

y + zijγ + uy
j + ey

ij

where uz
j and uy

j are normally distributed woman-level random

effects, and xz
ij and xy

ij are exogenous covariates (assumed to be

uncorrelated with uz
j , uy

j , ez
ij and ey

ij ).
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Estimation

If corr(uz
j , u

y
j ) = 0 and corr(ez

ij , e
y
ij ) = 0, the equation for yij can be

estimated as a standard multilevel model.

However, endogeneity of zij will lead to corr(uz
j , u

y
j ) 6= 0 or

corr(ez
ij , e

y
ij ) 6= 0 (or both).

If zij is endogenous we need to estimate equations for z and y
jointly.

In the most general model, we assume (uz
j , u

y
j ) ∼ bivariate normal

and (ez
ij , e

y
ij ) ∼ bivariate normal. The SEM is a multilevel bivariate

response model.
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Identification (1)

Identification of the full multilevel SEM for z and y , with
corr(uz

j , u
y
j ) 6= 0 and corr(ez

ij , e
y
ij ) 6= 0, requires covariate exclusion

restrictions:

xz
ij should contain at least one variable (an instrument) that is not

in xy
ij .

e.g. need to find variable(s) that predict antenatal visits (z) but
not birth weight (y).

Call such variables instruments.

BUT if one of the residual covariances is assumed equal to zero,
covariate exclusions are not strictly necessary for identification.
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Identification (2)

Suppose we are prepared to assume that endogeneity of z is due to
a residual correlation at the woman level but not at the pregnancy
level, i.e.

corr(uz
j , u

y
j ) 6= 0 but corr(ez

ij , e
y
ij ) = 0.

We are then assuming that bias in the estimated effect of number
of antenatal visits on birth weight is due to selection on
unmeasured maternal characteristics that are fixed across
pregnancies.
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Identification (3)

Given the difficulty in finding instruments, allowing only for
selection on time-invariant unobservables (in a longitudinal design)
is a common identification strategy BUT:

It does not allow for selection on time-varying unobservables
so some bias may be remain

Some within-individual variation in z and y is required because
we are estimating the effect of a change in z on y for a given
woman (i.e. conditioning on woman-specific unobservables)
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Allowing for Endogeneity in an Event History Model

Suppose that yij is the duration of episode i of individual j and zij

is an endogenous variable. We first consider case where z is
continuous and measured at the episode level.

We can extend our earlier recurrent events model to a SEM:

zij = xz
ijβ

z + uz
j + ez

ij

log
(

ptij

1−ptij

)
= Dy

tijα
y + xy

tijβ
y + zijγ + uy

j

where ptij is the probability of an event during interval t, Dy
tijα

y is

the baseline hazard, and xy
tij a vector of exogenous covariates.

We assume (uz
j , u

y
j ) ∼ bivariate normal, i.e. we allow for selection

on time-invariant individual characteristics.
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Examples of Multilevel SEM for Event History Data

More generally z can be categorical and can be defined at any level
(e.g. time-varying or a time-invariant individual characteristic).

We will consider two published examples before returning to our
analysis of women’s employment transitions:

The effect of premarital cohabitation (z) on subsequent
marital dissolution (y)

- Lillard, Brien & Waite (1995), Demography

The effect of access to family planning (z) on fertility (z)

- Angeles, Guilkey & Mroz (1998), Journal of the American
Statistical Association
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Example 1: Premarital Cohabitation and Divorce

Couples who live together before marriage appear to have an
increased risk of divorce.

Is this a ‘causal’ effect of premarital cohabitation or due to
self-selection of more divorce-prone individuals into premarital
cohabitation?

The analysis uses longitudinal data so observe women in multiple
marriages (episodes). For each marriage define 2 equations:

A probit model for premarital cohabitation (z)

A (continuous-time) event history model for marital
dissolution (y)

Each equation has a woman-specific random effect, uz
j and uy

j ,
which are allowed to be correlated
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Premarital Cohabitation and Divorce: Identification

Lillard et al. argue that exclusion restrictions are unnecessary
because of ‘within-person replication’.

Nevertheless they include some variables in the cohabitation
equation that are not in the dissolution equation:

Education level of woman’s parents

Rental prices and median home value in state

Sex ratio (indicator of ‘marriageable men/women’)

They examine the robustness of their conclusions to omitting these
variables from the model.
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Premarital Cohabitation and Divorce: Results (1)

Correlation between woman-specific random effects for
cohabitation and dissolution estimated as 0.36.

Test statistic from a likelihood ratio test of the null hypothesis that
corr(uz

j , u
y
j ) = 0 is 4.6 on 1 d.f. which is significant at the 5% level.

“There are unobserved differences across individuals which make
those who are most likely to cohabit before any marriage also most
likely to end any marriage they enter.”
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Premarital Cohabitation and Divorce: Results (2)

What is the impact of ignoring this residual correlation, and
assuming premarital cohabitation is exogenous?

Estimated effect of cohabitation on log-hazard of dissolution

0.37 and strongly significant if corr(uz
j , u

y
j ) = 0 assumed

-0.01 and non-significant if corr(uz
j , u

y
j ) allowed to be non-zero

Conclude that, after allowing for selection, there is no association
between premarital cohabitation and marital dissolution.
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Example 2: Access to Family Planning and Fertility

Does availability of family planning (FP) services lead to a
reduction in fertility in Tanzania?

Problem: FP clinics are unlikely to be placed at random. They are
likely to be targeted towards areas of greatest need, the type of
area with high fertility.

Question: If true impact of access to FP is to increase birth
spacing, how will ignoring targeted placement affect estimates of
the impact?
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Data and Measures

Birth histories collected retrospectively in 1992. Women nested
within communities, so have a 3-level structure: births (level 1),
women (level 2), communities (level 3).

Constructed woman-year file for period 1970-1991 with ytij=1 if
woman i in community j gave birth in year t. (Could have extra
subscript for birth interval as we model duration since last birth.)

Community survey on services conducted in 1994. Construct
indicators of distance to hospital, health centre etc. in year t, ztj .
Time-varying indicators derived from information on timing of
facility placement.
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Multiprocess Model for Programme Placement and

Fertility

The model consists of 4 equations:

Discrete-time event history model for probability of a birth in
year t with woman and community random effects

Logit models for placement of 3 types of FP facility in
community j in year t with community random effects

Allow for correlation between community random effects for
fertility and FP clinic placement.

Rather than assume normality, the random effects distribution is
approximated by a step function using a ‘discrete factor’ method.
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Programme Placement and Fertility: Identification

The following time-varying variables are included in the FP
placement equations but not the fertility equation:

National government expenditure on health

Regional government expenditure on health

District population as fraction of national population

These are based on time series data at the national, regional and
community levels.
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Programme Placement and Fertility: Findings

From simple analysis (ignoring endogeneity of programme
placement) find hospitals have more impact on reducing
fertility than health centres

But this analysis overstates impact of hospitals and
understates effects of health centres

Controlling for endogenous programme placement reveals that
health centres have more impact than hospitals

After controlling for endogenity, impact of FP facilities was
45% larger than in simpler analysis
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Modelling Correlated Event Processes

Now suppose that ztij is a time-varying endogenous predictor.

ztij is often the outcome of a related event process.

Example: Marital dissolution and fertility

yij is duration of marriage i of woman j

ztij is number of children from marriage i of woman j at time t,
the outcome of a birth history

See Lillard (1993) and Lillard & Waite (1993).
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Multiprocess Model SEM for 2 Interdependent Events

Simultaneous discrete-time event history equations:

logit(pz
tij) = Dz

tijα
z + xz

tijβ
z + uz

j

logit(py
tij) = Dy

tijα
y + xy

tijβ
y + zijγ + uy

j

We assume (uz
j , u

y
j ) ∼ bivariate normal, i.e. we allow for selection

on time-invariant individual characteristics.

The model can be extended to include outcomes of the y process
in the model for z .
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Example: Marital Dissolution and Fertility

Lillard’s model has 2 (continuous-time) event history equations for:

hazard of conception (leading to a live birth) at time t of
marriage i of woman j

hazard that marriage i of woman j ends at time t

Consider dummies for ztij , the number of children from marriage i ,
in dissolution equation.
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Marital Dissolution and Fertility: Results (1)

Lillard (1993) finds that the residual correlation between hazard of
dissolution and hazard of a conception is estimated as −0.75
(se=0.20).

⇒ women with a below-average risk of dissolution (uy
j < 0) tend

to have an above-average chance of a marital conception (uz
j > 0).

⇒ selection of women with a low dissolution risk into having
children.

Question: If the ‘true’ effect of having children is to reduce the risk
of dissolution, what impact would this type of selection have on
estimates of this effect?
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Marital Dissolution and Fertility: Results (2)

Estimated effects (se) of number of children from current marriage
on log-hazard of dissolution before and after accounting for
residual correlation:

# children Before After

0 (ref) 0 0

1 −0.56 (0.10) −0.33 (0.11)

2+ −0.01 (0.05) 0.27 (0.07)

Selection of low dissolution risk women in categories 1 and 2+
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Other Examples of Correlated Event Histories

Employment transitions and fertility (next example)

Partnership formation and employment

Residential mobility and fertility

Residential mobility and employment

Residential mobility and partnership formation/dissolution
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Multiprocess Model for Entry into Employment and

Fertility (1)

At the start of the course (and in computer exercises) we fitted
multilevel models for the transition from non-employment (NE) to
employment (E) among British women.

Among the covariates was a set of time-varying fertility indicators:

Due to give birth within next year

Number of children aged ≤ 5 years

Number of children aged > 5 years

These are outcomes of the fertility process which might be jointly
determined with employment transitions.
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Multiprocess Model for Entry into Employment and

Fertility (2)

Denote by yNE
tij and yB

tij binary indicators for leaving
non-employment and giving birth during year t.

Estimate 2 simultaneous equations (both with woman-specific
random effects):

Discrete-time logit for probability of a birth

Discrete-time logit for probability of NE → E (with fertilty
outcomes as predictors)

Note: While we could model births that occur during
non-employment, it would be more natural to model the whole
birth process (in both NE and E). In the following analysis, we
consider all births.
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Estimation of Multiprocess Model

We can view the discrete-time multiprocess model as a multilevel
bivariate response model for the binary responses yNE

tij and yB
tij .

Stack the employment and birth responses into a single
response column and define an index r which indicates the
response type (e.g. r = 1 for NE and r = 2 for B)

Define dummies for r which we call r1 and r2 say

Multiply r1 and r2 by the covariates to be included in the NE
and B equations respectively

Fit woman-level random effects to r1 and r2 and allow to be
correlated
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Entry into Employment and Fertility: Residual

Correlation

Likelihood ratio test statistic for test of null hypothesis that
corr(uNE

j , uB
j ) = 0 is 8 on 1 d.f.

⇒ reject the null and choose the multiprocess model.

Correlation between woman-level random effects, uNE
j and uB

j ,
estimated as 0.34 (se=0.11).

The positive correlation implies that women whose unobserved
characteristics are associated with a high probability of a birth
(e.g. latent preference for childbearing) tend also to enter
employment quickly after a spell of non-employment.
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Effects of Fertility Outcomes on Entry into Employment

Single process Multiprocess

Variable Est. (se) Est. (se)

Imminent birth (within 1 year) −0.84* (0.13) −1.01* (0.14)

No. children ≤ 5 yrs (ref=0)

1 child −0.21* (0.10) −0.35* (0.11)

≥ 2 −0.35* (0.14) −0.60* (0.17)

No. children > 5 yrs (ref=0)

1 child 0.25* (0.12) 0.18 (0.12)

≥ 2 0.45* (0.12) 0.27* (0.13)

* p < 0.5

Selection of women with high NE → E probability into categories 1 and ≥ 2
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Multiple States and Correlated Processes

We can extend the multiprocess model to include transitions
between multiple states and further correlated processes.

E.g. we could model two-way transitions between NE and E jointly
with births, leading to 3 simultaneous equations and 3 correlated
random effects.

Stack employment transition and birth responses into a single
column with a 3-category response indicator r (e.g. r=1 for
employment episodes, r=2 for non-employment episodes, r=3 for
birth intervals).

Create dummies for r and interact with covariates as for two-state
and multiprocess models.
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Employment Transitions and Fertility: Random Effects

Correlation Matrix

NE → E E → NE Birth

NE → E 1

E → NE 0.62 (0.12) 1

Birth 0.45 (0.11) 0.23 (0.08) 1

Standard errors in brackets
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Effects of Fertility Outcomes on Exit from Employment

Single process Multiprocess

Variable Est. (se) Est. (se)

Imminent birth (within 1 year) 2.31* (0.14) 2.23* (0.15)

No. children ≤ 5 yrs (ref=0)

1 child 0.41* (0.10) 0.31* (0.11)

≥ 2 0.33 (0.17) 0.15 (0.18)

No. children > 5 yrs (ref=0)

1 child −0.35* (0.12) −0.34 (0.12)

≥ 2 −0.28* (0.12) −0.37* (0.13)

* p < 0.5

Selection of women with high NE → E probability into categories 1 and ≥ 2
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Example: Family Disruption and Children’s Education

Research questions:

What is the association between disruption (due to divorce or
paternal death) and children’s education?

Are the effects of disruption the same across different
educational transitions?

To what extent can the effect of divorce be explained by
selection?

- There may be unobserved factors affecting both parents’
dissolution risk and their children’s educational outcomes

Reference: Steele, Sigle-Rushton and Kravdal (2009), Demography.
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Strategies for Handling Selection

Exploit longitudinal study designs

- e.g. measures of child wellbeing before divorce, measures of
parental conflict and family environment

Exploit differences across space

- compare children living in places with differences in availability
of divorce (e.g. US states)

Compare siblings

- Siblings share parents (or parent) but may have different
exposure to disruption

Multiprocess (simultaneous equations) models
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SEM for Parental Divorce and Children’s Education

Selection equation: event history model for duration of
mother’s marriage(s)

Sequential probit model for children’s educational transitions
(nested within mother)

Equations linked by allowing correlation between
mother-specific random effects (unmeasured maternal
characteristics)

Estimated using aML software
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Simple Conceptual Model
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Sequential Probit Model for Educational Transitions (1)

View educational qualifications as the result of 4 sequential
transitions:

- Compulsory to lower secondary
- Lower to higher secondary (given reached lower sec.)
- Higher secondary to Bachelor’s (given higher sec.)
- Bachelor’s to postgraduate (given Bachelor’s)

Rather like a discrete-time event history model

Advantages:

- Allow effects of disruption to vary across transitions
- Can include children who are too young to have made all

transitions
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Sequential Probit Model for Educational Transitions (2)

Transition from education level r for child i of woman j indicated

y
(r)
ij =1 if child attains level r + 1 and 0 if stops at r .

y
(r)
ij

∗
= xijβ

(r) + zijγ
(r) + λ(r)uj + e

(r)
ij , r = 1, . . . , 4

y
(r)
ij

∗
latent propensity underlying y

(r)
ij

zij potentially endogenous indicators of family disruption

xij child and mother background characteristics

uj mother-specific random effect

e
(r)
ij child and transition-specific residual
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Unobserved Heterogeneity: Educational Transitions

Effect of mother-level unobservables less important for later
transitions.
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Evidence for Selection

Residual correlation between dissolution risk and probability of
continuing in education estimated as -0.43 (se=0.02)

Suggests mothers with above-average risk of divorce tend to
have children with below-average chance of remaining
education

Note that we are controlling only for selection on
unobservables at the mother level (i.e. fixed across time)
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Effects of Disruption on Transitions in Secondary School
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Predicted Probabilities of Continuing Beyond Lower

Secondary (Before and After Allowing for Selection)

136 / 141



Software for multiprocess modelling

Sabre

- developed for analysis of recurrent events
- handles mixtures of response types; up to 3 processes
- 2 levels; no random coefficients

aML

- designed specifically for multilevel multiprocess modelling
- mixtures of response types; multiple processes and levels
- DOS-based; user needs to specify starting values

MLwiN

- designed for multilevel modelling; multiple levels and random
coefficients

- handles mixtures of continuous and binary responses
- Markov chain Monte Carlo estimation
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