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Introduction 
 
REALCOM is an ESRC supported research project at the University of Bristol, 
Centre for Multilevel Modelling. The team consists of Professor Harvey Goldstein, 
Professor Jon Rasbash, Dr Fiona Steele and Dr Christopher Charlton. Dr Edmond Ng 
was a research officer on the project until April 2006. The project’s aims are to 
develop methodology and associated training materials in the following areas of 
multilevel modelling: structural equation models, measurement errors and 
multivariate responses at more than one level of the data hierarchy. A description of 
the research grant application can be found at http://www.cmm.bristol.ac.uk.  
 
The methodology builds upon that already implemented in MLwiN version 2.02 
which is described in the MLwiN manuals (http://www.cmm.bristol.ac.uk). The 
software is written in MATLAB (http://www.mathworks.co.uk.) and is available as a 
set of free-standing programs. They have their own graphical user interfaces for 
setting up models and displaying results. Development work on these programs is  
continuing and updates will be provided from time to time on the Centre website. 
 
This volume contains a set of training materials that can be used as introductions to 
the methodology and as guides to using the software. Each of the chapters also has an 
appendix describing the estimation algorithm.  
 
The project team are continuing to develop the methodology and training materials 
and feedback to the authors is very welcome. 

1. A brief introduction to MCMC estimation 
For a detailed introduction you should look at chapter 2 of the MCMC MLwiN 
manual, downloadable from the MLwiN web site (http://www.cmm.bristol.ac.uk/) . 
This manual also has introductions to structural equation models and measurement 
errors.  
 
Briefly, MCMC estimation is a Bayesian estimation method that generates random 
draws from the ‘posterior’ distribution of the model parameters (including higher 
order residuals), The term MCMC stands for Markov Chain Monte Carlo, the Markov 
Chain consists of a set of ‘iterations’ of the algorithm: each iteration is a set of 
random (Monte Carlo) parameter draws where each parameter is drawn from its 
conditional (on the other parameters and the data) distribution. The idea is to produce 
a large (e.g. 5000) set of these that are then used for inference – e.g. the mean for a 
parameter is the simple average of the set, the standard deviation of the set is 
equivalent to the ‘standard error’ in the classical sense and quantiles are read off from 
the empirical (or smoothed) distribution. The chain needs to be ‘stationary’ and so the 
burn in period is used to get to this position and then the burn in draws are discarded. 
To speed up the analyses it is suggested you start with a small burn-in – say 100 – and 
say 500 iterations. Inspection of these chains provides certain diagnostics for our 
models and they will be discussed when we study the individual data sets. To 
compare one model with another we use a statistic called the Deviance Information 
Criterion  (DIC) which is essentially a measure of model complexity and allows us to 
carry out an overall comparison between models. For more discussion see Chapter 3 
of the MLwiN MCMC manual.  
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2. Using the MATLAB routines 
For each of the models described in Chapters 1-3, there is an executable program file 
together with example datasets and files containing starting values and other 
parameters required. It is recommended that the data should be placed in a 
subdirectory of the directory containing the program files. In each chapter examples 
are given of how to set up the models via the graphical user interface. These interfaces 
will generate the algebraic representation of the model as the model components are 
defined. If you wish to copy any of the windows as displayed you will need to use a 
screen capture utility or the ‘print screen’ key. The Matlab command window will 
appear and record commands, and you may wish to minimise this. Results in tabular 
form and MCMC chain plots can be produced and are also displayed in separate 
windows. In some cases output files, for example of imputed values, can be requested 
and these are stored as tab delimited files suitable for import to other programs. 
 
The executable files are as follows, together with the data sets used in the examples: 
measurement-error.exe         classsize 
mixed-responses.exe             growthdata.txt   classsize_impute 
structural-equation.exe          pisadata 
 
These should be copied to separate directories on your computer. 
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Chapter 1. Modelling measurement errors in multilevel 
models.   

1. Introduction 
The implementation of measurement error modelling in MLwiN 2.02 will handle the 
case of measurement errors in Normally distributed variables where it is assumed that 
there is no correlation between the measurement errors for different variables. The 
REALCOM software extends the model to allow correlations between measurement 
errors and also has the capability of modelling misclassification probabilities in binary 
variables. 
In many of the variables used in the social and medical sciences measurement  errors 
are found. These can arise from unreliable measuring instruments, problems with 
variable definitions or simply reflect temporal fluctuations, for example within 
individual units. The errors we are concerned with are essentially considered as 
random and distinct from systematic errors which can lead to biases.  

There is a large statistical literature on the modelling of such errors, mostly dealing 
with the case of continuously distributed variables in single level linear and non-linear 
models. Fuller (2006) provides a comprehensive treatment. In our research we have 
developed existing work based upon MCMC estimation for multilevel models 
(Browne et al., 2001) and incorporated in the MLwiN software (Browne, 2004). We 
deal with the 2-level case in detail with extensions to three levels being relatively 
straightforward. Extensions to handle cross classified and multiple membership 
models (Goldstein, 2003, Chapters 11 &12) also involve just the addition of 
appropriate sampling steps within the MCMC algorithm. The consequences of 
ignoring measurement errors are well known and typically lead to underestimation of 
coefficients and biased standard errors. In multilevel models we will additionally 
obtain biased estimates of covariance matrices. 

The multilevel model of interest is assumed to be the Normal 2-level model including 
random coefficients, given by 

2~ (0, ),     ~ (0, )
ij ij j ij

u e

y X Z u e

u MVN e N

β

σ

= + +

Ω
      (1) 

Where ijX β  is the fixed part of the model involving regression coefficients β  and 

jZ U  describes the random effects contribution at level 2, with a simple level 1 
residual term . Details of the estimation of the parameters of this model, using 
maximum likelihood or Bayesian MCMC procedures can be found, for example, in 
Goldstein (2003, Chapter 2). We next introduce some basic definitions and 
assumptions. For completeness we review the salient features of measurement error 
models for the single level case. 

ije

2. Defining measurement errors 
We consider measurement errors of two types. The first occurs with continuously 
distributed variables where the observed value can be written in the form, omitting 
subscripts, as 

0x x m= +          (2) 
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where 0x  is the observed value, x the true value and m the measurement error. We 
shall assume that the model of interest, that is (1), is that which uses the true variable 
values rather than those observed with error. In some cases we may wish to use the 
variables as observed with error, for example if we were interested solely in 
prediction based on these. More generally, however, for purposes of explanation we 
would like to model the true values. The procedures described here will allow us to do 
this, after making certain assumptions. 
Thus, to enable us to identify model parameters we must make the following 
assumptions (or equivalent ones). First, the true values and the measurement errors 
are assumed to be uncorrelated, and the mean value of m is zero. Secondly, we need 
to specify a distribution for m, typically Normal so that we have 

2~ (0, )mm N σ  
Finally we need to consider properties for x. Suppose that we were able to obtain 
independent replications of 0x , say 0

1 ,.... k
0x x . We could then write a simple model  

0 ,      1,....i ix x m i k= + =        (3) 
This will provide estimates for 2,  mx σ . In a more complex model involving x the 
existence of replications will likewise generally allow us implicitly to incorporate the 
estimation of 2,  mx σ  into the model. In many applications replication can in fact be 
considered as a lower level of a data hierarchy and thus handled by standard 
multilevel modelling procedures. 
In most practical social science applications, however, we do not have the possibility 
of independent replications. For example, in administrating an educational test, a 
residual memory effect will preclude the possibility of independent replications. 
Hence the following exposition does not assume the existence of such replications. 
Instead we assume: 

1. An independent value of 2
mσ  is available, recognising that this is typically a 

sample estimate, so that we may wish to incorporate uncertainty about 2
mσ  

into our analysis, either by supplying a prior distribution (not considered here) 
or, generally more usefully, by carrying out a sensitivity analysis over the 
likely range of values for 2

mσ .  

2. A distribution for x. This is required because we cannot condition on x in (1) 
(as we can do in the replicated situation) and we only directly observe the 
distribution for 0x . We shall assume that 2~ ( , )x xx N μ σ where xμ , the mean 

true value, is typically estimated by the observed mean 0x . We can extend (3) 
to the multivariate case in a straightforward way by replacing the variance by 
a covariance matrix. 

In the ‘classical’ measurement error model we define the reliability of  0x  by 
0 0

0 2 2 2 2( ) / ,    2
x xx x

R R x mσ σ σ σ σ= = = +       (4) 

and we shall make use of this term. Thus, given a sample of values 0{ }ix  we can 
estimate 0

2
x

σ , and hence 2
xσ  since 2

mσ  is assumed known. This step effectively 
becomes incorporated into the MCMC algorithm described in Appendix A.  
There is, of course, the problem of obtaining a suitable estimate of 2

mσ  and also 
recognising that this may vary across subgroups of the population. We shall not get 
involved in any debate about this, but see Ecob and Goldstein (1983). 
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The second type of error is a misclassification error where the observed category of a 
discrete response variable is not necessarily the true category.  
Suppose we have a binary (0,1) variable, for example whether or not a school pupil is 
eligible for free school meals (yes=1). We assume that the allocation to a category is 
not perfect and we denote the probability of observing a zero (no eligibility), given 
that the true value is zero, by  and the probability of observing a one given 
that the true value is zero by . Similarly we have  and . In  
Appendix A we show that knowledge of these misclassification probabilities allows 
us to compute the true probabilities of a zero and a one and how these are used in the 
estimation. 

(0 | 0)obsP
(1| 0)obsP (0 |1)obsP (1|1)obsP

We shall only consider, for simplicity, misclassification error for a binary variable; 
the extension to multicategory variables raises no fundamentally new issues. In all 
cases we assume that our interest is in measuring the relationship with the true rather 
than observed explanatory variables.  

3. The effect of adjusting for measurement errors 
Consider the simple single level linear model  

0 1i i iy x eβ β= + +  
with measurement error in the single explanatory ‘true’ variable, x. As above we have 
the adjusted variances and covariances for the ‘true’ model 

2 0var( ) var( ),    cov( ) cov( )o
x xyx R x xy x y cσ = = = =  

Thus the estimate of the regression coefficient is given by 

 /
var( )

xy
obso

c
b R

R x
=  

where  is the coefficient for the regression based on the observed values and since 
the reliability is always less than or equal to 1.0, the regression coefficient is greater 
in absolute value. The estimate of the residual variance is given by 

obsb

2

0var( )
var( )

xyc
y

R x
−  

compared with  

 
2

0var( )
var( )

xyc
y

x
−  

for the regression using the observed values, and hence smaller than the latter. 
Before we go on to an analysis of a data set we will note some restrictions that our 
models impose. 
Consider the case of two explanatory variables with measurement error, and suppose 
for simplicity that they have the same observed variance equal to 1 and the same 
reliability, R. Let us also suppose that their measurement errors have a correlation of 

mρ  and that the correlation between the observed variables is oρ . 
For example, we require that the correlation between the true values lies between -1 
and 1 and this implies 

1 1
o

m
oR R

R R
ρ ρρ+

> >
− −

−          (5)  

Thus, say, if R=0.7 and 0.8oρ =  then we require 0.33mρ > . A corresponding 
condition can be derived for categorical variables. In an example we shall explore 
correlated measurement errors further, but note that these can easily arise in practice 
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when a set of variables such as obtained from ratings, educational tests etc., are 
carried out under the same conditions or at the same time and where random variation 
over conditions or times is present.  
In the case of categorical predictors adjusting for misclassifications will often have 
little effect on the size of the coefficient but may be expected to increase its standard 
error. Thus, for a binary predictor the coefficient of the dummy (0,1) variable 
estimates the adjusted difference between the two categories. If there is a weak 
relationship with the other variables in the model then  the process of (randomly) 
reassigning values from one category to the other will have little effect on the 
estimated difference but will add random variation to the chain estimates resulting in 
a larger value for the variability estimate. 

Appendix A sets out the steps involved in the MCMC estimation. The general model 
allows for the possibility that the measurement error covariance matrix can differ 
from individual (level 1 unit) to individual thus allowing for different groups, for 
example males and females to have different measurement error distributions. In 
particular we can allow different measurement error covariance matrices for 
individuals according to the category observed for a categorical variable where this is 
assumed to have misclassification errors. This therefore allows for an association 
between measurement errors and misclassifications. In addition to binary predictors it 
allows for general categorical variables with misclassification.   

4. An example data set 
The data we shall use come from a study of the relationship between class size and 
pupil progress (Blatchford et al., 2002). A cohort of pupils was followed from entry to 
reception class until the end of the school year, with assessments at the start and end. 
The response variable is a normalised maths score (end of reception year) postmaths. 
The 5 explanatory variables are: constant (=1), regcls-30 (regular class size centered 
at 30), normalised pretest maths pre-maths, normalised pre test literacy prelit, free 
school meals eligibility fsmn.  
In the original analysis (Blatchford et al., 2002) a ‘regression spline’ smoothed 
relationship with class size was fitted rather than the linear relationship examined 
here1. Figure 1 shows the resulting relationship.  

                                                 

i

1 a single level cubic regression with a spline term is defined as follows: 
2 3 3

0 1 2 3 4

0 if 
 if 

i i i i i

i
i

i i

y x x x z
x k

z
x k x k

β β β β β= + + + + +

<⎧
= ⎨ − ≥⎩

e
 

This provides a smooth join at the value k, the knot, and allows us better to calibrate the curve for high 
values of x.   
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Figure 1.    
 

 
 
We now show the MCMC estimates assuming no errors of measurement. There are 
4625 pupils in 248 classes (a subset of the original data) and no missing data. All the 
test scores are transformed to have a standard Normal distribution. 
 
Table 1. Post-test Mathematics related to prior achievements with no 
measurement errors. Class size measured around value of 30. MCMC estimates; 
burn in = 500, iterations= 5000. 
Coefficient Estimate Standard error 
Intercept 0β  -0.242  
Class size 1β  -0.068 0.0074 
Pre-test Maths score 2β  0.358     0.016 
Pre-test literacy score 3β  0.379 0.016 
Free school meals (Yes=1) 4β  -0.065 0.028 
   
Between-class variance 2

uσ  0.260 0.027 

Between pupil variance 2
eσ  0.381 0.008 

 
It is clear that there is a significant effect of being eligible for free school meals 
equivalent to a decrease in the adjusted maths score of 0.12 of the pupil level residual 
standard deviation standard. Likewise, the greater the class size the smaller the 
posttest mathematics score. 
 
Kounali et al (2007) have analysed the stability of free school meals data at Key Stage 
2 and their data suggest that approximately 2% of those not eligible for free school 
meals at any one time may be classified as eligible.  Likewise they suggest that as 
many as 60% of those eligible may be classified as not eligible. We shall use the 
illustrative values 2% and 60% respectively in our example. The pretest scores are 
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based upon teacher assessments and can be expected to have relatively low reliability: 
we can assume a range of values from 0.6 to 0.9 for these reliabilities. In the 
following analyses, for illustration, we shall assume a range of values for these 
reliabilities. It is also reasonable to assume that misclassification errors in FSM are 
independent of measurement errors in the test scores since the former are ascertained 
from the school records. 

All the following analyses use a burn in of 500 with a sample of 5000 iterations. For 
training purposes a burn in of 250 and sample of 750 is recommended. 

5. Adjusting for measurement errors. 
We begin by studying the effect of allowing for measurement errors in the prior test 
scores,  Mathematics and Literacy and we shall assume that both of these have the 
same reliability. In Table 6 we have summarised the results from all the separate 
models fitted. We start with Table 2 that shows the parameter estimates where the 
reliability is assumed to be 0.9 and the measurement errors independent. Table 3 
assumes the lowest value of 0.6 for the measurement error. We cannot now, however, 
assume a zero correlation between the measurement errors, as pointed out above, 
since the correlation between the observed values is greater than the reliability, being 
0.75 . We have assumed a moderate correlation between the measurement errors of 
0.5.  
Table 2. Post-test Mathematics related to prior achievements with measurement 
errors. Reliabilty=0.9; no measurement error correlation. Class size measured 
around value of 30. 
Coefficient Estimate Standard error 
Intercept -0.242  
Class size -0.068 0.007 
Pre-test Maths score 0.376 0.026 
Pre-test literacy score 0.407 0.025 
Free school meals (Yes=1) -0.066 0.028 
   
Between-class variance 0.260 0.027 
Between pupil variance 0.352 0.008 
 
Table 3. Post-test Mathematics related to prior achievements with measurement 
errors. Reliabilty=0.6 Measurement error correlation=0.5. Class size measured 
around value of 30. 
Coefficient Estimate Standard error 
Intercept -0.249  
Class size -0.068         0.008       
Pre-test Maths score 0.618 0.094 
Pre-test literacy score 0.525 0.090 
Free school meals (Yes=1) -0.063 0.028 
   
Between-class variance 0.260 0.028 
Between pupil variance 0.127 0.012 
 
Note that the pretest coefficients are greatly increased with the lowest reliability with 
also a very large increase in standard error, and also the level 1 variance is reduced as 
expected. 
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To fit these models using the software first of all open up the settings window by 
clicking on the file ‘measurement-error.exe’ in the directory this was placed in. 
 
A window will appear as follows: 
 

 
 
 
To load a data file click on open data file and select the file ‘classsize’. Click on 
Name variables and the following window will appear: 
 

 
 
The first column is the response, Normalised Maths score so type in a name, say 
Normexam. Note that the constant term is in column 2 and should be called CONS. 
Fill in the remaining names in the order of the fixed effects in Table 2. Note that the 
final variable is the school identifier. When finished click Done. 
 
Now tick the box to display equations and you will see the following screen: 
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This has just the basic default statement for the level 1  residual distribution. As we 
define further elements of the model you will be able to see how this changes.  
 
Click on Specify level 2 identifier, select school (if this is what you named it) and 
click Done.  
 
Now click on set response and select the normalised maths score. You will see a box 
that allows you to set a measurement error variance for the response – for now we 
shall just leave this as zero, but you may wish to experiment with changing this later. 
 
Now click on Add/remove explanatory variables and select all the variables listed 
in Table 2 – you can hold down the CTRL key to make a multiple selection and then 
click on the + sign and the Done. 
 
Now click on Add/remove random coefficients at level 2 add CONS click the + 
sign and then Done. By this stage the equations screen should appear as follows: 
 

 
 
You may need to drag the sides to display the full model.  
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We have now specified the basic model and it remains to specify any measurement 
error covariance matrices. You will see that you can do this for the continous or 
binary predictors or both. We shall just do this for now for the continuous predictor 
variables, so click on select explanatory variables, and select the prior maths and 
literacy variables (click + then Done). Now click Set measurement error covariance 
matrix, select the two variances ‘maths/maths’ and ‘literacy/literacy’ and enter 0.111 
as the measurement error variance for each – this corresponds to a reliability 0f 0.9 if 
we assume the variances of the observed variables are 1.0.  Click Done. If we wished 
to set a non-zero covariance we would click the button again and set a value for this 
term. The equations window now contains the model specification including the 
measurement error component: 
 

 
 
We now specify the estimation control values. Click on the MCMC estimation 
settings  and set burnin to 250, Number of iterations to 750 and Screenrefresh rate 
to 10. The screen refresh rate specifies how often the displayed chain is updated. Now 
click on Monitor and select the parameters you wish to see chains displayed for. Note 
that variance parameters are denoted by a covariance (cov) term where both variables 
are the same. You will see the chains updating. When iterations have finished you can 
view the results by clicking on view results. You will see the resulting estimates – 
you will need to drag the screen to see all the results – as follows. 
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The results are comparable with those in Table 2 which are obtained from a longer 
chain. 
 
Finally, you can save the model by clicking on save model and specifying a 
distinctive name, for example ‘classsizemodel1’. The ‘.dat’ extension will be added 
by default. If you now wish to modify the model you can click on load model and 
change the specification. 
 

6.  Adjusting for missclassification probabilities 
 
We now introduce misclassification probabilities for free school meals. We shall not 
go through the detailed set up process but just give the results that you can compare 
with your own analysis.  
 
Table 4. Post-test Mathematics related to prior achievements with measurement 
errors. Reliabilty=0.9; Measurement error correlation=0.  Missclassification 
probabilities P(0|1)= 0.60; P(1|0)=0.02 . Class size measured around value of 30. 
Coefficient Estimate Standard error 
Intercept -0.224     
Class size -0.066 0.007         
Pre-test Maths score 0.378 0.026 
Pre-test literacy score 0.408 0.025 
Free school meals (Yes=1) -0.061 0.035 
   
Between-class variance 0.258 0.027 
Between pupil variance 0.351 0.008 
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In Table 4 we note that the only real change from Table 2 is that the free school meal 
coefficient standard error has increased. 

Finally we allow for measurement error in the response variable, post test 
mathematics, and the results are given in Table 5.  

Table 5. Post-test Mathematics related to prior achievements with measurement 
error reliability of response . Reliabilty of pretest measures=0.9; 
Measurement error correlation=0. Missclassification probabilities P(0|1)= 0.60; 
P(1|0)=0.02. Class size measured around value of 30. 

0.9yR =

Coefficient Estimate Standard error 
Intercept -0.233    
Class size -0.067 0.008 
Pre-test Maths score 0.374 0.025 
Pre-test literacy score 0.403 0.025 
Free school meals (Yes=1) -0.046 0.031 
   
Between-class variance 0.258 0.027 
Between pupil variance 0.320 0.008 
 
Now, in addition to a rather smaller increase in standard error of the free school meal 
coefficient the coefficient itself has decreased in absolute value as expected. Also, as 
expected, the level 1 variance is reduced. 

For comparison purposes the above estimates are set out side by side in Table 6. 
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Table 6. Estimates from Tables 1-5. 
Coefficient R=1.0 

0.0ρ =  
P(0|1)=0 
P(1|0)=0 

 1yR =

R=0.9 
0.0ρ =  

P(0|1)=0 
P(1|0)=0 

1yR =  

R=0.6 
0.5ρ =  

P(0|1)=0 
P(1|0)=0 

1yR =  

R=0.9 
0.0ρ =  

P(0|1)=0.60 
P(1|0)=0.02 

1yR =  

R=0.9 
0.0ρ =  

P(0|1)=0.60 
P(1|0)=0.02 

 0.9yR =

Intercept -0.242 -0.242 -0.249 -0.229    -0.232   
Class size -0.068 -0.068 -0.068       -0.068 -0.067 
Pre-test Maths 0.358     0.376 0.618 0.378 0.374 
Pre-test literacy 0.379 0.407 0.525 0.408 0.402 
FSM -0.065 -0.066 -0.063 -0.058 -0.045 
      
Level 2 var. 0.260 0.260 0.260 0.260 0.257 
Level 1 var. 0.381 0.352 0.127 0.351 0.320 
 

7. Discussion 
We have seen how inferences about both fixed and random effects are changed when 
we allow for measurement error and misclassification probabilities. An important 
issue remains that of obtaining suitable estimates for the measurement error variance 
and misclassification probabilities. In general a range of values should be used in the 
spirit of a sensitivity analysis since typically these estimates, and especially of 
measurement error correlations, will at best be approximate. 
We also note a further limitation of the current models which assume that 
measurement errors are limited to variables defined at level 1. However, as suggested 
in Appendix B, at least for level 2 variables that are aggregates of a level 1 variable, 
we can often ignore such level 2 measurement errors.  
It is suggested that you try assigning different values of measurement error covariance 
matrices and misclassification probabilities to explore the effect on the estimates. 
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Appendix A1: Modelling measurement error – MCMC 
estimation, 

1. Introduction 
Browne et al., (2001) considered a model with measurement errors in explanatory 
variables and Browne (2004) implemented this in MlwiN.  The features of this model 
are: 

Measurement errors are independent across explanatory variables 

The measurement error variance is assumed known 

The unknown true values are assumed to have Normal distributions 

In addition they considered the case of a polynomial in x and where there was a level 
2 variable that was the mean of a level 1 variable. In the latter case they found that 
ignoring the measurement error of the mean seemed acceptable, since it was relatively 
small (see Appendix B). However, allowing polynomials complicates the estimation, 
MH is needed, and it is difficult to implement a general procedure. We therefore do 
not deal with this here. 

The MATLAB routines have implemented the following extensions: 

Allowing correlated measurement errors 
Allowing for binary, ordered and multicategory explanatory variables. 
Thus, apart from the polynomial case, this will provide a quite general procedure for 
handling measurement errors.  

The following is a description of the extended algorithm. 

2. Correlated measurement errors 
Suppose we have p explanatory variables containing measurement error and q that do 
not. The model is: 

},{    },,{   },,{

)]([)]([

212121

22221111

UUUZZZ

eUZXUZXy
TTTTTT

ijjijijjijijij

===

+⋅++⋅+=

βββ

ββ
   (A.1) 

where the explanatory variable matrix of true values for those with measurement error 
is (N x p) and  that for those without error is (N x q). For the random part 
explanatory variables  are indicator vectors of dimensions (p x 1) and (q x 1), 
with ones or zeros, so that the dot (Hadamard) product with the level 2 residuals 
selects the explanatory variables for the random part of the model – assuming that 
these are a subset of the fixed part explanatory variables. Using the notation of 
Browne et al., we have  

1X 2X

21, ZZ

),(~    ),,(~ 111 φθ ΩΩ MVNXXMVNX m
O      (A.2) 

where  is the matrix of observed values and OX1 mΩ  is the covariance matrix of 
measurement errors, initially assumed to be common to all level 1 units, θ  is the 
mean vector and φΩ  is the, assumed known, covariance matrix of the true values of 

. 1X
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We may sample as follows. 
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where N is the number of level 1 units. Since θ  is a row vector of means we assume a 
uniform prior for θ . For  we assume this known and in practice we may wish to 
try different values in a sensitivity analysis. In principle we might also be able to elicit 
a prior distribution from users that could be used directly in the analysis. For  we 
could assume an inverse Wishart prior, but it is not clear what parameters we should 
use, so we have assumed a uniform prior here.  

mΩ

φΩ

The sampling for the fixed parameters, β , the residuals, level 2 covariance matrix 
and level 1 variance, conditional on the  and given priors, is as in the standard 
case.  

21, XX

For sampling the  we write 1X
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which leads to the following sampling for each row of . 1X
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 (A.5) 

where denotes the Hadamard vector product. The level 1 residuals are obtained 
by subtraction. 

UZ ⋅

In some applications the measurement error covariance matrix may vary across level 
1 (or level 2) units, for example as a known function of predictor variables. In this 
case we simply replace  in (5).  11 by    −− ΩΩ mijm

If we have measurement error in the response 
),0(~    , 2

yeyy
O Neeyy σ+=       (A.6) 

in order to ensure identification we must known variance . We apply this to the 

residuals using the adjusted value 

2
yeσ

2* 2 2 /
y ye e e

2
yσ σ σ σ=  and we insert the extra step to 

sample  from  ijy

22 * 2 2 * 2 *ˆ[( ) , ( ) ]
ye e e ij ij e e e eN y y

2 2

y y
σ σ σ σ σ σ σ−− + −% −      (A.7) 

where is the predicted value and . ijŷ ij
O
ijij yyy ˆ~ −=

3. Binary and ordered category explanatory variables 
We consider the binary variable case.  
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One possibility is to assume a threshold model as follows: 

mxxdttobservedP o

x o
+=== ∫

∞
   ,)()1( φ    (A.8) 

where ox  is the mean of the observed underlying variable, )(tφ  is the standard 
Normal distribution,  is the underlying continuously distributed variable including 
measurement error, m, and P is the probability of observing a one. We assume, for 
now, that for the binary variables the measurement errors are mutually independent 
and independent of the measurement errors for the continuous variables. Otherwise, 
for each binary variable, when we make a draw from the underlying continuous 
variable, we will need to condition also on the observed values of the other variables. 

Ox

We insert an extra step into the MCMC algorithm as follows: 

We first draw from the underlying continuous distribution choosing a random draw 
from the standard Normal distribution in the range ),( ∞ox if the response is a one and 
from ),( ox−∞ if the response is a zero. We then draw from the distribution of the true 
value given the observed value, i.e. from: 

])1(,))(1[( 222
mm

o
m xxxN σσσ −+−−  

We can also allow a prior distribution for .  2
mσ

Now is the reliability, but typically we will have no direct estimate of this. 
We note, however, that the probability of observing a one, given that the true value is 
zero is given by 

)1( 2
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which can be evaluated to provide an estimate for the parameter mσ  numerically. A 
corresponding expression holds for the probability of observing a zero when the true 
value is one. Thus with estimates of the misclassification probabilities we can obtain 
two estimates of the measurement error variance that can be combined. In fact, we 
could also in principle obtain a further estimate of the true mean value x from the 
above that could be used, but this may not provide much extra information. In practice 
it is common to assume that the two missclassification probabilities are equal, in 
which case we only need (9). 

The other possibility, that we have implemented, is to work directly with the observed 
values and misclassification probabilities. 

4. Missclassification probabilities 

Suppose we write the probability of observing a zero given that the true value is zero 
as  and the probability of observing a one given that the true value is a zero 
as , etc. Then the probability of observing a zero is 

 and the probability of observing a one is 
 where  are the 

true probabilities of a zero and one. 

(0 | 0)obsP
(1| 0)obsP

(0) (0) (0 | 0) (1)( (0 |1))obs true obs true obsP P P P P= +
(1) (1)(1 (0 |1)) (0)(1 (0 | 0))obs true obs true obsP P P P P= − + − (0),   (1)true trueP P

This gives the following values for the true (prior) probabilities 
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(1|1) (1)(0) ,    (1) 1 (0)
(1|1) (0 | 0) 1
obs obs

true true true
obs obs

P PP P
P P

−
= =

+ −
P−  

Consider a Normal response model. The probability for an observation that has true 
value zero where we observe a zero for the binary variable  with coefficient 1x 1β  
which is assumed to have a uniform prior, is proportional to 

2

00 2

( )exp (0 | 0)
2 obs

e

yL P
σ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

%
 

and for an observed zero where the true value is one we have the probability 
proportional to 

2
1

01 2

( )exp (1| 0)
2 obs

e

yL Pβ
σ

⎛ ⎞−
= −⎜ ⎟

⎝ ⎠

%
 

where   is the observed response minus predicted value of the response given the 
remaining parameters.  

y~

When a zero is observed, combining these probabilities with the priors, we select a 
new true value to be zero with probability 

00

00 01

(0)
(0) (1)
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true true

L P
L P L P+

 

We have corresponding results when a one is observed, namely 
2

10 2

( )exp (1| 0)
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e
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and we select a new true value of one with probability 

11

11 10

(1)
(1) (0)

true

true true

L P
L P L P+

 

Having sampled a new set of true values we then apply the standard steps in the 
MCMC algorithm for the remaining parameters. For generalised linear models the 
only change is in the expressions for the likelihoods and if we use, e.g. a probit link 
with binary data then there is no change except for the extra step generating a 
Normally distributed response from the binary response. 

The extension to the multicategory, ordered or unordered, case requires us to evaluate 
the true priors for each category and then evaluating the corresponding probabilities. 
This, therefore, requires a misclassification matrix to be known, or a good estimate 
available. 

5. Extensions 
We may also consider models where the measurement error variances or 
misclassification probabilities  are a function of further variables where the function 
parameters are to be estimated. Further work on this is planned. Missing responses 
can be handled by adding an imputation step for the missing data based on current 
parameter estimates. We can also introduce a prior distribution for the measurement 
error covariance matrix and introduce a further step that involves sampling from this 
prior. 
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We have assumed that there is no association between the Normal variable 
measurement errors and the misclassifications. One way to introduce an association is 
to allow the Normal measurement error covariance matrix to depend on the observed 
category so that for each such category, or combination of categories, we assume a 
known where c denotes the category or category combination. In practice this is 
achieved by choosing corresponding 

  c
mΩ

1
mij
−Ω  in (A.5).  

 

A full description of the model and estimation procedure is given by Goldstein et al., 
(2007).
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Appendix B1: Aggregating level 1 variables with 
measurement errors 

1. Introduction 
In a multilevel model where there is a level 2 (or higher level) predictor that is defined 
as an aggregation from the level 1 units within the cluster, we can distinguish two 
kinds of inferences. In the first we wish to condition on the underlying, but unknown, 
‘true’ value of the variable. Thus, in educational data we may suppose that the 
average prior attainment of a school influences the subsequent attainment of 
individuals within it, where this average attainment is used as a proxy for the long-
term intake characteristics of the school. It can then be argued that the observed 
attainment should be regarded as a variable measured with error where the analysis 
will attempt to correct for the measurement error. Alternatively, we may regard the 
actual average score itself as the influential variable so that, if it is measured 
accurately, there is no measurement error. We postpone a discussion of the role of 
level 1 measurement error until later. We shall also introduce below the common 
situation when the average is not available, but only an estimate of it. 

In the first case above, for simplicity assume that the variable is Normally distributed, 
and that we have fitted a simple variance components (VC) model so that the total 
variance is  

2 2
T u

2
eσ σ σ= +          (B.1) 

Thus the variance of the mean of the N level 1 units in a level 2 unit is 
2 2 /u e Nσ σ+          (B.2) 

Since inference is with respect to the ‘true’ mean the measurement error variance is 
simply  

2

2 2 2
T

/   
with corresponding reliability 

/( )

e

u u e

N

N N

σ

ρ σ σ σ= +

      (B.3) 

Which is just the ‘shrinkage’ factor. In many applications where N is very large, 
measurement error can be ignored, although attention needs to be paid to the value of 
the VPC ( 2 2 2/( )u u eσ σ σ+ ). 

In the second case, where inference is with respect to the observed mean then the 
reliability is 1.0.  

2. Sampling level 1 units 

In the common situation where we only have a sample of n out of N level 1 units 
(B.2) becomes 

2 2 /u e nσ σ+          (B.4) 

And the reliability becomes 

1

2 2/( )T u un n 2
eρ σ σ σ= +         (B.5) 
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Thus, for example with a Variance Partition Coefficient (VPC) (Goldstein et al., 
2002) of 0.1 and n=20 we have 

1
0.69Tρ = . This essentially is the ‘true value’ 

definition adopted by Sampson et al. (Sampson et al., 1997).. In fact these authors fit a 
3-level model where level 1 is the item level for the scale components. Level 2 is 
individual and level 3 is area. Their model can be formulated as a single factor model 
with scale item loadings equal to 1 (Rasch model). This formulation enables them to 
estimate individual level reliabilities also which can be incorporated if required. In 
practice n  is typically large enough to ignore these when estimating the level 2 
reliability (but see below). 

Where inference is WRT the observed mean the reliability becomes 
2 2 2 2 1 2 2 2 2/ ( / ) ( ) /( )n

O u e u e u e u eN
N n n nρ σ σ σ σ σ σ σ σ⎛ ⎞−

⎜ ⎟
⎝ ⎠

= + + = + +   (B.6) 

Which becomes 1.0 if the mean is computed from all the level 1 units with a cluster. 
If we write v for the VPC we have 

1( ) /(n v v
O N v v

n nρ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞−
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= + + 1 )−        (B.7) 

As v tends to zero this tends to ( /  as does (B.5). Now, the level 2 variance will 
often be sensitive to the population considered, or alternatively, the estimate of the 
VPC will depend on which other variables we adjust for in its estimation, especially if 
these are level 2 variables. In general the appropriate population will be the one that 
we intend to use in subsequent models where we adjust for the measurement error. 

)n N

In the above example with a VPC of 0.1, N=30 and n=5, as we might have for 
educational data on classes we have 0.46Oρ = . For survey data on small areas say 
with N=200, n=20 we have 0.72Oρ = , which is not very different from the ‘true’ 
definition value given above. 

If we now consider the (independent) measurement error reliability at level 1, say 1ρ . 
Expression (7) becomes 

1
21 1 1

11 1 1 1 1( ) /(n v n v v v
O N v v v n vN

n nρ
ρ

ρ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞−− − − −⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
= + + 11 )ρ

ρ
−    (B.8) 

So that this aggregated level 1 error term can typically be ignored.  

3. Further considerations 
The distinction between the ‘true’ and ‘observed’ definitions for reliability becomes 
important only when the actual cluster (level 2 unit) size is relatively small. This will 
usually be the case with certain kinds of data such as in education, but may also hold 
for certain kinds of survey data, especially in small area analysis.  

For categorical variables, we are dealing with misclassification probabilities at level 1 
but to a first approximation can assume Normality at level 2. Thus, for binary 
responses, we would substitute in the above formulae (B.5) and (B.7) corresponding 
terms based on the variance of a proportion. For ordered responses we can 
approximate by treating as a continuous variable and for multicategory responses we 
would use the corresponding multinomial variances and covariances – allowing for 
correlated measurement errors A further possibility is to assume a threshold model, 
but this adds further numerical complications concerned with estimating a 
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measurement error variance given just misclassification probabilities (see Appendix 
A). 
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Chapter 2. Modelling multilevel latent variable 
structures 
 

1. Introduction 
In the social and medical sciences it is common to incorporate into models ‘latent’ 
variables that are not directly measured, but whose existence is defined by their 
relationships to sets of observed variables or ‘indicators’. The simplest such models, 
known as factor analysis models have been in existence for many years (see e.g. 
Lawley and Maxwell (1971) for an introduction) and their generalisation to ‘structural 
equation models’ can largely be dated to a seminal paper of Joreskog (1969). 
Traditionally all such models assumed a single level data structure until McDonald 
and Goldstein (1989) introduced multilevel versions of the basic factor model, further 
developed by Muthen (2002), and Skrondal and Rabe-Hesketh (2004). 
 
Existing software can handle several kinds of multilevel structural equation models. 
GLLAMM (Rabe-Hesketh et al., 2001) can fit general structural equation models to 
multilevel data with responses that are Normal, binary or ordered. MPLUS (Muthen 
and Muthen, 1998) can fit a similar range of models up to 2 levels and MLwiN can fit 
multilevel factor, but not structural equation, models.   The MATLAB routines that 
have been developed extend existing models in the following ways. First, they allow 
certain constraints across parameters that are important for interpretation. Secondly, 
they allow different ways of specifying level 2 latent variables and thirdly they use 
MCMC estimation rather than maximum likelihood (ML). One problem with ML 
estimation is that it becomes very slow when the number of parameters in the model 
becomes large, typically increasing factorially with the number of parameters; 
MCMC estimation, however, avoids this kind of dependence on the number of 
parameters.  
 
We shall present two examples, one from demography and one from education, that 
illustrate, for two levels, how to set up and analyse such models. First of all we set out 
some basic notation and describe some simple models. 
 

2. One level factor models 

A basic single level factor model with a single factor can be written as follows: 
 

0

2~ (0, ),  ~ (0, )  
ij i i j ij

j ij

y e

N e Nη

β λ η

η σ σ

= + +
2
ei

       (1) 

This is commonly referred to as a ‘measurement model’. Here  i (1,….,p) indexes the 
response variable and j indexes the individual unit – in our analyses this will be a 
person. The y  variables are observed, η  is an unobservable or ‘latent’ factor and the 
remaining terms are the parameters to be estimated. Note that the parameters 0iβ  
estimate the means of the responses. To ensure identifiability we need to fix either 
one (or more) of the loadings, the iλ , to a known value (e.g. 1) or fix the factor 
variance, 2

ησ , to a known value, typically 1. It is assumed that the responses are 
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jointly Normally distributed and if they have been standardised and 2
ησ  set to 1, then 

the loadings can be interpreted as the correlations between the underlying factor and 
each of the corresponding responses. Typically, the factor is interpreted in terms of 
the values of these correlations. Thus, if a subset of the responses has high 
correlations then the factor will be interpreted in terms of what these responses are 
assumed to measure. We shall return to this issue below. 
 
Model (1) can be elaborated in several directions. One is by extending it to the 
multilevel case and we shall return to this in the next section. A second possibility is 
to include one or more further factors. We can write a 2-factor model as 
 

0 1 1 2 2

2
1 1
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η σ σ

σ

= + + +

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

       (2) 

 
where we now have two sets of loadings and a bivariate Normal distribution for the 
factors. For idenitifiability we now have to impose a further condition so that the two 
factors can be separated. One possibility is to set the factor covariance in (2) to zero 
and additionally constrain one loading to zero, for example 11 0λ = . Another 
possibility commonly used is to choose 2 subsets of the responses, say A and B. For 
subset A only the corresponding loadings on factor 1 are non-zero and for subset B 
only the corresponding loadings on factor 2 are non-zero. We now need to allow a 
non-zero covariance between the factors. This latter solution is popular and often 
known as ‘simple structure’. Prior to settling on a model specification, we may carry 
out an exploratory analysis in an attempt to assess what might be a reasonable model. 
We shall not discuss this issue further – a good introduction is Lawley and Maxwell 
(1971). 
 
Finally we can define factors in terms of particular explanatory variables. Let us 
rewrite (1) as 

0

2 2~ (0, ),  ~ (0, ),   =1 
ij i i j j ij

j ij ei

y z e

N e N zη

β λ η

η σ σ

= + +

j

      (3) 

Now in fact  can be any known explanatory variable, or we can have several. Thus, 
suppose we wish to make the factor structure a function of, say, age we can write 

iz

0 1 1 1 2 2 2

2 2 2
1 1 2 2 1 2~ (0, ),  ~ (0, ),   ~ (0, )     =1   ' '
ij i i j j i j j ij

i i ij i j j

y z z e

N N e N z z ageη η

β λ η λ η

η σ η σ σ

= + + +

=
  (4) 

And the parameters of this 2-factor model will in general be identifiable. If age is 
centered then the interpretation of (4) will then be in terms of a general factor and one 
that is proportional to the departure of an individual from the mean age. For the 
models we shall be using we will restrict ourselves to just one such explanatory 
variable, the constant vector that we will refer to by the name ‘cons’.  
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3. Adding further explanatory variables and structural models 
Returning to the one factor model for simplicity we can also extend this by adding 
further explanatory variables for the responses. For example we may wish to adjust 
for a gender difference in each response and so we can write 
 

0 1 1

2~ (0, ),  ~ (0, )  
ij i i j i j ij

j ij
2
ei

y x e

N e Nη

β β λ η

η σ σ

= + + +
        (5) 

Where 1x  is a dummy variable for gender.  Alternatively we can introduce covariates 
of this kind by allowing the factor itself to depend on them, giving a ‘structural’ 
model 
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where the first line of (6) is the measurement part of the model and the second line 
describes the structural part of the model; together with the distributional assumptions 
(4) is a multilevel structural equation model (SEM). It reduces, on substituting the 
second line into the first, to  
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*
0 1 1

* *~ (0, ),  ~ (0, )  

ij i i j i j ij

j ij

y x

N e Nη
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ei

e
      (7) 

The major distinction between (5) and (7) is that the coefficients of 1x  are 
proportional to the loadings. We have economised on the number of parameters by 
incorporating the relationship with 1x  into the structural part of the model. For this 
reason, if (7) does not result in a significantly worse fit to the data we would generally 
prefer it for it’s generally simpler interpretation. One limitation of the present routines 
is that they cannot fit very general structural models, most notably those where we 
have linear relationships among different factors. 
 
An important feature that we notice by inspecting (5) and (7) is that as further 
explanatory variables are added the values of the loadings in general will change. This 
in turn implies that the interpretation of the factor itself will change, possibly 
substantially. Thus, unlike ordinary models such as multiple regression with measured 
predictors, we cannot directly interpret the effect on factor loadings of introducing 
further variables into a model, since changes in these loadings changes our 
interpretation of what the factor means. One method of dealing with this is to fix the 
values of the loadings as estimated from some suitable ‘standard’ model and then use 
these values in all further analyses. An extreme version of this occurs in item response 
models, the so called Rasch model, where all the loadings are constrained to equal 1 
from the outset (Goldstein et al., 2007). We shall be looking at this when we analyse 
our data set. 
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4. Two level factor and structural equation models 
 
We now consider adding a further level to the basic model. We can think of the data 
structure as, say, pupils (j) nested within schools (k) and one possibility is to extend 
(1) as follows 
 

(1) (1) (2) (2)
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 (8) 

 
So that we have independent factor structures at each level. An alternative, 
corresponding to (6) is to allow the level 1 factor to depend on level 2 random effects 
as follows 
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     (9) 

 
In a similar fashion to the structural model (7) we have replaced the separate level 2 
residuals  with a single level 2 residual in the structural part for the level 1 factor. 
This again may lead to a simpler interpretation. We can add covariates and additional 
factors as before either to model (8) or (9).  

iku

5. Models for binary and ordered responses 
 
In our educational example we in fact have responses that are binary (or ordered) test 
items and we therefore need to modify our expression of the model. A convenient 
way to do this is as follows. Consider the standard Normal variable 

2
0~ ( ,1),    ~ (0, )i i i j jy N N ηβ λη η σ+  

Where we observe a positive (=1) response for our binary variable z if y is positive, 
that is  

0

0

0  or  

( )
ij i i j ij

ij i r j

y e

e

β λη

β λ η

= + + >

> − +
 

We have  
 

0

0

( )

0
( )

Pr ob( 1) Pr ob( ( )) ( ) ( )
i r j

i r j

ij i i jz e t dt
β λ η

β λ η

β λη φ φ
+∞

− + −∞

= = > − + = =∫ ∫ t dt  (10) 

Where ( )tφ  is the density function of the standard Normal distribution. This is the 
standard probit model. A common alternative is to use the logit ‘link function’ 
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In practice these two formulations are very similar and we use (10) because it has 
computational advantages. 
 
Where we have an ordered classification we can extend the binary probit model by 
considering the cumulative probability of being in one of the lowest s+1 categories as 
 

0

s
s f
ij ij

f
γ π

=

=∑         (12) 

Where the categories are numbered from 0 upwards. We now consider the underlying 
Normal variable 
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So that we now have the probability of an observation in category s+1 or higher is 
 

0( )

( )
s i i j

t dt
α β λη

φ
+ +

−∞
∫ . 

 
Thus we now have the extra ‘threshold’ parameters { }sα  to estimate in our model. In 
fact, for convenience the macros written for these models use the formulation  

0( )

( )
s i i j

t dt
α β λη

φ
− +

−∞
∫        (13) 

which is equivalent but with signs of the parameters reversed.  
 
Full computational details are given in Appendix A of Chapter 3.  
 
With these discrete response models the estimation proceeds first by choosing an 
underlying y value and then proceeding as with continuous Normal responses with the 
residual variance fixed at 1.  
 

6. An educational example 
We analyse data from the Programme for international Student Assessment (PISA) 
survey of reading performance, that represents a very ambitious and wide ranging 
attempt to measure and compare 15 year olds in 32 countries, and that utilises 
procedures and models used widely in analysing educational performance. Under the 
auspices of the Organisation for Economic Co-operation and Development (OECD) 
the testing for PISA was carried out in the first half of 2000, and the study was 
intended to be the first of a series. While concentrating on Reading it also has 
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Mathematics and Science components. The second study carried out in 2003 
concentrates on Mathematics and the third in 2006 concentrated on Science. The 
sampling design selected schools as first stage units and sampled 15-year-old pupils 
within schools with a maximum of 35 students within each school. Extensive piloting 
of test items and general procedures, including translations, was carried out. The first 
comprehensive report (OECD, 2001) appeared in 2001 and an extensive (300 page) 
technical report (Adams and Wu, 2002) provides  detail about the procedures used. In 
addition data are available for secondary analysis from the OECD web site 
(www.pisa.oecd.org/pisa/outcome.htm) .  
 
The PISA 2000 (OECD, 2001) analyses have concentrated on computing student 
proficiencies and country means for the three reading proficiency scales of ‘retrieving 
information’, ‘interpreting texts’ and reflection and evaluation’ as well as a combined 
scale. Each scale is defined by a different set of items. We will analyse data from the 
first subscale, ‘retrieving information’ containing 35 items. Details of this subscale 
can be found in the PISA 2000 technical report (Adams and Wu, 2002). The full scale 
contains 36 items, but one of these (R076Q03) was eliminated from the England file 
as ‘dodgy’ because it did not fit well using the 1-dimensional scaling procedure 
applied in the study. Most of the items are binary with 4 being 3 category ordered 
responses. Two countries, France and England have been chosen for this purpose. 
 
The original data consisted of 326 schools, 141 in England and 185 in France, and 
8299 students, 4070 in England and 4229 in France. We shall analyse a 30% random 
sample in order to speed up the analyses, but in the following tables we give the 
results from an analysis of the complete data  and these can be compared with those 
for the 30% sample. It is worth mentioning that the interpretation of comparisons 
between the countries is both complicated and controversial and a discussion is given 
in Goldstein et al., (2007).   
 
An important feature of this data set and many similar ones is that not every student 
has responses to all the items in the test. The items themselves are spread over 
booklets and each student takes a subset of booklets resulting in each pupil having 
many ‘missing’ responses. In our analysis the MCMC algorithm deals efficiently with 
a missing response by randomly ‘imputing’ it.  An alternative is a ‘multiple 
imputation’ procedure that provides users with a small number (e.g. 5) ‘complete’ 
data sets where the missing values have been randomly imputed. The user then fits 
their model to each data set and combines the results in a prescribed fashion. This is 
the procedure used by OECD, but it does not take into account the multilevel structure 
of the data (pupils within schools) and is not generally as efficient as the analyses we 
shall be carrying out. For more details about multiple imputation procedures in 
multilevel models see www.missingdata.org.uk . 
 
We begin by looking at some single level models and then will switch to 2-level 
models. 
 

7. Fitting single level factor models 
We begin by fitting model (1) to our data set with 31 binary responses and 4 3-
category ordered responses, using the latent Normal variable approach described 
above. We start by running the file structural-equation.exe. The data are in a file 
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called ‘pisadata’. On starting up the program we are confronted with a menu window 
as follows: 

 
 
Click on ‘Open data file’ and load  pisadata: click on this. The windows used to 
specify the model are similar in format to those used for the measurement error model 
and we shall only describe features specific to latent variable models. When naming 
the variables it is suggested that the first 35, which are the responses are left as C1, 
C2,….C35. C36 is the constant – name this ‘cons’, C37 is country (England =1) C38 
is gender (Male =1) C39-c43 are 5 dummy variables for month of birth (march-
April=1, May-June=2, July-Aug=3, Sept-Oct=4, Nov-Dec=5), C44 is the level 2 unit 
ID. Identify this by clicking on specify level-2 identifier. If you are fitting just a 
single level model click on clear level-2 identifier. 
 
You can also set a missing value code for the data – the default value, as shown, is 

 (code as -9.999e+29) and this is the value used in our data set. 29999.9 10− ×
 
We must now specify the response variables (Add/remove responses) and for each 
response we must specify the type – in our case either binary or ordered. The 4 
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ordered variables are C9, C14, C20, and C26, each with 3 categories. Note that you 
can select consecutive responses and give them the same type.  
 
At this point let’s click on Show equations and you will see that each response is 
listed as an additive function of the level 1 and level 2 residuals: we haven’t yet 
specified any fixed predictors or factors. Click on Equation view settings and you 
will see several options. By Response lines click on Collapse and you will see just a 
single line with a generic expression for the model so far. 
 
We can now add explanatory variables in the measurement part of the model – for 
now we shall just fit an intercept to take up the mean for each response. The next 
button allows you to constrain any coefficient to be equal across responses but we 
shall not use this. Now add a single factor at levels 1 and 2 and constrain their 
variances to be equal to 1.0.  
 
If you now click on MCMC estimation settings you will see that you have to enter the 
‘burn in’, ‘number of iterations’ and screen ‘refresh rate’ (n). The latter simply tells 
you how many MCMC cycles or iterations have been done – printing the number after 
every n-th. For more details about MCMC estimation see the section ‘Introduction to 
MCMC estimation’. The model runs quite slowly so choose a small number for the 
burn-in, say 30, and run for 100 iterations.  
 
If, after the program has finished you wish to add more iterations, click ‘resume 
iterations’. You will see the results appear on the screen.  
 
The full results for the model (in fact a simpler model with just a single level) are 
given in Table 1 that shows the results for the intercept parameters model. There are 
two models fitted here: the model where we allow loadings to be estimated and a 
model (the Rasch model) where the loadings are constrained to be equal (using the 
‘constrain factor laodings’ button) to 1. Since the factor mean is zero the intercept 
parameter represents the mean for the item on the probit scale. Thus, a value of  0.64 
means that the probability getting this item correct is the cumulative probability of the 
Standard Normal distribution for that value, i.e. 0.74.  
 
Table 2 shows the factor loadings. Note that for the equal loading case where the 
factor loadings are constrained to 1 the factor variance is now estimated. We also see 
in this table a ‘DIC value’. Here we see a difference of over 600 indicating that the 
model where loadings are estimated is a far better fit.  
 
Finally, let us look at the issue we mentioned earlier, namely how to interpret the 
factors as further variables are added. One option is to approximate as in the Rasch 
model and keep the loadings equal to 1 so that the interpretation of the factor stays the 
same as further explanatory variables are added. The second is to fix the loadings as a 
result of a preliminary analysis and thereafter constrain them to be equal to these 
values. See what happens to the DIC when you do this. How are your interpretations 
affected? 
 
You can then go on to look at a structural model where we introduce variables such as 
Country and  gender.  
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We have not covered all possibilities in these notes, and if you want to take the 
analyses further see the Goldstein et al (2007) paper and also one by Steele and 
Goldstein (2006) that looks at structures for handling more than one factor. 
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8. Tables 
 
Table 1. Comparisons of intercept parameter estimates – (threshold parameter 
estimates for four ordered category items in brackets). Burn-in=1000: 
sample=5000. Single level factor model with 8299 pupils.  

Question 

Equal Loadings 
(Rasch model)  

Equal Loadings 
(Rasch model) 
standard errors 

Unequal Loadings Unequal Loadings 
standard errors 

R040Q02 0.66 0.04 0.64 0.04 
R040Q03A 0.34 0.03 0.36 0.04 
R070Q02 0.33 0.03 0.34 0.03 
R070Q03 0.93 0.03 0.90 0.03 
R076Q05 0.05 0.03 0.07 0.03 
R077Q02 0.83 0.04 0.84 0.04 
R083Q02 1.33 0.03 1.24 0.04 
R083Q03 1.13 0.03 1.15 0.04 
R088Q03 1.00 (1.39) 0.066 (0.10) 1.00 (1.35) 0.08 (0.13) 
R091Q05 2.18 0.06 2.00 0.07 
R100Q04 0.31 0.03 0.31 0.03 
R104Q01 1.31 0.03 1.56 0.07 
R104Q02 -0.13 0.03 -0.10 0.03 
R104Q05 -0.07 (1.73) 0.04 (0.15) -0.11 (1.91) 0.03 (0.17) 
R104Q06 0.93 0.03 0.89 0.03 
R110Q04 1.30 0.04 1.45 0.06 
R110Q05 1.35 0.04 1.44 0.05 
R111Q04 1.01 0.03 0.98 0.04 
R119Q06 1.36 0.04 1.31 0.04 
R122Q03T 0.56 (0.84) 0.05 (0.09) 0.60 (0.89) 0.05 (0.08) 
R216Q04 -0.05 0.04 -0.04 0.04 
R219Q01E 1.38 0.03 1.29 0.04 
R220Q01 0.34 0.03 0.33 0.03 
R225Q03 1.78 0.05 1.82 0.06 
R225Q04 1.12 0.03 1.16 0.04 
R227Q02T 0.48 (0.91) 0.04 (0.07) 0.46 (0.87) 0.04 (0.07) 
R227Q06 1.20 0.03 1.34 0.06 
R234Q01 1.37 0.04 1.42 0.05 
R234Q02 -0.76 0.03 -0.72 0.03 
R237Q01 0.75 0.03 0.83 0.04 
R238Q01 0.40 0.03 0.40 0.03 
R239Q02 0.35 0.03 0.34 0.03 
R245Q01 0.84 0.03 0.79 0.03 
R246Q01 0.92 0.03 1.05 0.05 
R246Q02 -0.21 0.03 -0.20 0.03 
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Table 2. Comparisons of parameter estimates – loadings (DIC is Deviance 
information criterion, PD is effective number of parameters) 

Question 
Equal Loadings 
(Rasch model =1) 

Unequal Loadings Unequal Loadings 
standard errors 

R040Q02 1 0.55 0.05 
R040Q03A 1 0.69 0.05 
R070Q02 1 0.73 0.05 
R070Q03 1 0.60 0.05 
R076Q05 1 0.82 0.06 
R077Q02 1 0.62 0.05 
R083Q02 1 0.43 0.04 
R083Q03 1 0.63 0.05 
R088Q03 1 0.63 0.06 
R091Q05 1 0.32 0.08 
R100Q04 1 0.77 0.05 
R104Q01 1 1.10 0.08 
R104Q02 1 0.35 0.03 
R104Q05 1 0.92 0.09 
R104Q06 1 0.54 0.04 
R110Q04 1 0.90 0.07 
R110Q05 1 0.82 0.06 
R111Q04 1 0.54 0.05 
R119Q06 1 0.56 0.05 
R122Q03T 1 0.77 0.06 
R216Q04 1 0.70 0.06 
R219Q01E 1 0.47 0.05 
R220Q01 1 0.53 0.05 
R225Q03 1 0.70 0.06 
R225Q04 1 0.76 0.05 
R227Q02T 1 0.50 0.04 
R227Q06 1 0.88 0.08 
R234Q01 1 0.77 0.06 
R234Q02 1 0.52 0.05 
R237Q01 1 0.85 0.05 
R238Q01 1 0.68 0.05 
R239Q02 1 0.59 0.04 
R245Q01 1 0.44 0.04 
R246Q01 1 0.95 0.07 
R246Q02 1 0.61 0.04 
Factor variance (s.e.) 0.423 (0.012) 1.0  
DIC (PD) 89793.4 (5478) 89129.7 (5580)  
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Chapter 3. Multilevel multivariate models with mixed 
response types at 2 levels 

1. Introduction 
Multivariate models, including those which incorporate a multilevel structure are 
traditionally confined to responses at the lowest level of the data hierarchy and 
usually also deal only with Normally distributed responses. One exception to the 
latter, and implemented in MLwiN, is where the responses are all binary or a mixture 
of binary and Normal. Browne (2004) discuss such models and gives examples. There 
are also some examples of the use of Normal responses jointly at levels 1 and 2; 
Steele et al (2007) model pupil and school level Normal responses in a multiprocess 
model for evaluating the impact of school resources on student achievement, and 
Goldstein (1989) fits a model with repeated measures on individuals during growth 
(level 1) jointly with their adult height (level 2) as the basis for an efficient prediction  
model. We now describe extensions that allow any of the responses additionally to be 
ordered or unordered categorical variables. As we will see this is particularly useful 
when we wish to carry out multiple imputation for missing data, where missingness 
may occur with continuous or discrete data. 
 

2. Models for mixed multivariate responses at 2 levels 
Appendix A sets out the general model and provides a detailed description of the 
MCMC estimation algorithm. To introduce the models we shall be using we consider 
the following simple version with Normal responses, written as 

(1) (1) (1) (1)
1

(2) (2) (2)
2

(1) (1) (2)
1 2~ (0, ), ( , ) , ~ (0,

ij ij j ij

j j j

T
ij j j j j

y X u e

y X u

e MVN u u u u MVN
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β

= + +

= +

Ω = Ω )

     

The superscripts denote the level at which a variable is measured or defined. Here  
is a  row vector containing the responses that are defined at level 1 for level 1 unit  
i nested in level 2 unit j. Also,  is a  row vector containing the remaining 
responses that are defined at the higher level. We assume the same set of predictors 
for each response and  is a 

)1(
ijy

1p
)2(

jy 2p

ijX 1 11 f×  matrix that contains the predictor variables for 

observation i nested in higher level unit j and  is an )1(β 11 pf ×  matrix containing the 
fixed coefficients.  is a jX 2 21 f×  vector that contains predictor variables for higher 

level unit j and  is an )2(β 2 2f p×  matrix containing the fixed coefficients. The link 
between the level 1 and the level 2 responses is through the level 2 covariance matrix 
of the level 2 random effects for the level 1 responses, (1)

ju  and the level 2 random 

effects for the level 2 responses, (2)
ju , with covariance matrix 2Ω . 

 
To extend this model to handle binary responses we consider the threshold model that 
assumes that a response = 1 occurs when the value of an underlying ‘latent Normal’ 
variable is greater than 0 and a response = 0 when less than 0. The algorithm then has 
an extra step that draws a random value from this Normal distribution, given the data 
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and current parameter values. This is extended to the ordered category case by 
supposing that there are a series of thresholds along the distribution of the latent 
Normal variable defining the observed categories. For unordered categorical variables 
we use a ‘maximum indicant’ formulation whereby for a k-category variable we have 
a corresponding k-1 dimensional multivariate Normal distribution and the extra step 
involves drawing a sample from this. As a result of such steps we are then dealing 
with a set of multivariate normal responses and model (1) applies. Appendix A gives 
details for all these cases. 
 

3. Growth data example 
Our first example uses the growth data mentioned earlier, analysed by Goldstein 
(1989). This dataset consists of 108 children with height measured on up to six 
occasions around the age of 13 together with their adult heights, altogether 436 
growth period measurements and 108 adult height measurements. We shall fit a cubic 
growth curve to the level 1 (within child) measures and a single intercept for the adult 
height measurement. We will also allow the age slope to vary at level 2 so that each 
child is allowed to grow at different rates. You might also wish, later, to allow the 
quadratic and/or cubic polynomial coefficients to vary across children. In fact we may 
well wish to introduce further covariates such as gender, but for purposes of 
illustration we shall fit the simplest explanatory model. The data set is 
‘growthdata.txt’. The variables in order are: Child (level 2) ID, adult height (cm), 
height (cm), constant=1, age (years centered on 13), age squared, age cubed.  
 
This model can be written as: 
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  (1) 

 
where  is the i-th measurement around the age of 13 for the j-th child, (1)

ijy (2)
jy  is the 

adult height of the j-th child and  is age. ijt
To start the program click on mixed-responses.exe  and you will obtain the following 
screen 
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Open the data file ‘growthdata.txt’ and name the variables in the order given above.  
 
You can also set a missing value code for the data – the default value is -
9.999  (code as -9.999e+29) and this is the value used in our data set. 29999.9 10− ×
 
Select the level 2 identifier and add the adult height and height as explanatory 
variables. When you click on type of response you will see the following screen: 
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On the right hand side you can specify the type and if this is unordered or ordered you 
will also need to specify the number of categories. Note that the categories should be 
integer numbered starting from 0. In the present case both responses are Normal 
which is the default. 
 
Now click on Add/remove explanatory variables, select the constant, age, age 
squared and age cubed as predictors for the level 1 response and the constant for the 
level 2 response. You will see a screen rather like the following when you have 
completed the selection: 
 

 
 
The extension, lev 1 or lev 1+2, indicates the level for each predictor. Note that the 
software detects which are level 1 and level 2 responses by checking whether the 
variable varies within a level 2 unit – if it does then it is classified as a level 1 
response. Now click on Add/remove random coefficients at level 2. Add the 
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intercept (cons) and age. The intercept is automatically included for level two 
responses. The equations screen will look similar to the following: 
 

 
 
You are also able to constrain any of the fixed (beta) coefficients to zero. This may be 
useful where there are several responses at a level and you do not wish the same 
predictors to appear in each line of the model. It is suggested that you have a burn in 
of  100 and monitor 1000.  
 
The results from fitting this model with a burn in of 500 and 5000 iterations are as 
follows: 
 
Table 1. Two level growth model. 
Coefficient Estimate S.E. 
Level 1 model intercept 153.05 0.69 
Age (about age 13.0) 7.07 0.16 
Age-squared 0.294 0.054 
Age-cubed -0.208 0.029 
Level 2 model intercept 174.70 0.80 
Level 2 covariance matrix 

55.77    1.29   50.01
    1.30    0.53    1.24
   50.01    1.24   69.42

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Level 1 variance 3.21  
 
 
The chains are well behaved and that for the slope variance (at level 2) is as follows: 
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The 95% interval for the slope variance is from 0.30 to 0.86. The average height at 
age 13.0 years is 153.1 (standard error 0.69) and the average adult height is 174.7 
(standard error 0.80).  
 
For purposes of predicting the adult height of a child for whom we have any set of 
growth measurements, we require a prediction formula that we can derive from the 
parameters of our model. Thus, for example, if we have two growth measurements we 
will have a linear prediction of the form 

0 1 1 2 2ˆ j jy y jyγ α α= + +% %

1,2

2 j e

       (2) 
where, from (1) 

(1) 2
0 1 2( ),    ij ij ij ijy y t t iβ β β= − + + =%  

is the ‘raw’ residual for each measurement. The parameters of the prediction equation 
(2) can be derived from the covariance matrix of the response and predictors, namely 
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so that a prediction, and confidence interval, can readily be computed for any set of 
measurements. 
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4. Class size data example 
Our second example is concerned with multiple imputation for missing data using a 
study of the effect of class size on educational achievement. The data set is the same 
as used for studying measurement errors (see measurement error training materials). 
Briefly, a cohort of pupils was followed from entry to reception class until the end of 
the school year, with assessments at the start and end. The response variable is a 
normalised maths score (end of reception year) postmaths. The 5 explanatory 
variables are: constant (=1), regcls-30 (regular class size centered at 30), normalised 
pretest maths pre-maths, gender gend, and free school meals eligibility fsmn. For 
present purposes we have selected a sample with 930 students and 52 classes, with no 
missing data so that we can introduce (randomly) missing data and compare results.  
 
Before describing our analysis we briefly outline a general procedure for handling 
missing data known as (random) multiple imputation. Details and examples of how 
this works can be found by going to the web site www.missingdata.org.uk. 
 

5. Multiple imputation 
Suppose we have a model with a single, Normal, response, y and a single, Normal 
predictor, x. The model of interest is, say, 
 

0 1i i iy x eβ β= + +        (3) 
 
And we may have missing data in both x and y. We now set up an ‘imputation’ model 
that has all the variables as responses with just an intercept, i.e. 
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     (4) 

 
If we fit this model we will obtain intercept estimates and also estimates for the 
residuals . If any of the y, x,  are missing then we likewise obtain residual 
estimates where there is missing data (based upon the model parameter estimates and 
the observed non-missing data) that allows us to insert a predicted value for the 
missing value. We also have an estimate of the standard error of the predicted residual 
and this allows us to randomly sample a value from the (posterior) distribution of the 
residual. Random imputation does this for each missing value so producing a 
‘completed’ data set. The procedure is then repeated, say, 5 times (although more may 
be needed in many circumstances especially when fitting a multilevel model) and the 
original model of interest (3) fitted this number of times yielding 5 sets of parameters. 
These are then combined as follows to provide the final estimates. 

1 2ˆ ˆ,  ie e i

 
Let the estimate of any chosen parameter, for example 1β , from the k th dataset be be 

. Then, we average these to give kQ
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and the variance estimate of MIQ  is then 

2 2(1 1/ ) b wK σ σ+ +  
  
and the square root of this is the standard error. This is extended straightforwardly to 
handle multiple parameters and covariances. The extension to a multilevel model 
simply involves adding random effects at higher levels into (3) and (4).  
 
A computationally convenient way to sample the residuals is within an MCMC 
estimation where every n-th iteration we choose the residual estimates as a sample for 
a single completed data set. The value of n should be large enough (say 500) to ensure 
independent samples. 
 
All of the above assumes, as in (4), multivariate Normality. However, many predictor 
(and response) variables are binary, ordered or nominal and treating these as Normal 
can lead to biases. This is where the ‘latent Normal’ variable approach is used as 
described in the introduction. To carry out the imputations we first estimate a Normal 
residual where the response is missing and then The imputation step is then based 
upon first imputing for the Normal distributions and then converting to the equivalent 
category (see Appendix A). 

6. Class size data example 
The following analyses are described to illustrate the multiple imputation procedure. 
You can explore the data set for yourself. It is in the file ‘classsize_impute’. The 
variables are: Classroom ID, constant=1, post-test maths score, pretest maths score, 
gender (girl =1), free school meals eligibility (yes =1), class size (measured about 30), 
We have chosen a subset of the original data set which has 930 student records and 52 
classes. The original had 4570 complete student records and 246 classrooms 
(Blatchford et al., 2002). 
 
The first analysis is for the complete data set. We present the results of the model of 
interest (3). We then randomly miss 20% of the class size data, 20% of the FSM data 
and 20% of the pre-test data, so that we have about 50% of our records with some 
missing data. We then carry out our multiple imputation procedure where all the 
variables are first modelled as responses. Class size is at level 2 and we have a 
mixture of Normal and binary responses. For present purposes it is suggested that you 
might like to choose just 1 or 2 imputed dataset to analyse, depending on the time 
available. In addition we look at the standard procedure of deleting all records with 
any missing data – the listwise deletion procedure. 
 
Table 2 shows the results from fitting the 2-level model of interest to the full data set 
excluding records with missing data.  
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 Table 2.  No missing data. Response is Post Maths test. Maximum likelihood 
estimates. 

variable estimate Standard error 

intercept 0.097  

Class size -0.021 0.016 

Pre-maths 0.560 0.025 

Gender -0.047 0.044 

FSM -0.186 0.062 

Level 2 variance 0.122 0.030 

Level 1 variance 0.428 0.020 

 
Table 3 shows the results of carrying out the full multiple imputation procedure where 
we have randomly deleted values in the three predictor variables so that half the 
records have some missing data. Five completed data sets were imputed using the 
routines and then analysed and combined within MLwiN. 
 
 
Table 3. Class size + FSM + pre-maths missing. 5 imputations 

variable estimate Standard error 

intercept 0.087  

Class size -0.026 0.018 

Pre-maths 0.548 0.027 

Gender -0.056 0.046 

FSM -0.208 0.082 

Level 2 var 0.114 0.029 

Level 1 var 0.432 0.022 

Missing data in 50% of records 

 
One of the issues in multiple imputation is the number of imputed data sets that 
should be used. For 2-level data five is often too small and as many as 50 may 
sometimes be needed to obtain accurate estimates, especially of standard errors. Table 
4 shows the results from using 50 imputed data sets.  
 

 42  



Table 4. Class size + FSM + pre-maths missing. 50 imputations 

variable estimate Standard error 

intercept 0.106  

Class size -0.021 0.020 

Pre-maths 0.550 0.028 

Gender -0.055 0.046 

FSM -0.211 0.079 

Level 2 var 0.119 0.031 

Level 1 var 0.432 0.023 

Missing data in 50% of records 

 
We note that the estimates in Table 4 are closer to those for the full data set and the 
standard errors somewhat higher. This illustrates the importance of having sufficient 
imputed data sets to obtain stable estimates. 
 
We now look at the actual estimates obtained from running the multivariate model 
with every variable (except the constant term) as a response fitting just the intercept as 
a predictor. First, in Table 5, we show the results for the full dataset with no missing 
data. 
 
Table 5. Complete data multivariate responses model. 
Variable Intercept  (s.e.) 
Post maths 0.1341  (0.0699) 
Pre Maths  0.0188  (0.0711) 
Gender  0.0687  (0.0465) 
FSM -1.0643  (0.1286) 
Class size (-30) -4.2670  (0.5444) 
Level 1 covariance matrix 

     

    0.6955    0.4460   -0.0964   -0.1982
    0.4460    0.7702   -0.1230   -0.1939
   -0.0964   -0.1230    1.0000    0.0067
   -0.1982   -0.1939    0.0067    1.0000

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Level 2 covariance matrix 
    0.2140    0.0974   -0.0057   -0.0938   -0.1263
    0.0974    0.1997    0.0219   -0.1667    0.1983
   -0.0057    0.0219    0.0210   -0.0322    0.0407
   -0.0938   -0.1667   -0.0322    0.6169   -0.3327
   -0.1263    0.1983    0.0407   -0.3327   15.4836

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
Table 6 fits the dataset with the missing responses. 
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Table 6. Missing 50% data multivariate responses model. 
Variable Intercept (s.e.) 
Post maths 0.1336   (0.0708) 
Pre Maths  0.0321  (0.0713) 
Gender  0.0734  (0.0474) 
FSM -1.0898  (0.1293) 
Class size (-30) -4.0494  (0.5968) 
Level 1 covariance matrix 

     

    0.6918    0.4440   -0.0957   -0.1956
    0.4440    0.7836   -0.1205   -0.1742
   -0.0957   -0.1205    1.0000   -0.0119
   -0.1956   -0.1742   -0.0119    1.0000

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Level 2 covariance matrix 
    0.2147    0.1046   -0.0057   -0.0597   -0.1930
    0.1046    0.2141    0.0185   -0.1404    0.0965
   -0.0057    0.0185    0.0242   -0.0423    0.0151
   -0.0597   -0.1404   -0.0423    0.6005    0.0109
   -0.1930    0.0965    0.0151    0.0109   14.7433

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
Notice how all the standard errors have increased, especially for class size. The 
estimates themselves have changed little. Also note that at level 1 the variances for 
the two binary variables are fixed at 0. Finally in Table 7 we fit the same model but 
deleting all the records with any missing data, i.e. about half of them. 
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Table 7. Missing 50% data multivariate responses model with listwise deletion 
Variable Intercept (s.e.) 
Post maths 0.1017  (0.0881) 
Pre Maths 0.0109  (0.0878) 
Gender 0.0959  (0.0738) 
FSM -1.1241  ( 0.1588) 
Class size (-30)   -4.0298  (0.6025) 
Level 1 covariance matrix 

     

 0.7197    0.4292   -0.0863   -0.2224
    0.4292    0.7163   -0.1065   -0.1759
   -0.0863   -0.1065    1.0000   -0.0076
   -0.2224   -0.1759   -0.0076    1.0000

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Level 2 covariance matrix 
0.2364    0.1585   -0.0199   -0.0194   -0.1311
    0.1585    0.2351   -0.0292   -0.0920    0.1334
   -0.0199   -0.0292    0.0682   -0.0319   -0.1008
   -0.0194   -0.0920   -0.0319    0.7383    0.1142
   -0.1311    0.1334   -0.1008    0.1142   14.7822

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
We see the large increase in standard errors here for the fixed coefficient intercepts. 
 

7. Conclusions 
We have seen how the ability to model variables simultaneously at more than one 
level leads to efficient predictions and flexible ways of handling missing data. You 
may like to extend the growth modelling by fitting higher order polynomial or 
fractional polynomial terms. In the class size case you may like to try deleting data 
informatively, for example selectively choosing more low scores for the pre-test and 
then seeing how much bias you can recover over a listwise deletion procedure, 
utilising the strong correlation between the post and pre test scores. 
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Appendix A3. An MCMC algorithm for estimating 
multivariate mixed response types at 2 levels 

1. The model 
The model structure we consider, for a 2 level model, is as follows 

(1) (1) (1) (1)
1 1

(2) (2) (2)
2 2

(1) (1) (2)
1 2~ (0, ), ( , ) , ~ (0,

ij ij ij j ij

j j j j

T
ij j j j j

y X Z u e

y X Z u

e MVN u u u u MVN

β

β

= + +

= +

Ω = Ω )

1

    

The superscripts denote the level at which a variable is measured or defined. Here  
is a  row vector containing the (latent or actual) normal responses that are defined 
at level 1 for level 1 unit (observation) i nested in level 2 unit j. Also,  is a  row 
vector containing the remaining responses that are defined at the higher level. We 
assume the same set of predictors for each response and  is a  matrix that 

contains the predictor variables for observation i nested in higher level unit j and  
is an  matrix containing the fixed coefficients. Similarly  is a  matrix 
that contains predictor  variables related to  random effects for observation i nested 

in higher level unit j and  is an 

)1(
ijy

1p
)2(

jy 2p

ijX 1 11 f×
)1(β

11 pf × ijZ1 11 q×

1q
)1(

ju 1q p×  matrix containing the random effects at 
level 2 for the level 1 responses. In the present paper we shall consider only the 
variance components case where =1, but extensions to the general case are 
straightforward. Correspondingly, 

1q

2 jZ  is a 2  q p2×  matrix for the level 2 random 

effects for the level 2 responses. For the level 1 residuals  is a  row vector 
(calculated by subtraction).  is a 

)1(
ije 1p

jX 2 21 f×  vector that contains predictor variables for 

higher level unit j and  is an )2(β 2 2f p×  matrix containing the fixed coefficients. The 

 is an   matrix of level 2 residuals (calculated by subtraction) and are 
correlated with the level 2 residuals for the level 1 responses. In this paper we assume 

. 

)2(
ju 2q p× 2

2 1q =
 
The first steps in the MCMC algorithm are concerned with how to generate the 
Normally distributed responses given the actual responses that may be binary, 
ordered, or unordered categorical. We will focus on the level 1 responses and consider 
each type of response in turn. The level 2 responses are generated via very similar 
steps. 
 
We wish to sample Normal responses from any binary, ordered or general 
multicategory responses. Binary can be treated either as multicategory (unordered) 
with 2 categories or ordered with two categories. In the latter case we are effectively 
modelling the proportion of ‘1’ responses and in the former the proportion of ‘0’ 
responses. The latter is typically more computationally efficient. 

2. Multicategory (unordered)  responses: 
We assume a ‘maximum indicant’ model (Aitchison and Bennet, 1970) defined as 
follows: 
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Consider the multinomial vector with p categories, where the response, y is (0,1) in 
each category. That is, we expand the actual response for level 1 unit i, (a categorical 
variable with values from 1 to p) into p (0,1) variables only one of which is 1.  
Thus where h  indexes 
the response. For each 

1 if response is in category  for individual , 0 otherwisehiy h= i

hiy  we assume an underlying latent variable  exists and that 
we have the following model, where for now we omit the level 2 random effects: 

hiv

1 1

T
1 1 1 11 1

,    ~ (0, )
 is a  correlation matrix,   mutually independent vectors

 is (1 ),   is ( 1),     is ( 1),   { ,.... } , is ( 1)

hi hi h hi i

i
T T

hi h i p

v X e e MVN
p p e

X  s s e p ps

β

β β β β

= + Σ
Σ ×

× × × = ×

h

]

 (A.1) 

For identifiability purposes we will model only the first p-1 categories and assume 
that Σ  is diagonal with variances equal to 1.  
Let  be the set of other responses, that is current residuals, adjusted for  
predictors (common to all responses) and (possible) random effects at higher levels. 
When sampling the  we condition on this set so that (A.1) becomes 

*
1hiY 1X

hiv
*

1 1 1 2hi hi h hi h hiv X Y eβ β= + +        (A.2) 
Thus, if is the current residual covariance matrix for the full set of model 
responses, we write 

1Ω

    ,
212

1
1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ΣΣ

Σ
=Ω where  is the residual covariance matrix for  the  and 

 . We therefore have . 

1Σ
*

1Y

12 −=Σ pI 1
1122
−ΣΣ=β

While the same set of model predictors  applies to each category, the coefficients 
in general are specific to each category. We therefore have 

1X

     (A.3) 
*

1 1 1 1
*
1 1 1

,    ( ) ,     is (( 1) 1),   

 is (( 1) ( 1) )
hi i i i i i

i p i

X X v X e v p

X I X p p s

β

−

= = + − ×

= ⊗ − × −
The maximum indicant model states that we observe category h for individual i iff 

. Thus the category probabilities are given by *
*   hi h i

v v h> ∀ ≠

* *
*

1 1[   hi hi h hi hi h h i
pr X e X e h hπ β β= + > + ∀ ≠     (A.4) 

If we now add level 2 random effects (j indexes level 2) (1) becomes 
1 1hij hij i ij hj hijv X z u eβ= + +  where is ( 1)hju q×  and we write which is a 

 vector with . We also now write 

}  T
j hju {u=

)1)1(( ×−pq cov( )u uΩ = j
*

1ij p ijz I − z= ⊗  which is 
and .  ))1()1(( −×− pqp  is 1ijz ( q× )

)

To sample the latent Normal responses  we select a sample of p-1 values 

from and accept this draw to replace the current 
set of p-1 values if and only if the maximum of these p-1 values actually occurs in the 
category where a response variable value of 1 is observed and if this maximum is 
greater than zero, or if the maximum is less than or equal to zero and a value of 1 is 
observed in the final category. If not, we select another sample.  

{ }ij hijv v=
* * * 1
1 1 1 2 2 21 1 12( , T
i i ij jN X Y z uβ β −+ + Σ −Σ Σ Σ

3. Ordered responses 
Suppose we have an ordered p-category response, ordered categories numbered 
1,….p.  We consider the probit link proportional odds model 
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*
1 1 1 2( )

1

( )

     categories    1 1   

h X Y ZU

h

h

h g
g

t dt

h ,...p ,

α β β

γ ϕ

γ π

− + +

−∞

=

=

= =

∫

∑ −

2

 

Where *
1 ,Y β  are as before, and the underlying latent Normal variable is given by 

)(** 2
*

111 ZUYXeY +++= ββ , * 1
21 1 12~ (0,  1 )e N −− Σ Σ Σ  

Note that alternatively we could form )(** 11 ZUXeY ++= β , e*~N(0,1), but this will 
generally provide less efficient parameter estimates. 
We assume that the intercept term is incorporated in the fixed part predictor so that 

01 =α .  
We can convert this to a standard Normal model by sampling to obtain as follows 
(Albert and Chib, 1993). 
For a category 1 response we sample from the standard Normal distribution 

 )](,[ 2
*

111 ZUYX ++−−∞ ββ
For a category p response we sample from the standard Normal distribution 

]),([ 2
*

1111 ∞++−− ZUYXp ββα  
For every other category h we sample from the standard Normal distribution 

* *
1 1 1 1 2 1 1 1 2[ ( ), (h h )]X Y ZU X Y ZUα β β α β β− − + + − + +  

For the { hα }, conditional on current values of and other parameters we must select 
a new 

*
1Y

 ( 1)h hα > and use MH sampling for these threshold parameters. Thus, the 
component of the likelihood associated with the ordered category is given by 

,
,

1 1

i h

pN
w

h
i h

Pα απ
= =

=∏∏  

for given α  where  is the observed (0,1) response for individual i  in category 
h, and 

,i hw

1 1

1 1 1

1 1

1 1 1

( )

( )

( )

1

( )

( ) ,       1   ( 3)

( ) ,  

( ) ,

 

h

h
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−

−

− +
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− +
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∞

− +
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=

∫

∫

∫
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 We select a new set of values  (one at a time) using a suitable (Normal) proposal 
distribution (for example derived adaptively) and set new threshold parameters =  
with probability . In addition, the order relationships among the 
threshold parameters must be satisfied. If the selection results in an element of 

*α
*α

)/1min * αα
P,P(

α  that 
does not satisfy these relationships then that element is left at the current value.  The 
α  are sampled first followed by the .  *Y
The above two steps will yield Normally distributed responses, which together with 
any observed Normal responses produces a multivariate Normal set. Where level 1 
responses are missing we sample new responses, omitting detailed subscripts, by 
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drawing from  where * * * * * * 1
2 2 1 1 2 2 2 21 1 12( , )MVN X e z uβ β −+ + Σ −Σ Σ Σ 2Σ  is the current 

covariance matrix of residuals for the missing responses, 1Σ  is the covariance matrix 
of residuals for the observed responses and 12Σ  is the matrix of covariances between 
the observed and missing residuals. The * * * *

2 2 2 2and X z uβ  are the fixed predictor and 
level 2 residual contribution for the missing responses, * 1

1 1 1β −
2= Σ Σ  and  are the 

level 1 residuals for the observed responses. 

*
1e

Following the above steps we have a new complete set of, say, p multivariate 
responses for each level 1 unit with the model 

1,    ~ (0, )hij ij h ij hj hij ij py X z u e e MVNβ= + + Ω     (A.5) 
Where h indexes the response. Having sampled so that we have a set of Normal 
variables, we now have the following further steps. We consider first a model with 
only level 1 responses. 

4. Sampling the fixed coefficients 
 
To sample β  we assume a uniform prior and sample from a Multivariate Normal 
distribution with mean 

1 1 1 1 1 1

1 1 1
( ) 1 ( ) ( ) 1[ ( ) ( )] ( ) ,     T T T

p p ij p p ij p p ij ij ij ij ij j
ij ij

I X I X I X y y y z− − −
× × ×⊗ Ω ⊗ ⊗ Ω = −∑ ∑ % % u

1

and 

covariance matrix 
1 1 1 1

1
( ) 1 ( )[ ( ) ( ) ]T

p p ij p p ij
ij

I X I X− −
× ×⊗ Ω ⊗∑  where ,ij jz u  are defined 

with respect to the complete set of level 1 multivariate responses. That is 

1 11 2 1 2( , ,.... ) ,     ( , ,.... )T T
hj h j h j hq j j j j p ju u u u u u u u= =  

So that  is ju 1 1 1q p ×  with the random effects varying fastest. 

5. Sampling the random effects 

To sample the with prior ju 2(0, )N Ω we note that the exponent of the likelihood for 

the j-th level 2 unit is 1 1
1 2( ) ( )T T

ij ij ij j ij ij ij j j j
i

y X z u y X z u uβ β− −− − Ω − − + Ω∑ u

1−

   

Thus we sample from the multivariate Normal distribution ju
1 1 1 1 1 1

1 2 1 1 2([ ] [ ( )],[ ] )
T T T

ij ij ij ij ij ij ij
i i i

MVN z z z y X z zβ− − − − − −Ω +Ω Ω − Ω +Ω∑ ∑ ∑  

6. Sampling the level 1 (multivariate) covariance matrix 

For all the categorical responses the level 1 variances are fixed to 1.0, with zero 
correlations among the categories of each unordered categorical variable, but non-
zero correlations between these categories and other categorical and continuous 
variables. Thus for this set of correlations and for the unconstrained variances we use 
an MH sampling procedure as follows. We assume uniform priors. 
Let denote the l,m-th element of the covariance matrix. We update these 
covariance parameters using a Metropolis step and a Normal random walk proposal as 
follows.  

lm,1Ω

At iteration t generate ~ N( ) where   is a proposal distribution 
variance that has to be set for each covariance and variance. Then form a proposed 

*
,1 lmΩ 2)1(

,1 , plm
t
lm σ−Ω 2

plmσ
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new matrix  by replacing the l,m th element of by this proposed value unless  
  is not positive definite in which case set = . That is set  

*
1Ω )1(

1
−Ω t

*
1Ω )(

,1
t
lmΩ )1(

,1
−Ω t
lm

)(
,1
t
lmΩ =  with probability *

,1 lmΩ * ( 1)
1 1min[1, ( | ) / ( | )]t

ij ijp e p e−Ω Ω and 

= otherwise.  The components of the likelihood ratio are )(
,1
t
lmΩ )1(

,1
−Ω t
lm

* * 1/ 2 * 1
1 1 1( | ) | | exp( ( ) ( ) / 2)T

ij ij ij
ij

p e e e− −Ω = Ω − Ω∏ and 

( 1) ( 1) 1/ 2 ( 1) 1
1 1 1( | ) | | exp( ( ) ( ) / 2)t t T t

ij ij ij
ij

p e e e− − − − −Ω = Ω − Ω∏  

An adaptive procedure (Brown, 2004) can be used to select the proposal distribution 
parameters. 

7. Sampling the level 2 covariance matrix 

We sample a new level 2 covariance matrix  
1

2

1

1

~ ( , )

,    ( )

u u
m

T
u p u j j p

j

Wishart v S

v m v S u u S

−

−

=

Ω

= + = +∑
 

Where m is the number of level 2 units,  is the row vector of residuals for the j-th 

level 2 unit and the prior ,
ju

1
2( ) ~ ( , )p pp Wishart v S−Ω , where  is the degrees of 

freedom – the sum of the number of level 2 units and degrees of freedom associated 
with the prior. One choice is  which is equivalent to choosing a 
uniform prior for 

uv

3,  0p pv S= − =

2Ω .  
The level 1 residuals are obtained by subtraction. 

8. Responses at both level 1 and level 2 
 
We write the full multivariate model as follows with superscripts indicating the 
response level. The number of level 1 responses is 1p  and there are 2p  at level 2.  

(1) (1) (1) (1) (1)

(2) (2) (2) (2) (2)

hij ij h ij hj hij

hj j h j hj

y X z u

y X z u

β

β

= + +

= +

e
       (A.6) 

Note that (6) allows complex level 2 variance by specifying several random effects 
(Goldstein, 2003, Chapter 2), but we shall assume here that (2)

jz  is the constant vector 
=1, i.e. there are  level 2 random effects for the level 2 responses. The MCMC 
steps are now as follows. 

2q p= 2

Step 1: For non-Normal level 1 responses we sample as before.  
Step 2: For non-Normal level 2 responses we sample as for level 1 conditioning on all 
the remaining level 2 responses.  
Step 3: For the level 1 covariance matrix we sample using MH as before.  
Step 4: For the level 2 covariance matrix we sample in similar fashion to before  
using the full level 2 covariance matrix if all the level 2 responses are Normal. If any 
are categorical then, because of constraints on variances and covariances, as in 
sampling the level 1 covariance matrix, we need to use MH sampling element by 
element.  
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The procedures is along the same lines as for the level 1 covariance matrix but now 
the components of the likelihood ratio for a particular level 2 covariance matrix  
are as follows: 

2Ω

* (2) * 1/ 2 (2) * 1 (2)
2 2 2( | ) | | exp( ( ) ( ) / 2)T

j j
ij

p u u u− −Ω = Ω − Ω∏ j

j

2Ω

)

 

( 1) (2) ( 1) 1/ 2 (2) ( 1) 1 (2)
2 2 2( | ) | | exp( ( ) ( ) / 2)t t T t

j j
ij

p u u u− − − − −Ω = Ω − Ω∏  

For this step, even more than for level 1, it is important to use good starting values for 
the variance terms. These can be obtained, for example, from univariate 2-level 
variance component models.  
 Step 5: The fixed effects for the level 1 responses are estimated, as before, using the  
multivariate model specified by the first line of (6). 
Step 6: The level 2 response fixed effects are estimated using the multivariate 
(regression) model specified by the second line of (6). 
Step 7: The level 2 random effects for the level 2 responses are obtained by 
subtraction. Where level 2 responses are missing we draw a sample from 

 now incorporates level 2 random effects from responses at 
both levels. We select the random effects corresponding to these missing responses 
from the drawn sample. 

2(0, ),  where MVN Ω

Step 8: For the level 1 response level 2 random effects we sample as before, ignoring 
the level 2 response residuals.  
Where level 2 responses are missing we sample in similar fashion to the case where 
level 1 responses are missing that is from * * * * 1

2 2 1 1 2 21 1 12( ,MVN X uβ β −+ Σ −Σ Σ Σ  where 
 is the current covariance matrix of level 2 residuals for the missing responses, 2Σ 1Σ  

is the covariance matrix of level 2 residuals for the non-missing level 2 responses and 
 is the matrix of covariances between the observed and missing residuals. The 12Σ

* *
2 2  X β is the fixed predictor for the missing responses, * 1

1 1 1β −
2= Σ Σ  and  are the 

level 2 residuals for the observed responses. 

*
1u

9. Imputing categories 
At any cycle of the MCMC algorithm we can sample a set of category responses 
given the current latent responses Y.  For an ordered variable we use the current 
parameters to sample a residual on the Normal scale and assign it to the appropriate 
category. For an unordered variable we sample into the category indicated by the 
maximum from a draw from the associated multivariate Normal distribution. 
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