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Educational Performance Indicators and LEA League
Tables

GEQFFREY WOODHOUSE & HARVEY GOLDSTEIN

ABSTRACT A common procedure for using examination results as performance indica-
tors is based upon residuals from regression analysis. These analyses are typically applied
to aggregated data: this paper demonstrates that such procedures give unstable resulis. It
is suggested that aggregate-level analyses are uninformative and thar useful comparisons
cannot be obrained without employing multilevel analyses using student-level data.

INTRODUCTION

In recent years there has been a considerable interest in devising indicators of school
‘performance’ and using these in analyses to compare the ‘efficiency’ of individual
schools or local authorities. An early attempt by the Inner London Education
Authority (ILEA, 1980) compared the average public examination results in one year
of the authority’s secondary schools. Subsequently, the Department of Education and
Science (DES, 1983, 1984), published comparisons of average local education author-
ity (LEA) examination results, and the same data have been re-analysed, for example,
by Gray & Jesson (1987) and by Levitt & Joyce (1987).

All these analyses have dealt with comparisons between ‘aggregate level’ units,
whether schools or LEAs, after adjusting for pre-existing differences, and using data at
the same aggregate level. For example, the ILEA carried out a regression analysis using
the average (16-year) school examination result as the outcome or ‘response variable’.
The ‘input’ measures made at 11 years included for each school the proportion of
pupils in two bands of verbal reasoning scores (VRQ) and average socio-economic
status. A ‘residual deviation score’ was then assigned to each school, being the
difference between the school’s actual examination score and that predicted by the
regression equation. Schools were then ranked on this difference, interpreted as a
measure of school ‘efficiency’, i.e. the difference between actual and ‘expected’
performance. The analyses using LEA aggregated data have followed similar proce-
dures, typically using various measures of educational expenditure and social back-
ground to adjust for pre-existing differences.

The purpose of this paper is to show that these procedures have little justification in
theory or in practice: that there are severe difficulties in attaching a causal interpreta-
tion to the residuals as measures of efficiency and that in practice the rankings show
considerable instability when the model used to produce them is subjected to minor
changes.

A variant of these procedures is that used by Jesson er al. (1987) based on a
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technique known as Data Envelopment Analysis (DEA). This also uses aggregated
data and considers a ratio of outcome to input variables rather than a regression
residual as a measure of efficiency. This procedure also is open to serious objections
which we discuss in an appendix.

UNITS OF ANALYSIS

All the above analyses choose an aggregate level unit, the school or the local authority,
as the basic unit in the analysis. The use of these units, however, does not allow us to
study within-unit relationships. For example, school A may perform better than school
B for students with low intake test scores but worse than school B for students with
high intake test scores. If we know the within-school relationship for individual
students between examination scores and their input scores, we can in principle
compare each school’s outcome score with its predicted score for students with specific
values of the input score. If, however, aggregate data only are available, detailed study
based on individual student characteristics is impossible to carry out.

Analyses which use only LEA or school mean data thus have a rather limited
interpretation. In particular, it is difficult to see how a causal interpretation can be
based upon a study of the relationship between mean outcomes and mean inputs.
Within any school, students will have a range of values on the input variables as well
as the outcome variables. If the relationship for students (of outcome to input
variables) varies from school to school, any analysis based on school means cannot
provide information on this. Furthermore, even if the within-school relationship is
constant, it may still be quite different from the relationship between-schools using the
same variables aggregated to the school level. For a discussion of these issues see
Aitkin & Longford {1986) and Goaldstein (1987, chapters 2 and 3).

There are further serious problems with aggregate-level analyses which arise from
the typical sensitivity of such analyses to the mathematical and statistical assumptions
built into them.

First, different assumptions produce different choices of input variables (or ‘predic-
tors') for inclusion in the analysis. Thus for example the DES (1984), using step-wise
multiple regression on aggregate LEA data, produced models involving nine or more
predictors. Gray & Jesson (1987) in their re-analysis of the same data used only four
predictors. The four were not a subset of the nine used by the DES to predict the same
outcome variable, and a fifth variable, not considered by the DES, was later added to
adjust for independent schooling. Levitt & Joyce (1987) used principal component
analysis to produce a further, different, set of predictors from the same data set. These
models were compatable in the degree to which they fitted the data according to the
usual statistical criteria. Yet using their residuals for ranking produced a markedly
different position for some LEAs.

Secondly, the rank order of the residuals depends on whether or not they are
‘standardised’. Residuals arising from the analysis will be differently distributed, in
particular with different variances, at different points in the data space, and there is a
case for dividing each one by its estimated standard deviation before making any
comparison. Analyses have differed in their procedures. Thus the DES (1983, 1984)
published tables of actual and predicted scores without the information needed to
standardise the residuals. Gray & Jesson produced league positions based on the DES
analyses using ‘raw’ residuals (1987, models 6 and 7) without commenting on the
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possible effects of standardisation, although they standardised the residuals from their
own analysis (model 8). Levitt & Joyce did not standardise.

Thirdly, the rank order of the residuals, even if ‘standardised’, depends not only on
the choice of variables but also on the precise form in which these appear in the model,
In the analyses we have cited neither the DES nor Gray and Jesson appear to have
considered non-linear transformations of their input variables, while Levitt & Joyce
appear to have considered only a logarithmic transformation of response and explana-
tory variables. The fact, however, that the examination results and the socio-economic
variables used in these models are measured on arbitrary scales suggests that other
transformations could be considered.

In the remainder of this paper we give the results of a re-analysis of one particular
model, that of Gray & Jesson (1987, model 8). Allowing that the procedure they used
in order to arrive at their five input variables was an appropriate one within the
limitations of step-wise regression, we show how the use of non-linear transformations
of these variables and of the response variable improves the statistical fit in different
ways depending on the combination used. None of the resulting models, however, can
be shown to be ‘the best’ and each gives rise to a different rank order of the
residuals. We argue that any similar model will show instability of residual ranking
when subjected to similar routine manipulation, and conclude that residuals from
aggregate-level regression analyses are inherently unreliable as measures of efficiency.

RE-ANALYSIS PRELIMINARIES
The model produced by Gray & Jesson may be expressed as follows:

Y=ot Bt Byt Bixs H Bixte, (1)
where for the ith LEA (i=1, 2, ..., 96),
= 2,105z,

2= percentage of maintained school leavers achieving at least five O-level passes
at grade A, B or C or CSE passes at grade 1;

2, = percentage of children attending independent schools in the LEA as day
pupils;

x;= percentage of children living in households whose head is a non-manual
worker, excluding junior non-manual workers and non-manual supervisors
(a ‘high socio-economic group’ indicator);

x,,— percentage of children living in households whose head is a semi-skilled or
unskilled manual worker, personal service or farm worker {a ‘low socio-
economic group’ indicator);

x5, = percentage of children living in one-parent families;

x,,= percentage of children born outside the UK, Ireland, USA and the Qld
Commonwealth or in households whose head was born outside the UK,
Ireland, USA and the Old Commonwealth;

¢,= residual term. In the standard linear model this is assumed to have a zero
mesan and constant variance g%

B - - ., By are population parameters to be estimated by fitting the model to the

data. In the standard linear model these data are assumed to refer to a random

sample from a larger population, which is not the case here. We return to this
point later.
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It will be seen that the response variable y is the percentage of leavers with five or
more O-level equivalents adjusted for independent schooling in each LEA by adding
half the percentage of children attending independent schools in the LEA as day
pupils. The coefficient of 2, was fixed at 0.5 by Gray & Jesson on the grounds that at
least half those attending independent schools could be expected to gain five or more
O-level equivalents. '

The four indicators x,, x,, X, and x, were found according to Gray & Jesson ‘using an
approach based on regression analysis’ (p. 36). They provide no further details of their
method and we do not explore it. Rather, we shall be concerned to examine:

(a) the ‘goodness of fit’ of Gray & Jesson’s model to the data; and
(b) the stability of the residual rankings, or ‘league table’, when the model is
subjected to minor perturbations.

Fitting model 1 to the data and ranking the LEAs on the resulting standardised
residuals produced a league table very similar to Gray & Jesson’s. The differences are
given in Table I: Gloucestershire, Ealing and Durham were one place lower on our
table than on Gray & Jesson’s; Walsall was two places lower. These differences most
probably reflect rounding procedures: we are confident that our data set and proce-
dures were essentially equivalent to those used by Gray & Jesson.

TABLE 1. Differences between Gray & Fesson’s (1987) nodel 8 and our mode! |

Mode] 8 Madel 1 Madel 1
Meadel 8 Model 1 raw residual raw residual std residual

LEA position position (1dp.; {3 sf) (3 s.f)
Gloucestershire 24 25 1.5 1.46 0.548
Sefton 25 24 1.5 147 0.553
Ealing 13 i4 0.8 0.872 0,357
Buckinghamshire 34 33 L.O 0.955 0.364
Walsall 40 42 0.3 0.390 0.149
Narthumberland 41 40 0.4 0.409 0.155
Rotherham 42 41 0.4 0.391 0.150
Durham 49 50 —0.2 —{.158 ~(.0596
Leeds 50 49 —0.2 —0.155 —0.0584

Estimates for the parameters of model 1 are given in Table II. Note that throughout
we use Greek letters (f;, £, 0%, etc.) to denote population parameters and correspond-
ing Roman letters (by, b;, %, et¢.) to denote their estimates from ordinary least-squares
regression.

All the model parameters except for 3, are poorly estimated, with standard errors in
excess of their absolute values.

The estimated correlation matrix of the &'s is:

b, 1

b, —095 1

b, —087 087 1

b, —0.18 —002 —0.29 i

b, —0.12 -005 008 —055 1

b, b, b, by b,
showing high correlation between b, and b,, b, and &,, and b, and b,.
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TasLE II. Parameter estimates and R? for models 1, 2, 3 and 4 (Standard errors in brackets)

Model 1 Maodel 2 Madel 3 Maodel 4
b, 3.36 (4.5) 9.10 (4.5) 13.7  (6.7) 593 (7.4)
b 0.71 (0.08) 0.69 (0.07) 087 (0.27) 0.83 (0.27)
b, 0.07 (0.14) 0.01 (0.14) —1.08 (0.64) —0.65 (0.65)
b, 0.05 (0,14) 0.40 (0.18) —002 (0.14) 0.31 (0.20)
b, —0.02 {0.03) 0.29 (0.11) —002 (0.03) 0.24 (0.12)
by, —0.02 (0.007) —0.02 (0.008)
b, —0.004 (0.005) —0.003 €0.005)
by 0.03 (0.02) 002 (0.02)
£ 7.2 6.7 7.0 6.7
R? .83 0.84 0.83 0.84

b, and b, are positive {although small), contrary to expectation. This is probably the
result of using highly intercorrelated predictors. The correlation matrix for the
predictors is:

x, I

x, —091 1

x, —044 052 1

x, —005 008 052 ]

X x x, x,

These results suggest that minor changes to the model will result in large changes to
individual residuals.

We now examine plots of the residuals.

The overall frequency plot (Fig. 1) does not appear abnormal. Harrow is an outlier,
while Barnet, Bromley and Oldham are the only other LEAs with residuals greater in
absolute value than 1.96 standard deviations (s.d.).

The plot against predicted scores (Fig. 2), however, shows that most of the LEAs
with residuals below about —1 s.d. have predicted scores in the range 22 to 32 (the
exceptions are Bromley and Oldham) while most LEAs with residuals above about +1
s.d. have expected scores outside this central range (the exceptions are Wirral and
Newecastle). Closer inspection of the residuals in the range —1 to +1 s.d. shows a
similar though less pronounced trend. These trends are a further indication of model
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Fi1G. 1. Frequency plot of model 1 residuals (A= Harrow; B=Barnet; C=Bramley; D= Oldham).
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Fia. 2. Model | residuals plotted against predicted scores (A= Bromley, B=Oldham; C=Wirral;
D =Newcastle).

inadequacy: in particular a need for extra terms in the model (perhaps quadratic or
cross-product terms) or for a transformation of the response variable y.

The plots against x, and x, showed a non-linear trend, less pronounced than in Fig,
2, but nevertheless suggesting that additional quadratic terms in these variables might
vield a better fit.

Interpretation of the plots against x, (Fig. 3) and x, (Fig. 4) is made difficult by the
skewness of the distribution of these variables. It is noticeable, however, that four of
the five LEAs with the highest values of x;, have residuals greater in absolute value
than 1 s.d. Of these the two with large negative residuals, Brent and Haringey, have
high values of x, while the two with large positive residuals, Liverpool and Man-
chester, have [ow values of x,. This suggests that a cross-product term might usefully
be included to improve the fic.

The plot against 2, (Fig. 5) shows that 13 of the 15 LEAs with the highest values of
£, have positive residuals: four of these are in the top ten on the league table.

Examining plots of the residuals against the other background variables in the data
set, we find a particularly striking non-linear trend in the plot against 16-18
population density (see Fig. 6). This suggests that the model parameters, the residuals
and the rank order of the LEAs, would be substantially changed by inclusion of this
variable. Such a finding is typical of analyses such as this one involving relatively few
data points. It illustrates the difficulty in these analyses of choosing which variables to
include and which to exclude.
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F16. 3. Model 1 residuals plotted against x, {A=TLEA; B=Manchester; C=Haringey; D= Brent;
E=Liverpool).

The results of this preliminary analysis of model 1| may be summarised as follows.

(1) The parameters of the model are poorly estimated.
(2) There is evidence of model mis-specification for which the data are not
extensive enough for a proper investigation.

We next attempt to improve the fit and then go on to further examination of the
stability of the residuals.

IMPROVING THE FIT OF THE MODEL TO THE DATA

We do not propose to make major changes to the model. It is common practice to
retain certain variables on substantive grounds even though their coefficients may be
poorly estimated. Thus Gray & Jesson made a substantive case for including both x,
and x, in their model and for excluding other variables ‘irrelevant for policy purposes’
which the DES had included. We therefore retain the four predictors x, to x, and for
similar reasons retain the response variable y as defined above and exclude 16-18
population density.

By limiting our changes to the model in this way we explore whether it is possible
with this choice of variables:

{(a) to develop a well-specified model which fits the data better than any other;
or,
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F1G. 4. Model 1 residuals plotted against x, {A=ILEA; B=Manchester; C=Haringey; D=Brent;
E= Liverpool, F=Ealing; G = Newham).

(b) failing this, to place the LEAs in a stable rank order based on the residuals
from any one of a number of candidate models.

Our conclusions show that:

(a) with only 96 data points it is possible to find different models using the same
variables which fit the data equally well, with no objective way of choosing
between them; and

(b) as models improve the rank order of their residuals becomes progressively
more unstable. Thus two competing models fitting the data equally well may
produce markedly different residual rankings. Indeed, this is to be expected,
since as the model ‘improves’ so the residual variation approximates more
closely to pure noise.

The dilemma this poses results directly from doing such an aggregate level analysis.
Thus these limitations are inherent in the analysis and what follows is an illustration of
their practical effects in a particular case. Similar conclusions would be expected to
proceed from any other initial choice of variables.

In the model descriptions of this section and the next we use:

basic model
as an abbreviation for the right-hand side of model 1, Le.

Bot Bzt Boxy+ Baxy T Bix te
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Fic. 5. Moadel 1 residuals plotted against 2, (A=—Richmond; B=S8urrey; C=Croydon; D=Harraw,
E=DBarnet; F= Newcastle; G=Wirral ).

We consider first the following alternative models:

y;=hasic model+ f;,x,2, @
y,=basic madel+ 8, x, 2+ f,,%,2 )
y.=basic model+f, x, 2+ f,,%, + B x0%, )

and then go on to explore routine transformations of the response variable.

Model 2 is suggested by the plot in Fig. 3 and model 3 by that in Fig. 2. Model 4
combines models 2 and 3.

The parameter estimates, etc., for each of these models are given in Table II.

For model 2, R?=0.84, f3, is again poorly estimated and the estimates of ,, #, and
A, have ‘incorrect’ signs. The plots of residuals against predicted scores, against x; and
against x, continued to show a non-linear trend, as expected. The plot against x, (Fig.
7), however, shows that the addition of the product term has improved the fit of the
madel {compare Fig. 3).

The changes to the five authorities named in Fig. 7 are obvious and we should
expect corresponding changes in their positions in the league table. The rest of the plot
does not appear markedly different from Fig. 3. But concealed by this overall
similarity are several other large changes in the positions of individual LEAs, some of
which are shown in Table ITL
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TaBLE III. Changes in the positions of selecred LEAs resulting from adding quadratic and product terms in the

predictors

Pasition under Change under Change under Change under
LEA model 1 model 2 model 3 madel 4
ILEA'? 56 up 43 up 15 up 44
Haringey"* 91 up 30 up 5 up 27
Brent'? a8 up 1% up 7 up 21
Cheshire 75 up 11 up 8 up 13
Northumbetland 40 up 17 up 2 up 15
Kingston 22 down 7 down 23 down 17
Knowsley 67 down 12 down 27 dewn 26
Kirklees 29 down 3 down 11 down 9
Salford 55 down 16 down L1 down 17
Ealing? 34 down 19 up & down 14
Hounslow 43 down 16 up § down 13
Havering 46 up 9 down 16 down 3
Newharn? 77 down 3 down 12 down &
Manchester! 10 down 10 down 1 down 9
Liverpool! 4 down 3 down 2 down 4
Harrow 1 no change no change na change
Bromley 96 no change na change na change

!Indicates LEA with high value of x,.
*Indicates LEA with high value of x,.
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F1s. 7. Model 2 residuals plotted against x, (A=ILEA; B=Manchester; C=Haringey; D=DBrent;
E=Liverpool).

ILEA moves up 45 places from 56th to 11th, Haringey 30 places from 91st to 61st
and Brent 19 places from 88th to 69th. Three other LEAs (Northumberland, Cheshire
and Lincolnshire) move up 10 places or more. By contrast, Ealing drops 19 places
from 34th to 53rd, Hounslow, Redbridge and Salford each drop 16 places and a further
nine LEAs drop 10 or more places, including Manchester as expected. Thus our first
heuristic attempt to improve the fit of the model has already had a considerable and
widespread effect on the league table.

For model 3, R?=0.83. The parameter estimates (see Table II) are difficult to
interpret since the pairs (b,b,,) and (b, b,,) are highly negatively correlated
(r=—0.96 and —0.98 respectively). The non-linear trend disappears, however, from
the residual plot against predicted scores (see Fig. 8) and also from the plots against x,
and x,. The plot against x, was similar to that for model 1.

The inclusion of the extra terms again has a marked effect on the positions of some
LEAs (see Table III) but different from model 2. The effects on ILEA, Breat and
Haringey are less marked, but Knowsley this time drops 27 places to 94th and
Kingston-upon-Thames 23 places to 45th. Seven ather LEAs drop more than 10
places. Ealing and Hounslow, losers under model 2, move up instead 6 and 8 places,
respectively. Havering, among the top 10 gainers under model 2, drops 16 places under
model 3.

Adding the product term f,.x,x, to model 3 to produce model 4 increases R? to
0.84. The values of b, b, and b, (see Table II) are little changed from model 3. b, and
b, are, however, positive as for model 2. b, is estimated to be highly negatively
correlated with b,, (r=—0.97), while r(b,,b,,) is estimated to be —0.74.

As expected, the plot of residuals against x; was similar to model 2. The plot against
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predicted scores was similar to model 3. As Table III shows, the changes in position
between model 1 and model 4 were sometimes like model 2 and sometimes like
model 3.

Models 2, 3 and 4 were all suggested by our preliminary analysis of model 1. To
analyse such alternative models is part of the standard procedure for improving model
fit. Allowing for these quadratic and cross-product effects changes the residuals and
rankings, demonstrating instability while hardly changing the overall goodness of fit.

Another standard procedure is to transform the response variable. We first try the
following transformations on their own:

square root: V'y, =basic model ()

logarithmic: log(v,/100) =basic model (6)

logit: log{y,/(100—y,)) =basic model 7N
and

complementary log-log:  log( —log{1l —y,/100)) =basic model (8)

These transformations are commonly used with percentage or frequency data. In
this case the response scale is arbitrary and there is no substantive theory to guide us,
and so the choice of transformation is in fact much wider than this. The four ahove
were similar to each other in their effects.

In all four cases the parameters £, and £, remain poorly estimated (see Table IV).

The three residual plots, against predicted scores, x; and x,, showed no trends.
Those against x, and x, remained similar to those for model 1. Thus models 5 to 8
were similar to model 3 in their effects on the overall residual distribution.
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TABLE IV. Parameter estimates and R? for square rvoot, logarithmic, lagit and log-log transformations of the
respomse pariable

Model 5 Model 6 Model 7 Model 8

(square root} (logarithmic) (logit} (log-log}
EN 285 (0.45) —235 (0.9) —2.26 (0.25) —2.25 (0.22)
b, 0.07 (0.008) 0.03 (0.063) .04 (0.004) G.03 (0004)
b, 0.006 (0.014) 0.002 (0.006) 0.003 (0.008) 0.003 (0.007)
b, 0.004 (0.014) 0.001 (0.006) 0.002 (0.008) 0.002 (6.007)
b, —0.004 (0.003) —0.002 (0.001} —03.002 {0.002) —0.002 (0.001)
s 0.07 a.01 0.02 0.02
R 0.83 0.81 0.82 0.82

As regards changes in the rankings of the residuals (see Table V for the most
extreme) the top gainers are the same set of LEAs, with minor variations in order, for
all four transformations as are the top losers. All four transformations produce some
individual positional losses which are more pronounced than any individual gains.

TABLE V. Mast extreme changes in positian for square root, logarithmic, logit and lag-log transformations

Position under ~ Change under  Change under  Change under Change under

LEA madel 1 madel 5 model 6 model 7 model 8
Ealing 34 up 13 up 21 up 17 up 18
Hounslow 43 up 11 up 13 up 12 up 12
ILEA n up 8 up 15 up L1 up 11
Leicestershire 57 up 5 up 12 up L0 up Il
Brent |8 up 4 up 13 up 9 up 190
Newham 77 down L5 down L8 down 17 down L7
Sandwell 64 down 12 down 23 down 19 down 20
Kingston 22 down 11 down 27 dawn 15 down 22
Knowsley 67 down 19 down 25 down 21 down 24
Richmond 23 down 21 down 40 down 29 down 34
Surrey 36 down 25 down 40 down 31 down 36

We select model 7 (the logit transformation) for further consideration. As this
model has apparently similar effects to model 3 on the overall distribution of residuals
it 1s natural to ask whether the positional changes also are similar. Table VI shows that
they are nat.

Finally, we add the term £, .x,x,; to model 7:

logit (y,)=basic model+ f,,x,x,, 9

When this model is fitted to the data, R? increases somewhat to 0.83. The parameter
estimates, with their standard errors, are:

b, —239 (0.25)
b, 004 (0.004)
b,  0.0008 (0.008)
b, 002 (0.01)
b, 0.01  (0.006)
b, —0.0008 (0.0004)
§? 0.02
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TasLE V1. Models with similar overall fir compared for their effects on selected LEAs

Position under  Change under  Change under  Change under  Chanpe under

LEA meadel 1 maodel 3 model 7 madel 4 model 9
Surrey 36 up 4 dawn 31 up 10 down 29
Richmond 23 down 4 dawn 29 dawn 7 down 35
Barking 79 up 2 down 13 down 3 down 14
Buckinghamshire 33 up 2 down 13 up 3 down 11
Sandwell 66 down 4 down 19 down 11 down 22
Barnsley 61 up 3 down 12 up 8 down 13
West Sussex 47 dawn 3 dawn 11 up 7 down 8
Rotherham 41 up 4 down 9 up 9 down 4
Kingston 22 down 23 down 15 down 17 down 26
Ealing 34 up 6 up 17 down 14 up &
Merton 32 down 12 up 3 down 22 down 5
Bexley 63 down 11 up 6 down & up 6
Devon 39 down 14 up 4 down 13 up 1
Kirklees 29 down 11 up 7 down 9 up 2
Haveting 46 down 16 up 3 down 3 up I1
Hounslow 43 up 8 up 12 down 13 up 3

Note: Models 3 and 7 showed a similar overall fit to the data, as did models 4 and 9.

The values of &, and b, are lictle changed from model 7 (see Table IV). £, is again
poorly estimated and close to zero. b, is estimated to be highly negatively correlated
with b,, (r=—0.96), whereas r(b,, b,,) is estimated to be —0.68.

As with model 4, the addition of the product term improved the residual plot against
x,: all the diagnostic plots for model 9 in fact were similar to the corresponding plots
for model 4. Yet despite this similarity Table VI shows that the league tables produced
by maodels 4 and 9 are dissimilar.

We may summarise the results of trying to improve the ft of the basic model as
follows.

(1) It is possible to improve the fit in predictable ways by following standard
procedures suggested by the residual plots for the basic model.

(2) In every model several of the parameters are found to be poorly estimated.

(3) No model can claim to be ‘the best’ for the whole data space.

(4) Models 2 to 9 all produce marked changes in the league positions of some
individual LEAs when compared with the basic model.

(5) General plots of residuals for diagnosis of the models often conceal large
changes in the positions of individual LEAs. Thus different models which
apparently fit the data similarly are capable of producing quite different
league tables.

(6) The residual rankings become more, not less, uastable as the fit to the data
improves.

STABILITY OF THE RESIDUALS: FURTHER EXAMINATION

Throughout the previous section we followed standard procedures for improving the
fit of the model to the data. It may be thought that the instability of the residuals that
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we found has already amply demonstrated their unsuitability as measures of efficiency.
It did appear, however, that certain LEAs were relatively stable in position. In
particular, the top ten, apart from Manchester, stayed unchanged as a set, the LEAs
merely swapping places with each other, if indeed moving at all. Perhaps these LEAs
can fairly be described as more efficient than the rest at getting their students five or
more O-level equivalents, after adjusting for the five variables in the original model.
To claim this is certainly less than to claim to rank the LEAs from first to ninety-sixth.

We now show how this more modest claim may be tested by adding further
quadratic and product terms to model 7 and examining the effects on the madel
parameters and the residual rankings. Table VII gives the parameter estimates, and R?,
for the following models, with model 7 for comparison:

logit (4)= basic model
T A%y T Baaxy + %, (10}

logit ()= basic model
+ 8% 2t By + Basxa 2 Bux 1
and

logit { y) = basic model
"*'ﬁu-"n2 + Ba%y + Baxy? +ﬁ4{x-ﬁ2
T Boa%y%y T Bray T BiiXaiXy (12)

Table VIII shows the positional changes for the top and bottom ten LEAs under
madel 1 when maodels 10, 11 and 12 are fitted. The positions of Barnet and Manchester
are now shown to be highly unstable in addition te those of Brent and Haringey.
Harrow moves off the top for the first time.

TaBLE VII. Parameter estimates and R? for models 7, 10, 11 and 12

Meadel 7 Madel 10 Maodel 11 Maodel 12
B, —23 (025 —23 (G.48) —2.12  (0.48) —24 (0.49)
) 0.04 (0.004) 004 (0.004) 0.06 (0.02) 0.06 (0.01)
b, 0.003 (0.008) 0.003 (0.02) —0.04 (0.04) —007  (0.04)
b, 0.002 (0.008) —0.005 (0.03) —002 (0.04) —007  (0.04)
b, —0.002 (0.002) 002 (0.007) 0.004 (0.004) 003 (0.009)
b, —0.0005 (0.0003) —(.0005 (0.0003)
by 0.001 (0.0009) 0.001 (0.001)
by 0.006 (0.0001) 0.005 (0.003)
b, —0.0002 (0.0001) 0.0002 (0.0002)
. 0.6006 {0.001) —¢.003 (0.003)
by, —0.0005 (0.0004) —0.002 (0.001)
by, —0.0007 (0.0003) —0.0004 (0.0004)
52 .02 0.02 0.02 0.02
R? 0.82 0.84 0.83 0.85

We could continue, for example, by exploring further transformations of the
response variable, but it is already clear that positions apparently near the top or the
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bottom of the league according to some models are in fact unstable. Certain LEAs such
as Haringey and Brent appear sensitive to all model variations of a particular type,
suggesting that for these LEAs a particular factor might be significant (but which the
data are in any case inadequate to explore). Others such as Barnet and Manchester
show sudden unpredictable movement, No LEA (not even Harrow) is completely
unaffected.

TaBLE VIIL. Positional changes to the top and bortom ten under models 10, 11 and 12

Position under Change under Change under Change under
LEA model | madel 10 madel 11 model 12
Harrow 1 no change no change down 3
Barnet 2 down 33 down 4 down 25
St Helens 3 up 1 up 1 up 1
Liverpool 4 down 3 up 1 down 1
Coventry 5 up 2 down 2 up 4
Sutten 4 na change dawn 6 down 1
Newcastle 7 up 3 up 3 up 1
Wirral 8 up 3 up 3 no change
Cleveland 9 up 1 up 1 na change
Manchester 1¢ down 4 dawn 6 down 47
Bedfordshire 87 up 1 up 1 down 2
Brent 88 up 14§ up 33 up L9
Rochdale 83 down 2 dewn 1 down 1
Isle of Wight 0 up 6 up 2 up 3
Haringey 91 up [2 up [2 up 25
Essex 92 up 3 up 3 up 6
Narfalk 93 up 3 up 2 up 2
Nerthamptonshire 94 up 2 up 2 up 2
Oldham 95 down 1 down 1 down 1
Bromley 96 up 2 up 1 up 2

CONCLUSIONS

We have demonstrated that the aggregate-level models used for LEA comparisons
suffer severe problems of interpretation. Small changes in the input variables, in
particular the inclusion of non-linear terms, change the rank ordering of the regression
residuals. Non-linear transformation of the response variable likewise changes rank-
ings. The usual overall measures of model ‘fit’, such as multiple correlation and
residual variance, are not affected in the same way and reliance solely on these is
therefore misleading.

In typical aggregate-level analyses the total population studied is finite and often
rather small. In the present case there are anly 96 LEAs. If we wished to generalise
from such an analysis we would have to invoke a ‘superpopulation’ model where the
obtained data were considered to be a random sample from a coaceptually infinite
possible population. We would need to take into account the possibility of change over
time and to ask whether any relationship observed could be assumed to hold for the
future, The difficulty here is that variables such as LEA spending have a complex
relationship with other explanarory variables such as socio-economic composition, and
changes in the values of any of these variables could be expected to change the
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relationships, Thus, at the very least, a replication of such analyses is needed to study
time treads.

The relatively small sample size presents technical problems also, in that important
predictors may not be detected because of high ‘sampling variability’. We would expect
to find different combinations of explanatory variables which provide equally good
‘fits’ with no objective way of choosing between them. These kinds of analyses thus
contain inherent indeterminacies which do not allow us objectively to choose any one
version with its associated rank ordering.

We have also alluded to the residual scaling issue. It is common to make compari-
sons based upon the actual residuals from the analysis. Adjusting for differences in
their distribution by standardising the residuals arguably produces a fairer rank order
for a given model: we have shown, however, that it does not produce stability against
small changes to the model.

It is clear, therefore, that the usual procedure for ranking LEAs using aggregate data
has little justification. As has been pointed out elsewhere (Aitkin & Longford, 1986,
Goldstein, 1987) the only secure basis for attempting to compare schoals or LEAs is to
use a proper multilevel modelling procedure which simultaneously measures student
characteristics as well as those of schools or LEAs. By incorperating variables which
measure such characteristics we can hope to gain a deeper understanding of the factors
which influeace school performance.

The analyses in this paper have important implications for attempts to compare
schools and LEBAs using either exam results or the results of large-scale national
assessment and testing programmes,
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APPENDIX
Introduction

Data Envelopment Analysis (DEA) arose from attempts to define measures of
‘efficiency’ which could be applied to non-commercial enterprises such as schools and
hospitals. In essence, efficiency is defined as a weighted sum of ‘outputs’ divided by a
(differently) weighted sum of inputs, with the weights estimated from the data. Each
unit, such as a school or a hospital, is assumed to have a measurement on each output
and each input. In the case of schools the outputs might consist, for example, of
average examination result or attendance rate over a period of time, with inputs such
as expenditure per pupil or average intake test score.

A distinction is immediately apparent from the class of models, based on linear
regression, which seek to relate an output measure to a set of inputs and then interpret
residuals as measures of efficiency. In DEA there is no attempt to take account of the
nature of any relationships between output and input, rather it proceeds to define
efficiency as a ratio. It does, however, use data aggregated to the level of the unit as do
the analyses described in the present paper,

In the following sections we outline the DEA procedure and discuss its interpreta-
tion using simple examples.

The DEA Model

A formal statement of this model is as follows.

We denote the rth output of unit j by y, and the ith input of unit j by x;. For the jth
unit we shall require weights ., o; as follows.

There are p units. For the jth unit, define the kth ratio:

— E1'uri.v Th

hy= 5
Uik

k=1,...,p) (1)

The required weights are those which make this ratio, for k=j, as large as possible
relative to all other units, Before we can do this, however, we need to ‘constrain’ the
solution. As it stands we can multiply the weights in the numerator all by any number,
say 4, and the weights in the denominator by any number, say b, without altering the
pature of the solution. There are many ways to ‘fix' the weights, for example by
requiring each set to add to a constant, say 1.0. The approach of DEA is to require all
the ratios to be no greater than 1.0, with a further constraint on the scale of either the
numerator or denominator weights, one choice again being that either should sum to
1.0, We note that the solution will generally be dependent on the constraints chosen, in
a non-trivial way, and this appears to be a problem which has not been studied in this
context. We shall not pursue this issue, however, since there are more serious concerns.

The above procedure is carried out for each unit in turn, thus giving a ser of
coefficient values and a value of the ratio for each unit. These ratios are then
interpreted as the relative ‘efficiencies’ of each unit.

To simplify matters consider the common case where there is only one output, say a
school’s average examination result, with several inputs. The procedure now seeks to
maximise:

Ve
h,—
* sz’[ixjk

(2)
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The weights and the input and output variables are all assumed to be positive so that
consistent interpretations are possible,

We can further simplify (2) by considering the special case of just ome input
variable. We no longer now have a complex maximising problem, since we simply
compare the ratios:

n
X

N 3)
for each unit. We can gain some insight into the procedure by studying this case in
more detail.

Comparing Simple Ratios

In model (3) let us suppose that our output is an average examination result and our
input is an average intake score for a school. Then the ratio of these two variables is
defined as efficiency and a simple ranking of schools can be made. The interpretation,
however, is not straightforward.

First, while it could be argued that the ratio of test or exam scores is a reasonable
measure of efficiency, it would be more difficult to argue that a simple ratio of an
exam score to the proportion of children from middle-class homes is a good measure of
efficiency. In DEA analyses with multiple input variables, these are typically a mixture
of test scores and other characteristics of the school and the students attending it, so
that some care needs to be paid to any interpretations.

Secondly, unlike statistical linear models, DEA pays no attention to a description of
the acrual relationship between output and input variables, simply concerning itself
with the properties of the ratio. Nevertheless, a particular relationship still exists, and
the nature of this relationship will determine the properties of the ratio. In our simple
case let us suppose that the true relationship has the following form:

Y=atbx, {4)

Then we abtain immediately;

a
h=—+b (3)
Xy
and we see that the ratios are inversely proportional to the input scores, or intake test
scores in our example. In this case it would be quite misleading to interpret the k, as
‘efficiencies’. A similar argument applies to the case of multiple inputs where DEA
effectively maximises a ratio of two linear functions of the input variables.

Thus, even in the simplest cases we see that the DEA model used on its own will not
have an unambiguous interpretation, Great care is needed in defining input {and
output) variables so that proper interpretations of the term ‘efficiency’ can be made,
and more importaatly, it is clear that some information about the relationship between
output and input variables is required. This latter requirement leads to the use of
standard statistical models.

Needless to say, in the more general case with multiple inputs and outputs the same
objections apply, although the complexity of the estimation procedures necessary may
sometimes obscure this point. It is also worth pointing out that while the use of DEA
to judge such issues as school effectiveness is highly problematical, in more limited
contexts it may be useful. Thus, if we are concerned to measure the efficiency of
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several industrial processes with monetary inputs and outputs, a definition of efficiency
as a ratio based on costs might well be a useful basis for comparison.

Conclusion

While there is a certain attraction in using a simple ratio of multiple inputs and
qutputs, it can lead to serious oversimplifications. At the very least, as shown in the
present paper, extensive sensitivity analyses are required, and experience with these
suggests that stable interpretations in terms of efficiency or effectiveness are very
difficult, if not impossible, to make.
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