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Centre in Hong Kong: As from May 1
1997 it has been agreed to set up a Multilevel
Models in Education Center (MMEC) at the
Department of Education, University of Hong
Kong. The aims of the Centre are:

(1) to facilitate the cooperation of international
networks in research on multilevel analysis;

(2) to enhance international comparisons between
educational systems using multilevel analysis;

(3) to disseminate knowledge of multilevel
analysis in Asia and the Pacific rim region;

(4) to negociate and facilitate scholastic exchanges
of staff and researchers between the London
University Institute of Education and MMEC in
the Department of Education, University of Hong
Kong.

Raymond Lam and Wong Kam-Cheung are the
co-directors of the centre. Anyone with queries
regarding the work of the centre may contact: KC
Wong, Department of Education, University of
Hong Kong, Pokfulam Road, Hong Kong. Tel:
(852) 28592518, Fax: (852) 25406360, Email:
kcwong@hkucc.hku.hk

Amsterdam Conference on Multilevel
Analysis: On April 1-2, 1997, an international
conference about multilevel analysis was held in
Amsterdam. The program was organised by Tom
Snijders (ICS, University of Groningen;
Multilevel research Group, NOSMO). This
conference was one of the Social Science
Information Technology workshops of
ProGAMMA. There were about 60 participants
from 10 countries. The conference was followed
by a 1-day course taught by Donald Hedeker

(University of Illinois at Chicago) about
Multilevel Analysis of Categorical Outcomes. The
software discussed in this course can be
downloaded from his internet site
http://www.uic.edu/~hedeker/mix.html. or the
Multilevel Models Project site shown above. A list
of invited speakers and contributed papers is
presented on page 15.

MLn Clinics in London 1997

Tuesday June 3
Tuesday July 8

Tuesday August 5
Tuesday September 9
Tuesday October 7

at
Multilevel Models Project

11 Woburn Square, London WC1A 0SN
Contact Min Yang for appointment

Tel: (0)171 612 6682
Email: temsmya@ioe.ac.uk
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Terminology and Definition in Multilevel Models Analysis
Ian Plewis

 Institute of Education, University of London

INTRODUCTION

For some time now, there have been questions
about the place of multilevel modelling within
statistical modelling more generally. There has
also been a spate of papers and books over the last
few years, especially in biostatistics, on the
specification and estimation of models with
random effects. To the outsider, and to anyone
wanting to know more about statistical modelling
of this kind, the ways in which different terms are
used to describe essentially the same thing, and,
perhaps worse, the ways in which the same words
are sometimes used to describe different things, is
surely confusing.

The purpose of this note is to set out a list of
terms used in this area of applied statistics, with
just a little commentary. It is probably incomplete,
and will no doubt generate some disagreement and
dispute. My hope is that it will be seen at least to
start to clarify some issues, and that subscribers to
the Newsletter, and others, will fill in gaps, add to
it and suggest amendments. These could
eventually be put together to produce a more
rounded and comprehensive document, more a
dictionary and thesaurus than a list, useful to
students and researchers and also, most
importantly, to non statisticians who are using, or
who want to use, these powerful methods of
statistical analysis.

The organisation of the material is, at present, as
follows. There are two main sections: (A)
vocabulary, and (B) modelling. Section A has
three sub-sections: structures, models, and
heterogeneity. Section B also has three
sub-sections: model specification, estimation
method, and software. This division could no
doubt be improved.

A. VOCABULARY

A.1 Structures

A.1.1 Populations

a) Hierarchical
b) Nested
c) Cross-classified

d) Multilevel

Comment

a) and b) are interchangeable;
d) incorporates each of a), b) and c).

A.1.2 Designs

a) Repeated measures
b) Split and split-split plot
c) Cluster randomisation
d) Crossover
e) Complex/cluster/multi-stage samples

A.2 Models

a) Generalised linear mixed (GLMM)
b) Hierarchical generalized linear (HGLM)
c) Hierarchical linear (HLM)
d) Marginal
e) Mixed linear
f) Mixture
g) Multilevel (MLM)
h) Population average (PAM)
i) Random coefficients
j) Random effects
k) Random intercept
l) Slopes as outcomes
m) Subject/unit specific
n) Variance (and covariance) components
o) Varying coefficient

Comment

a), b), c), e), g), i), l) and o) are all more general
than k) and n).

d) and h) are interchangeable. However, the use of
d) in this context is confusing (see B.2) and
should, I believe, be dropped.

A contrast is often drawn between d) and h) (and
also f)) with g) and m) (see B.1).

A.3 Heterogeneity

This is often generated by A.1

a) Extra variation
b) Frailty (and, in demography, fecundity)
c) Over (and under) dispersion
d) Self selection (in non-randomised studies)
e) Unobserved heterogeneity
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Comment

a) and b) are interchangeable;
e) and b) are essentially the same.

B. MODELLING

B.1 Model Specification

Here the main issues are:

a) the distinction between models for which only
the fixed effects are of interest and the random
effects are nuisances (A.2; d), h) and f)), and
where both the fixed and the random effects are of
interest, and hence the variability of the latter is
also modelled.

b) whether or not the distributions of the random
effects are assumed to be Normal or, more
generally, multivariate Normal.

B.2 Estimation Method

There is a burgeoning variety of approaches,
particularly for the more difficult situation of a
non-Normal response. I give one recent reference
for each.

a) Best linear unbiased prediction (BLUP) -
McGilchrist (1994) - allows a general distribution
for the response but the random effects are
assumed to be Normal. This has been modified by
Kuk (1995) to allow for non-Normal random
effects.

b) Conditional likelihood - McCullagh and Nelder
(1989) - takes out the random intercept by
conditioning on it to give estimates with a subject
specific interpretation.

c) Estimating a scale factor from the residual
deviance to adjust the standard errors of the fixed
effects (Francis et al., 1994).

d) Generalized estimating equations (GEE) -
Diggle, Liang and Zeger (1994) - for population
average models.

e) Hierarchical (h-) likelihood - Lee and Nelder
(1996) - for non-Normal models with conjugate
distributions of the random effects. The random
effects are assumed to be independent.

f) Iterative (and restricted iterative) generalised
least squares (IGLS/RIGLS)  - Goldstein (1995).

g) Marginal maximum likelihood (MML) -
Hedeker and Gibbons (1994) - Normal random
effects estimated using numerical integration.

h) Marginal quasi likelihood (MQL) - Goldstein
(1995) - Taylor series expansion (first and second
order/linear and quadratic) of a non-linear
function with Normal random effects.

i) Maximum (or restricted maximum) likelihood
(ML/REML) with Fisher scoring - Longford
(1993).

j) Maximum (or restricted maximum) likelihood
(ML/REML) with EM algorithm - Bryk and
Raudenbush (1992).

k) Mixture methods - Lindsey (1995) - e.g.
Poisson response plus gamma random intercept
gives negative binomial population average model.

l) Monte Carlo Markov chain (MCMC)/Bayes
with Gibbs sampling - Best et al. (1996). m) Non
parametric estimation (Aitkin, 1996) - no
assumptions about the distribution of the random
effects.

n) Penalized (or predictive) quasi likelihood (PQL)
- Breslow and Clayton (1993) - as MQL but
including the estimated random effects at each
iteration; second order PQL - Goldstein (1995).

Comment

f), i) and j) are equivalent for Normal responses.

B.3 Software

B.3.1 Specialist packages

BUGS - MCMC/Gibbs sampling

EGRET - conditional likelihood and mixture
models.

HLM - general multilevel modelling using EM.

MIXOR - ordered categorical data using MML.

MIXREG - continuous responses

MIXGSUR - for grouped time survival data
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MLn - general multilevel modelling using
IGLS/RIGLS/MQL/PQL.

PCCARP - for sampling errors from complex
designs.

REML - for variance and covariance components.

OSWALD - S+ macros for GEEs

SABRE - for repeated binary outcomes

SUDAAN - for sampling errors from complex
designs

VARCL - general multilevel modelling using
Fisher scoring.

B3.2 Special features within statistics
packages

BMDP5V

GENSTAT macros

GLIM macros

SAS - PROC MIXED for Normal responses;
PROC GLIMMIX for non-Normal responses.
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Note

This a modified and updated version of a piece
circulated last year through ‘multilevel’, the
electronic discussion list. I would like to thank
everyone who commented on the original version.
Further comments and discussion are welcome.
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Multivariate spatial analysis using MLn
Alastair H Leyland1,3, Ian H Langford2,3, Jon Rasbash3 and Harvey Goldstein3

1 Public Health Research Unit, University of Glasgow, 1 Lilybank Gardens, Glasgow G12 8RZ
2 CSERGE, University of East Anglia
3 Multilevel Models Project, Institute of Education, University of London

Introduction

When analysing rates in small areas there is
typically great variation between areas arising
largely due to instability in both the numerator
(the number of events) and the denominator (the
population at risk).  It is not unusual, for example,
to have no events observed in a particular area
leading to an estimated rate of zero.  A common
assumption is that the observed values for each
area are Poisson realisations of an expected
number of events; for the ith area the observed
events are distributed as

( )O Pi i~ λ (1)

It is then quite conceivable to observe no events in
an area with few expected events.  The Poisson
distribution is handled by the addition of an error
term with imposed constraints:

( )
( )

O e

E e

Var e

i i i

i

i i

= +

=

=

λ

λ

0 (2)

The expected number of events in the ith area is
related to an expected number based on the
age/sex composition of the area and population
specific rates (Ei ) and an area specific random

term (ui ) through a link function:

( ) ( )
( )

log log

~ ,

λ

σ
i i i

i u

E u

u N

= +

0 2
(3)

This is then a straight forward random effects
model; interest in the analysis focuses on both the
estimation of the multipliers ui  - shrunken

estimates, having taken the Poisson errors into
account, which show more stability - and on the

variability in these rates (σu
2 ).  When modelling

mortality a key measure is the standardised
mortality ratio or SMR given by O Ei i/  (usually

multiplied by 100); from equations (2) and (3) it is
apparent that

( ) ( )E O E ui i i/ exp= (4)

Spatial analysis

The first model to consider is a multiple
membership model whereby the random effects for
each area are also used in the estimation of the
effects of other areas through the use of a
proximity measure - zij   which denotes a measure

of the proximity of the jth area to the ith.  In this
manner equation (3) is replaced by

( ) ( )log logλ i i i ij j
j i

E u z u= + +
≠

∑ (5)

As an extension consider the use of a spatial term
for each area iv . This is defined as the effect of

each area on other areas and is modified by the
proximity measure ijz . Equation (3) then

becomes:
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The covariance term models the association
between the random effect of an area (ui ) and its

effect on other areas (vi ). Equation (5) is a special

case of equation (6) in which the correlation
between the iu  and the iv  is assumed to be one.

It is also necessary only to give the relative
weights of each of the areas in the spatial part in
equation (6) - the ijz - as opposed to equation (5)

where it is necessary also to consider the total
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weight given to the spatial part ij
j i

z
≠

∑  relative to

that given to the random part (one). This is
because the weighting in equation (6) is

determined by the variances, u
2σ  and v

2σ .   In

theory it is possible to fit equation (6) as a random

effects model using a series of vectors { }zij
j
; in

practice this usually proves impractical because N
areas will require N - 1 constraints to ensure

equality of the variance (σ v
2 ) and a further N - 1

constraints on the covariance (σ uv ).  Instead it is

possible to specify the entire design matrix { }zij

in MLn using the SETDesign command, which

means that the random parameters σ v
2  and σ uv

can be estimated explicitly without the need for
constraints. To fit a PQL model requires the
estimation of residuals at each iteration; at present
this must be done directly from the matrices.

Multivariate spatial analysis

It is possible to extend the above to include
multivariate outcomes; in this manner covariances
between outcomes may be modelled explicitly and
the ability to “borrow strength” from other
outcomes, particularly given the rarity of the
events in question, will provide improved results
over independent univariate analyses.  Consider an
extension to a bivariate model with the outcomes
being deaths from two causes, cancers and
circulatory disease (denoted A and B).  (We will
assume that the zij  represent physical proximity

and are thus identical for the two causes, although
it is straight forward to see how this assumption
could be relaxed.)  The spatial model in equation
(6) may be rewritten:
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(7)

although, in practice, it may not make sense to
estimate all of the covariances.

Example

As an illustration of this method consider deaths
from two causes (cancers and circulatory disease)
within all 143 small areas (postcode sectors) in
Greater Glasgow Health Board in 1993.  There
were a total of 3189 cancer deaths (average =
22.3; range = 0 to 61) and 5734 deaths from
circulatory disease (average = 40.1; range = 0 to
124) during this year.  The log of the expected

(standardised) deaths ( )log Ei  were centred

around zero so that two constants were also
estimated in the fixed part.  Table 1 gives these
parameter estimates.

Table 1: Estimates of fixed parameters

Parameter Estimate Standard
error

A constant 2.820 0.03104

B constant 3.397 0.03774

( )log ,Ei A 1.000 0.00000

( )log ,Ei B 1.000 0.00000

The proximity measure used was based on
whether two areas bordered each other, giving
z nij i= 1/  if areas i and j are neighbours and 0
otherwise where ni  is the number of neighbours of
the ith area.  Other choices could be made
including basing the proximity measure on
physical distances between area centroids; one of
the authors (IHL) has been considering the use of
decay functions with a further, non-linear term in
the design matrix for iv  with Zv  to be estimated
by the model.  Three of the covariances, σ uv B A, , ,
σ uv A B, ,  and σ v A B, , , were set to zero meaning that
no correlation was assumed between the random
effect for one cause and the spatial effect for
another or between the spatial effects for the two
causes.  Table 2 presents the random parameter
estimates; the covariance between the random and
spatial effects for cancers (σ uv A, ) was
constrained so that the correlation between the two
was equal to one to prevent the estimation of a
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correlation greater than one and hence has no
associated standard error.

The correlation between the random and spatial
effects for circulatory disease is also large and
positive (0.9899) meaning that, for both causes,
the neighbours of areas with high age/sex
standardised rates are also likely to have high
rates. The correlation between the random effects
for the two causes is 0.72, so an area with a high
standardised mortality for one cause is also likely
to have high standardised mortality for the other.

Table 2: Estimates of random parameters
Parameter Estimate S.E.

σ u A,
2 0.002053 0.007545

σ u A B, , 0.002239 0.003742

σ u B,
2 0.004722 0.006157

σ uv A, 0.01115 -

σ uv B A, , 0 -

σ v A,
2 0.06059 0.03891

σ uv A B, , 0 -

σ uv B, 0.02374 0.01680

σ v A B, , 0 -

σ v B,
2 0.1218 0.0439

Memory requirements

The memory requirements for these models are
considerable; a number of large matrices are
called up by the program or by the macros.  The
SETDesign command requires ZZT  for each
random parameter in the model (stored as half of a
symmetric matrix; also needed are the original Z
design matrices, matrices of the residuals { }�p2

and their full covariance matrix (stored in block
form as half of a symmetric matrix).  We consider
a generalisation of the above model to p outcomes
for N  areas.  The 2p design matrices (one Zu

and one Zv  for each area) are each of size
Np Np× .  ( )2 2 1 2p p+ /  SETD objects (ZZT )
are required, one for each random parameter to be
estimated (10 in the above example, when p = 2).

Each of these half symmetric matrices contains
( )Np Np+1 2/  elements.  There are 2p design

matrices containing N p2 2 elements and 2p
residuals containing N  elements.  The residual
variances and covariances are stored in

( )2 2 1 2p p+ /  blocks, each with N 2  elements.
The total number of cells required for the storage
alone is then

N p N p N p N p Np Np Np2 4 2 3 2 2 2 3 25 2 2 2 2+ + + + + +/ /

This expression is dominated by the N p2 4 term
and it is easy to see how memory requirements can
get out of hand; in the example above, with
N = 143 and p = 2 a total of approximately
940,000 worksheet cells but increasing this to 5
outcomes would require over 20,000,000 cells.
The N p2 4 term comes from the storage of the
SETD objects required by MLn; in practice these
are often repetitive.  For example, the four design
matrices in equation (12) which must be stored are

Z

Z

Zu

u

v

0

0

0





























, ,  and 

0

Zv









 .  Their full products

must then also be stored (in half symmetric form)

i.e. matrices such as 
Z Zu u

T 0

0 0









 .

This is clearly wasteful and current research is
exploring ways of using the structure and likely
replication in multivariate models to change these
storage requirements.
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Software for longitudinal growth norms
Huiqi Pan,

Institute of Education, University of London.

Conventional growth norms are almost exclusively
‘cross sectional’ in nature; that is they allow the
practitioner to judge the ’typicality’ of an
individual child at a single age. Sometimes, the
reference population is desegregated, so that
judgements can be made for subgroups, for
example based upon parental height, and the most
common example is the provision of separate
charts for boys and girls.

Very often, however, a sequence of measurements
is available and we would like to use these
efficiently to judge the typicality of the growth
pattern. The use of so called ‘velocity’ norms or
standards is the most common example. These,
however, are constrained by being limited to just
two measurements taken a fixed interval (usually
1 year) apart, whereas in reality a variable number
of measurements may be available with varying
time intervals.

The aim of this software system (LGROW) is to
allow the user to construct norms for any set of
measurements taken on a growing child and it
seems to be the first serious attempt to do so.
Principally it produces two types of norms.

The first is an estimate of the average rate of
growth or average acceleration of growth for the
set of measurements at the ages they are taken.
Thus, for example, if there are three
measurements x x x1 2 3, , ,   at ages t t t1 2 3, ,  
then the average growth rate will be estimated by
the slope of the least squares line fitted to these
measurements. Using a standardising population
sample the software will estimate this value and at
the same time derive an estimate of the population
distribution from which the sample value can then
be assigned a percentile value. Since the data are
all transformed to Normality a ‘z’ score is also
computed.

The second type of norm is a ‘conditional’ one
where the distribution of the latest (oldest)
measurement is estimated. Thus, in the above
example, a percentile position and ‘z’ score are
computed for x3 conditional on the previous
measurements at the previous times. Currently, the
system operates with height and weight, and
conditional norms can be produced for height
given previous heights and for weight given
previous heights and/or weights, based on a
standardising sample.

The procedure used to derive the norms operates
in two stages. The first carries out a
transformation of the growth data to Normality
(Cole and Green, 1992) and the second stage fits a
2-level repeated measures model to these
transformed data. The parameters from the model
are used as the basis of the longitudinal norms.
Pan and Goldstein (1997) give a full description of
the methodology.

The work has been funded by the Medical
Research Council and the Child Growth
Foundation. A trial version of the software for
Windows is available and it is planned to produce
a final version in early 1998. Anyone interested in
further information should contact Pan Huiqi -
teuephq@ioe.ac.uk.
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Multilevel models for multiple category responses – a simulation
Min Yang

Institute of Education, University of London

Multiple categorical response data frequently
occur in the social sciences, for example attitude
scales or choice of party for voting. These
responses can either be unordered categories or
ordered.

Some literature exists on random-effect models for
ordered responses (Harville & Mee, 1984; Janson,
1990; Ezzet & Whitehead, 1991). Recently
Hedeker & Gibbons (1994) proposed a random-
effect ordinal regression models using Maximum
Marginal Likelihood estimation (MML). A
FORTRAN program MIXOR (Hedeker &
Gibbons, 1996), using a Fisher scoring algorithm,
handles either unordered or ordered categories for
a two level hierarchy. Goldstein (1991, 1995)
extended the multilevel logistic model for binary
response to the case of multiple categories, using
an iterative generalised least square procedure
(IGLS), to obtain approximate Quasi-likelihood
estimates. This method has been built into the
program MLn in the form of macros MULTICAT
(Yang, Goldstein & Rasbash, 1996). It can handle
either unordered or ordered category data with
many levels with a logit or log-log link.

A brief simulation study has been carried out to
examine the estimates given by MLn, on both
unordered and ordered multilevel multinomial
models, in particular to look at the efficiency of
the estimates and convergence properties of the
algorithm. This article reports the major findings.
Some practical suggestions are provided.

Models

For simplicity we consider a outcome with 3
categories, for individuals grouped within
communities. Assuming a true two-level structure

with the outcome a set of 3 proportions, ij
t( )π

( t = 1 2 3, , ), for the th
i  individual from the 

th
j

community, where category 3 is chosen as the
base. The following model is considered
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where x is a dichotomous variable, and residuals

j
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u( )  are random variables at community level

(level 2) with a bivariate Normal distribution,
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At individual level the response proportions follow
a multinomial distribution with variance-
covariance matrix
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The denominator ijn  is one in the case where each

individual responds just once.

Based on the model above, four sample datasets
are simulated (see Table 1).

Sets 1 and 2 are balanced samples with the same
sample size and the same parameters. The
different between them is that for set 1 there are
more level 2 units with overall smaller size than
for set 2. Sets 3 and 4 are both unbalanced
samples with the same fixed parameters but
different random effects at level 2. The level 2
units are sized from 8 to 85. The total number of
level 1 units is 1313. These simulations are
designed to examine (a) how the sample size at
different levels may affect the estimation and
convergence; (b) the efficiency of estimates for
unbalanced data; (c) the impact of the correlation
between categories at a higher level on the
estimation procedure.

For the ordered response with a 2-level structure,
the response is a set of cumulative proportions,

ij
t( )γ  ( t = 1 2 3, , ), and the following model is used.
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The residuals j
su( )  have the same distribution as

those in model (1), and the covariance matrix at
the individual level as

ij
ij ij

ij ij ij ij

n− −
− −













1

1 1

1 2 2 2

1

1 1

( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( )

γ γ
γ γ γ γ

 (4)

Four sample sets are used for this model (Table 1)
with the same design as for the unordered
responses.  For set 2, a total of 230 runs was
made.

Table 1  Sample size, true parameters and percentage of convened samples
(balanced sample=B, unbalanced sample=UB)

Set 1 (B) Set 2 (B) Set 3 (UB) Set 4 (UB)
Unordered responses

No. lev. 1 units per lev. 2 U 30 60 8-85 8-85
No. level 2 units 150 75 48 48
Total level 1 units 4,500 4,500 1,313 1,313
% converged, total. runs 100.0%,  200 98.5%, 200 98.0%, 200 68.0%, 200

0

1( )β ,
0

2( )β ,
1

1( )β ,
1

2( )β -1.5 ,-2.0, 0.8, 1.2 -1.5 ,-2.0, 0.8, 1.2 -1.5, -2.0, 0.8, 1.2 -1.5, -2.0, 0.8, 1.2

u1

2σ , u12
σ , u2

2σ 1.0, 0.5, 1.0 1.0, 0.5, 1.0 1.0, 0.5, 1.0 0.6, 0.5, 0.6

Ordered responses
No. lev. 1 units per lev. 2 U 30 30 8-85 8-85
No. level 2 units 150 150 48 48
Total level 1 units 4,500 4,500 1,313 1,313
% converged, Total runs 96.0%, 200 97.8%, 230 98.0%, 200 89.5%, 200

( )1α , ( )2α , β -1.5, 2.5, 2.0 -1.5, 2.5, 2.0 -1.5, 2.5, 2.0 -1.5, 2.5, 2.0

u1

2σ , u12
σ , u2

2σ 1.0, 0.5, 1.0 1.0, 0.8, 1.0 1.0, 0.5, 1.0 0.6, 0.5, 0.6

Using MLn, the Penalised Quasi-likelihood (PQL)
procedure (Breslow & Clayton, 1993) with either
1st or 2nd order approximation (Goldstein &
Rasbash, 1996) is compared with the simplest
Marginal Quasi-likelihood (MQL) procedure for
both unordered and ordered models.

Simulation Results

Convergence

From Table 1 we see that set 4 for unordered
responses with an unbalanced design, small
numbers of level 1 units per level 2 unit and a high
correlation between category residuals at level 2
has convergence problems. The sample set 4 for
ordered responses has less convergence problems
than the unordered sample set 4, although these
two sets have the same data structure and same
random parameters at level 2. Set 2 for ordered
responses with a balanced design and relatively
large numbers of level 1 per level 2 unit has few
convergence problems, although the samples are
drawn from a population with highly correlated
level 2 effects.

It is found that nearly all failures in achieving
convergence occur in using the PQL procedures,
either the 1st or 2nd order approximation. By
checking the iteration procedure more closely
before the estimation failure happens, it is found
that often an estimated correlation at level 2 is
greater than one, which gives the convergence
problem.

Experimenting with some of these samples
suggests some simple ways to get around the
convergence problems. First one can choose
different procedures from the four options of the
macro settings to start the first iteration instead of
always choosing the first order MQL to begin
with. In particular starting with the procedure of
PQL+1st order appeared to perform well on many
samples, which failed to achieve convergence on
the same procedure when the iteration started with
MQL+1st. Secondly adding or removing
parameters can help. Thirdly, in some cases where
a correlation at higher level is estimated greater
than 1.0 in absolute value, we can constrain such
a correlation say between z j

u  and zj
u '  to be 1.0 by

applying the following constraint after each

iteration: 1 2 2 0C uzz C uz' '
σ σ− =
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where 1C  is the estimate of uzz'
σ  from the

previous iteration, 2C  is the estimate of uz

2σ  also

from the previous iteration. These should be
updated after each iteration.

Bias and Efficiency

In Table 2, we see that the MQL procedure
underestimates all parameters, especially the
random ones, for the two-level multinomial model.

Table 2 Mean values of simulations: MSE, Empirical standard error and Mean of estimated
     standard errors in brackets 1st, 2nd and 3rd respectively for unordered response samples
Param. True values MQL + 1st PQL + 1st PQL + 2nd

Set 1

0
1( )β -1.5 -1.28 (0.056) (0.09)(0.09) -1.44 (0.013) (0.10)(0.10) -1.46 (0.011) (0.10)(0.10)

0
2( )β -2.0 -1.75 (0.074) (0.10)(0.09) -1.92 (0.017) (0.10)(0.11) -1.93 (0.015) (0.10)(0.10)

1
1( )β 0.8  0.68 (0.020) (0.07)(0.07)  0.81 (0.007) (0.08)(0.08)  0.79 (0.006) (0.08)(0.08)

1
2( )β 1.2  1.06 (0.027) (0.09)(0.08)  1.22 (0.010) (0.10)(0.08)  1.19 (0.009) (0.10)(0.08)

u1

2σ 1.0  0.66 (0.126) (0.09)(0.10)  0.96 (0.020) (0.13)(0.14)  0.94 (0.021) (0.13)(0.13)

u12σ 0.5 -0.08 (0.339) (0.06)(0.07)  0.52 (0.011) (0.10)(0.10)  0.50 (0.011) (0.10)(0.10)

u2

2σ 1.0  0.65 (0.134) (0.10)(0.10)  0.93 (0.023) (0.14)(0.14)  0.91 (0.025) (0.13)(0.14)

Set 2

0
1( )β -1.5 -1.28 (0.061) (0.11)(0.11) -1.46 (0.017) (0.13)(0.13) -1.47 (0.016) (0.13)(0.13)

0
2( )β -2.0 -1.76 (0.073) (0.12)(0.12) -1.97 (0.019) (0.13)(0.13) -1.98 (0.018) (0.13)(0.13)

1
1( )β 0.8  0.67 (0.020) (0.07)(0.07)  0.80 (0.006) (0.08)(0.08)  0.78 (0.006) (0.07)(0.08)

1
2( )β 1.2  1.06 (0.027) (0.08)(0.08)  1.21 (0.009) (0.09)(0.09)  1.19 (0.009) (0.09)(0.09)

u1

2σ 1.0  0.65 (0.138) (0.12)(0.12)  0.95 (0.035) (0.18)(0.17)  0.93 (0.035) (0.17)(0.17)

u12σ 0.5 -0.08 (0.345) (0.08)(0.09)  0.50 (0.022) (0.15)(0.14)  0.48 (0.022) (0.15)(0.13)

u2

2σ 1.0  0.67 (0.125) (0.13)(0.13)  0.96 (0.036) (0.18)(0.18)  0.94 (0.036) (0.18)(0.18)

Set 3

0
1( )β -1.5 -1.30 (0.067) (0.17)(0.15) -1.45 (0.036) (0.19)(0.18) -1.48 (0.034) (0.18)(0.18)

0
2( )β -2.0 -1.77 (0.093) (0.20)(0.17) -1.93 (0.056) (0.22)(0.19) -1.94 (0.049) (0.21)(0.19)

1
1( )β 0.8  0.70 (0.029) (0.13)(0.14)  0.83 (0.022) (0.15)(0.14)  0.80 (0.020) (0.14)(0.14)

1
2( )β 1.2  1.05 (0.048) (0.16)(0.16)  1.20 (0.034) (0.18)(0.16)  1.17 (0.031) (0.17)(0.16)

u1

2σ 1.0  0.63 (0.169) (0.18)(0.18)  0.94 (0.084) (0.28)(0.25)  0.90 (0.079) (0.26)(0.24)

u12
σ 0.5 -0.07 (0.343) (0.12)(0.13)  0.51 (0.053) (0.23)(0.19)  0.47 (0.048) (0.22)(0.18)

u2

2σ 1.0  0.61 (0.186) (0.19)(0.18)  0.90 (0.086) (0.27)(0.25)  0.86 (0.088) (0.26)(0.24)

Set 4

0
1( )β -1.5 -1.41 (0.031) (0.15)(0.13) -1.49 (0.025) (0.16)(0.15) -1.51 (0.024) (0.16)(0.15)

0
2( )β -2.0 -1.89 (0.044) (0.18)(0.15) -1.97 (0.038) (0.19)(0.17) -1.99 (0.037) (0.19)(0.17)

1
1( )β 0.8  0.71 (0.027) (0.14)(0.14)  0.82 (0.021) (0.14)(0.14)  0.81 (0.020) (0.14)(0.14)

1
2( )β 1.2  1.10 (0.038) (0.17)(0.16)  1.21 (0.038) (0.17)(0.16)  1.20 (0.033) (0.18)(0.16)

u1

2σ 0.6  0.32 (0.090) (0.11)(0.11)  0.57 (0.031) (0.17)(0.17)  0.57 (0.032) (0.18)(0.17)

u12σ 0.5  0.14 (0.137) (0.07)(0.08)  0.49 (0.026) (0.16)(0.14)  0.48 (0.027) (0.16)(0.14)

u2

2σ 0.6  0.30 (0.106) (0.12)(0.12)  0.58 (0.038) (0.19)(0.18)  0.58 (0.039) (0.19)(0.18)

The procedures PQL+1st and PQL+2nd both
improve estimates almost equally well, producing
reasonably unbiased estimates for the fixed effects

β s and slightly biased parameter estimates for the

random effects at level 2. The estimated standard
errors appear to be accurate. The estimates on
sample set 1 with small numbers of level 1 units
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per level 2 unit but more level 2 units are more
efficient than those of set 2, in particular for the
random parameter estimates. The estimates for
unbalanced sample sets 3 and 4 are almost as
same good as those for balanced samples.

For ordered categorical data both the fixed and
random parameter estimates using MQL
procedure in Table 3 appear to be less biased than

those for the unordered category data, but are still
underestimating. Again PQL procedures provide
good estimates. Comparing estimates between the
1st and 2nd order approximations of PQL suggests
that the latter one produces estimates closer to
their true values than the former, although the
differences of MSE between them are rather small
on all sample sets. The standard errors are
estimated accurately.

Table 3 Mean values of simulations: MSE, Empirical standard error and Mean of estimated standard
errors in brackets 1st, 2nd and 3rd respectively for ordered response samples

Params
.

True values MQL + 1st PQL + 1st PQL + 2nd

Set 1
( )1α -1.5 -1.27 (0.059) (0.09)(0.09) -1.45 (0.012) (0.10)(0.10) -1.50 (0.010) (0.10)(0.10)

( )2α 2.5  2.17 (0.118) (0.10)(0.10)  2.33 (0.041) (0.11)(0.10)  2.49 (0.016) (0.13)(0.11)

β 2.0  1.69 (0.101) (0.07)(0.07)  1.93 (0.010) (0.07)(0.07)  1.99 (0.006) (0.08)(0.07)

u1

2σ 1.0  0.71 (0.092) (0.08)(0.10)  0.93 (0.021) (0.13)(0.13)  1.00 (0.020) (0.14)(0.14)

u12σ 0.5  0.37 (0.024) (0.09)(0.10)  0.44 (0.017) (0.12)(0.12)  0.52 (0.018) (0.13)(0.13)

u2

2σ 1.0  1.00 (0.049) (0.22)(0.18)  0.82 (0.055) (0.16)(0.17)  1.02 (0.044) (0.21)(0.21)

Set 2
( )1α -1.5 -1.27 (0.060) (0.08)(0.08) -1.45 (0.010) (0.09)(0.10) -1.50 (0.008) (0.09)(0.10)

( )2α 2.5  2.17 (0.116) (0.10)(0.10)  2.39 (0.023) (0.11)(0.11)  2.51 (0.014) (0.12)(0.11)

β 2.0  1.69 (0.099) (0.07)(0.07)  1.94 (0.008) (0.07)(0.07)  2.00 (0.005) (0.07)(0.07)

u1

2σ 1.0  0.70 (0.095) (0.08)(0.10)  0.93 (0.023) (0.13)(0.13)  1.00 (0.021) (0.15)(0.14)

u12
σ 0.8  0.57 (0.057) (0.08)(0.11)  0.74 (0.019) (0.13)(0.13)  0.81 (0.019) (0.14)(0.14)

u2

2σ 1.0  0.99 (0.057) (0.24)(0.18)  0.89 (0.043) (0.18)(0.18)  1.01 (0.047) (0.22)(0.21)

Set 3
( )1α -1.5 -1.29 (0.073) (0.16)(0.15) -1.45 (0.034) (0.18)(0.17) -1.51 (0.035) (0.19)(0.18)

( )2α 2.5  2.18 (0.145) (0.20)(0.19)  2.33 (0.075) (0.21)(0.19)  2.50 (0.062) (0.25)(0.21)

β 2.0  1.69 (0.110) (0.13)(0.12)  1.93 (0.024) (0.14)(0.13)  2.00 (0.020) (0.14)(0.14)

u1

2σ 1.0  0.68 (0.122) (0.14)(0.18)  0.90 (0.069) (0.24)(0.23)  0.98 (0.075) (0.27)(0.25)

u12
σ 0.5  0.36 (0.050) (0.17)(0.19)  0.44 (0.064) (0.25)(0.21)  0.52 (0.082) (0.29)(0.24)

u2

2σ 1.0  0.95 (0.163) (0.40)(0.34)  0.82 (0.143) (0.33)(0.33)  1.01 (0.047) (0.46)(0.40)

Set 4
( )1α -1.5 -1.38 (0.038) (0.15)(0.14) -1.49 (0.024) (0.15)(0.15) -1.54 (0.027) (0.16)(0.15)

( )2α 2.5  2.28 (0.080) (0.18)(0.17)  2.42 (0.046) (0.20)(0.17)  2.51 (0.050) (0.22)(0.18)

β 2.0  1.81 (0.055) (0.14)(0.13)  1.97 (0.020) (0.14)(0.13)  2.03 (0.021) (0.14)(0.13)

u1

2σ 0.6  0.47 (0.032) (0.12)(0.15)  0.56 (0.032) (0.17)(0.16)  0.61 (0.037) (0.19)(0.17)

u12σ 0.5  0.39 (0.029) (0.13)(0.15)  0.48 (0.034) (0.18)(0.17)  0.52 (0.040) (0.20)(0.18)

u2

2σ 0.6  0.58 (0.100) (0.32)(0.27)  0.55 (0.071) (0.26)(0.26)  0.60 (0.107) (0.33)(0.29)
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Extra-multinomial variation

By removing constraints on the covariance matrix
(2) or (4), we examine the distributional
assumption on the responses. For the estimation
procedure, we would expect no significant extra-
multinomial variation to be estimated from the

simulated samples. This investigation is carried
out only on sample set 1 for both the unordered
and ordinal models with 200 runs for each set.
Results from the converged samples of 200 from
the unordered and 192 from the ordered response
samples are listed in Table 4.

Table 4 Estimates of models allowing extra-multinomial variation: MSE, Empirical standard error
and Mean of estimated standard errors in brackets 1st, 2nd and 3rd respectively

Params. True values MQL + 1st PQL + 2nd

Unordered

0

1( )β -1.5 -1.28 (0.056) (0.09)(0.08) -1.46 (0.011) (0.10)(0.10)

0

2( )β -2.0 -1.74 (0.077) (0.11)(0.09) -1.95 (0.015) (0.11)(0.10)

1

1( )β 0.8  0.68 (0.020) (0.07)(0.07)  0.79 (0.007) (0.08)(0.07)

1

2( )β 1.2  1.05 (0.030) (0.09)(0.08)  1.19 (0.010) (0.10)(0.08)

u1

2σ 1.0  0.66 (0.121) (0.09)(0.10)  0.96 (0.021) (0.14)(0.14)

u12
σ 0.5 -0.08 (0.337) (0.06)(0.07)  0.52 (0.012) (0.11)(0.11)

u2

2σ 1.0  0.68 (0.114) (0.11)(0.10)  0.97 (0.024) (0.15)(0.14)

Extra-multinomial 1.0  0.89 (0.013) (0.01)(0.01)  0.90 (0.009) (0.01)(0.01)
Ordered

( )1α -1.5 -1.27 (0.061) (0.08)(0.08) -1.50 (0.009) (0.09)(0.10)

( )2α 2.5  2.17 (0.118) (0.11)(0.10)  2.52 (0.018) (0.13)(0.11)

β 2.0  1.69 (0.099) (0.07)(0.06)  2.01 (0.006) (0.08)(0.07)

u1

2σ 1.0  0.73 (0.083) (0.08)(0.10)  1.03 (0.026) (0.16)(0.14)

u12
σ 0.5  0.38 (0.023) (0.09)(0.10)  0.53 (0.020) (0.14)(0.13)

u2

2σ 1.0  1.08 (0.065) (0.24)(0.19)  1.10 (0.068) (0.24)(0.22)

Extra-multinomial 1.0  0.87 (0.017) (0.03)(0.01)  0.88 (0.015) (0.03)(0.01)

For the unordered responses known multinomial
distribution, MLn gives estimates of variation
about 10% reduced, with the fixed estimates
unchanged and the random effects slightly larger
compared to the sample set 1 in Table 2.

For the ordinal responses, all convergence
failures occurred to the PQL+1st order
procedure when it was applied to estimates
using MQL+1st. However they all achieved
convergence when the iterations started from
the PQL+1st order procedure. Again an
under-estimation of about 10% on the
variance is observed, while the random
parameters at the individual level were slightly
over-estimated.

MIXOR and MLn - an example

Hedeker and Gibbons [1996] fitted a mixed-effect
ordinal regression model to the data from the
Television School and Family Smoking Prevention
and Cessation Project (TVSFP) with students
nested within classrooms in schools. It was
designed to test independent and combined effects
of a school-based social-resistance curriculum and
a television-based program in terms of tobacco use
prevention and cessation. The original design
forms a 2 2×  classification of social-resistance
classroom curriculum (CC = yes or no) by mass-
media intervention (TV = yes or no) as
explanatory variables. The outcome, a tobacco
and health knowledge scale (THKS) after
intervention, scores ordinally from 1 to 4. The
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variable pre-intervention THKS scores from 0 to 7
and is treated as a continuous baseline variable.

The authors modelled the classroom effect using
one random term at level 2 based on 1,600
students from 135 classes, and ignored the school
clustering because of software limitations. Results
are listed in Table 5.

Their model may be written as

log ( )
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( )( ( )ij
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s= 1 2 3, ,

The single residual termju  has a zero mean and

variance u
2σ . Fitting this model using MLn gives

the estimates in Table 5. All estimates are
comparable for the two programs with standard
errors from MLn estimates slightly smaller than
those from MIXOR. Estimates from the MQL
procedure compared to those from PQL in this
case do not differ as large as those for the
simulated samples This may due to the relatively
small level 2 variance estimate.

Table 5 Estimates on TVSFP data by MIXOR and MLn  (standard error in bracket)
MIXOR MLn , PQL+2nd MLn, MQL+2nd

Fixed effect
PRETHKS  0.415 (0.041)  0.419 (0.039)  0.417 (0.039)
CC  0.861 (0.187)  0.870 (0.175)  0.872 (0.168)
TV  0.206 (0.168)  0.206 (0.171)  0.209 (0.164)
CC*TV -0.301 (0.252) -0.300 (0.246) -0.315 (0.236)
THKS-1  0.076 (0.154)  0.084 (0.147)  0.069 (0.143)
THKS-2  1.273 (0.063)  1.295 (0.059)  1.199 (0.145)
THKS-3  2.479 (0.080)  2.522 (0.076)  2.401 (0.154)

Random effect
Class level  0.189 (0.076)  0.197 (0.058)  0.164 (0.054)

-log-likelihood*  2115.38  2079.21  2182.5

* The MLn  log-likelihood value is very approximate as shown here.

The correlation coefficients of the fixed estimates in Table 6 suggest that both programs give similar results
when high correlation is involved but some discrepancy with weak correlation.

Table 6 Correlation of fixed effect estimates by MIXOR and MLn (in brackets)

THKS-1 THKS-2 THKS-3 PRETHKS CC TV
THKS-2 -0.02(-0.16)
THKS-3  0.02(-0.10)  0.76( 0.70)
PRETHKS -0.53(-0.52)  0.32(-0.13)  0.31(-0.21)
CC -0.56(-0.57)  0.11(-0.07)  0.05(-0.10)  0.03( 0.06)
TV -0.60(-0.58)  0.08(-0.02)  0.00(-0.03) -0.01( 0.03)  0.50( 0.49)
CC*TV  0.36( 0.40) -0.02( 0.02)  0.06( 0.02)  0.09(-0.02) -0.72(-0.71) -0.66(-0.69)

With both MIXOR and MLn, model (5) can be
further extended to include many more random
terms at class level. In addition, MLn can handle
more than two hierarchical levels.

Summary

This small scale simulation study shows that,
implemented by MLn macros, the non-linear
approximation procedure for multilevel binary
response under performs satisfactorily for

multilevel multiple categorical responses
especially with ordinal data. The procedure PQL
produces much less biased estimates for both fixed
and random effects than the MQL procedure,
which underestimates parameters. The standard
errors of all parameter estimates are estimated
accurately .

The PQL procedure may not always achieve
convergence especially in the case with an
estimated high correlation. In practice, one can
constrain such correlation to be one before each
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iteration, or remove a parameter with a small
estimate from the random part of the model, or
start the iteration with a different procedure. As an
example all four of the samples from set 3 of the
ordinal model which failed to converge on
PQL+1st after MQL+1st procedure, achieved
convergence when we fitted them using PQL+1st

to begin with. Changing the base category in the
case of unordered responses and link function may
help to achieve convergence.

Estimates for the example with multilevel ordinal
responses using MLn are comparable with those
obtained from MIXOR based on marginal
maximum likelihood, although there are some
small discrepancies in the standard errors in this
example. For more comprehensive comparison
between MIXOR and MLn, fitting models with
more random parameters at level 2 on different
data structures is required.

(Acknowledgements to the Economic & Social
Research Council in UK funded the ALCD
research programme and to Don Hedeker who
provided with TVSFP data as well as those who
commented on the draft).
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