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Workshop in Glasgow, Scotland:  A 
second workshop on the use of multilevel 
modelling in Public Health and Health Services 
Research will be held at the University of 
Glasgow on 25-27 September 1996. This 
workshop will give participants the opportunity 
to analyse personal data sets using MLn as well 
as following worked examples introducing a 
variety of models applied in the health field.  
Course fees for academics and non-academics 
respectively are £360 and £610, inclusive of a 
(limited) working version of MLn and lunches 
and dinners.  Further details are available from 
Dr Alastair Leyland,  Public Health Research 
Unit, University of Glasgow,  1 Lilybank 
Gardens,  Glasgow G12 8RZ.  Tel: 0141 330 
5091/5399  Fax: 0141 337 2776 E-mail: 
a.leyland@udcf.gla.ac.uk. 

Workshop in The Netherlands: An 
introductory workshop on multilevel modelling 
will be organised by iec ProGamma in Tilburg on 
3-5 June 1996. The workshop will be assisted by 
a team from the Multilevel Models Project. For 
further details contact Sebina Heida. Email: 
s.heida@gamma.rug.nl  Tel: +31 (0)50 636900. 
Fax: +31 (0)50 636687. 

Workshop in Norwich, England:  A 
three day workshop on multilevel modelling will 
be held at the University of East Anglia from 18-
20 Octuber 1996. It will be assisted by a team 
from the Multilevel Models Project and will give 
participants the opportunity to use a preliminary 
version of MLn for Windows. For further 
information contact Anne-Lise McDonald at 
Health Policy and Practice Unit, UEA, Norwich, 
NR4 7TJ. a.cox@uea.ac.uk. Tel +44 (0)1603 
593631. 

Workshop in Houston, USA: A three 
day introductory workshop on multilevel 
modelling will be held at the School of Public 
Health, University of Texas from 13-15 
November 1996. It will be assisted by the 
multilevel models project team and provide 
participants with an oppoitunity to use a 
preliminary version of MLn for Windows. Places 
are limited. For further information contact Prof. 
R. Harrist;  
sph005@utsph.sph.uth.tmc.edu. 

 
Announcement: Due to the ending of the 
current Multilevel Models Project funding from 
the Economic and Social Research Council 
(ESRC) (UK), we have no financial support for 
the MM newsletter after this issue. It is 
nevertheless our intention to continue to produce 
the newsletter and also to continue other 
activities such as the monthly MLn clinic, and 
general support, while further funding is sought. 

We are grateful for support from our readers 
received over the last seven years, and and to 
ESRC for their financial support. 
(The MMP team) 
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MLn Clinics in London 1996 
 

Tuesday May 7 
Tuesday June 4 
Tuesday July 16 

Tuesday September 3 
Tuesday October 8 

Tuesday November 5 
Tuesday December  3 

at 
Multilevel Models Project 

11 Woburn Square,London WC1A 0SN 
Contact Min Yang for appointment 

Tel: (0)171 612 6682 
Email: temsmya@ioe.ac.uk 
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 Theory & Applications 

Consistent estimators for multilevel 
generalised linear models using an 

iterated bootstrap 
Harvey Goldstein, Institute of Education, 

University of London, UK 

Introduction 

Several papers have addressed the issue of the 
parameter biases which can occur when fitting 
multilevel models with non Normal responses. 
Breslow and Clayton (1993) discuss various 
fitting procedures including those based upon 
linearising transformations, maximum 
likelihood and Gibbs sampling. Direct 
maximum likelihood or restricted maximum 
likelihood, while feasible for simple models, 
becomes quickly intractable as the number of 
random effects increases: Gibbs sampling is an 
attractive alternative, but neither procedure 
necessarily provides unbiased estimates (Kuk, 
1995). Approximate methods based upon 
linearising transformations and applying 
quasilikelihood estimation are attractive since 
they pose no serious computational problems 
and can be fitted using modifications to 
existing multilevel software packages.  

Rodriguez and Goldman (1995) illustrate how 
severe underestimation can occur in a simple 
variance components model with binary 
responses, especially for the level 2 variance. 
They use a ‘first order MQL’ method 
(Goldstein, 1991). Goldstein (1995) and 
Goldstein and Rasbash (1995) develop 
improved linearising approximations and show 
that for models where there are adequate 
numbers of level 1 units per level 2 unit these 
give satisfactory results. Nevertheless, where 
the numbers of level 1 units per level 2 unit is 
small and for binary responses as in the 
Rodriguez-Goldman data sets, there is still 
some underestimation. In this paper we set out 
a procedure (Kuk, 1995) which yields 
asymptotically unbiased and consistent 
estimates for such models and which can be 

applied in general to any kind of non linear 
multilevel model. 

Iterative bootstrap bias correction 

We shall illustrate the procedure with a simple 
2-level variance components model, as follows 
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Given a set of initial estimates, obtained using 
for example the first order MQL 
approximation,  
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we generate a set of bootstrap samples, from 
the model using the estimates (1) and averaging 
over these we obtain the set of bootstrap 
estimates 
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0
0
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We now obtain the bootstrap estimate of the 
bias by subtracting (1) from (2). These bias 
estimates are subtracted from the initial 
parameter estimates as a first adjustment to 
give new bias-corrected estimates 

� , � , �( ) ( ) ( )σ β βu
2 1

0
1

1
1         (3) 

We generate a new set of  bootstrap samples 
from the model based upon the estimates given 
by (3), subtract (3) from the new mean 
bootstrap parameter estimates and subtract 
from the initial estimates to obtain a new set of 
bias corrected estimates. When it converges, 
Kuk (1995) demonstrates that this procedure 
gives asymptotically consistent and unbiased 
parameter estimates.  

In the present case the bootstrap samples have 
been generated parametrically by sampling 
from the distributions with the estimated 
parameters: in the present case from a Normal 
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distribution for the level 2 residuals and a 
binomial distribution (with denominator one) 
for the level 1 residuals. The alternative would 
be to sample estimated residuals at levels 1 and 
2, but while this is valid where all the 
distributions are Normal, it is not clear that this 
produces acceptable results in the present case. 
Further work on this would be useful. 

With non linear models the bias is typically a 
function of the parameter values themselves, so 
that several iterations may be necessary. In the 
next section we show the results of a 
simulation study and suggest strategies for 
carrying out the computations. 

Care needs to be taken with small variance 
estimates. To estimate the bias we need to 
allow negative estimates of variances, as is 
possible in MLn. If an initial estimate is zero, 
then clearly, resetting negative bootstrap 
sample means to zero implies that the bias 
estimate will never be negative, so the new 
updated estimate will remain at zero. 
Moreover, as confirmed by simulations, all the 
estimates will exhibit a downward bias if 
negative bootstrap means are reset to zero. We 
also note that where an unbiased variance 
estimate is close to zero, the bias is anyway 
small, so that full bias correction is less 
important and, for example, a second order 
PQL estimate may be adequate (see below). 

A simulation 

We simulate 100 replications of the model for a 
binary (0,1) response with all three parameters 
equal to 1., with 50 level 2 units and 2 level 1 
units per level 2 unit. This is a rather extreme 
case where we would expect serious 
underestimation of parameters. 

To decide how many bootstrap samples we 
need for each iteration of the procedure we 
keep a running mean such that when, at the t-th 
bootstrap sample, for the running means 
θ θ θt t t, ,− −1 2  

| | | |θ θ ε θ θ εt t t t− < − <− − −1 1 2   and     (4) 

then we accept convergence. We have chosen 
the value of ε  as 0.001 and set a minimum 
number of samples as 10. We note, in passing, 
that the device of maintaining a suitable 
running statistic to judge convergence is 
applicable for bootstrap sampling when 
attention is focused on other functions of 
parameters, for example the standard deviation 
or a percentile estimate. New parameters also 
need a criterion for judging convergence of the 
bootstrap bias corrected estimates. In an 
application convergence needs to be monitored 
closely, especially for small values of random 
parameters. We finally adopted the following 
criteria for the simulations 

We compute the average of the current and 
previous two estimates, say θ t  and the average 
of the three estimates prior to these, say θ t−1, 
and judge convergence as follows 
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For small estimated values convergence is 
often slow and an absolute rather than relative 
criterion seems appropriate. The mean number 
of iterations required was 13.8 and the mean 
number of bootstrap samples per iteration was  
80.5. 

The basic results are given in Table 1. We have 
used the standard deviation rather than the 
variance for reporting means since the 
distribution of the latter is skew. 

It is clear that the serious underestimation for 
all the parameters has been eliminated, and the 
final estimates are unbiased within the limits of 
sampling error. The initial second order PQL 
estimates using Iterative Generalised Least 
Squares (IGLS, which is Maximum likelihood 
in the multivariate Normal case) of the fixed 
parameters in fact  show no bias, but with 
underestimation of the standard deviation. With 
Restricted Iterative Generalised Least Squares 
(RIGLS which is restricted maximum 
likelihood in the multivariate Normal case) the 
variance estimate is less biased, although there 
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appears to be a slight overestimation of the 
slope parameter. Interstingly, the first order 
PQL (RIGLS) estimates are no better than the 
first order MQL (IGLS)  estimates, which 
suggests that second order PQL estimates 
should be used where possible for exploratory 
purposes. 

Table 1. Bootstrap simulation results with 
initial estimates (s.e.) for MQL, PQL 

 1st order 
MQL, 
IGLS 

1st order 
PQL, 
RIGLS 

2nd order 
PQL, 
IGLS 

2nd order 
PQL, 
RIGLS 

uσ      
Initial 0.49 

(0.03) 
0.49 
(0.04) 

0.84 
(0.06) 

0.93 
(0.07) 

Final 0.98 
(0.06) 

   

0β  
Initial 

 

0.89 
(0.03) 

 

0.88 
(0.03) 

 

1.03 
(0.04) 

 

1.07 
(0.04) 

Final 1.05 
(0.04) 

   

1β  
Initial 

 

0.91 
(0.03) 

 

0.88 
(0.03) 

 

1.02 
(0.03) 

 

1.10 
(0.04) 

Final 1.07 
(0.04) 

   

It would of course be possible to start with the 
second order PQL estimates and use this 
estimation procedure for the bootstrapping. A 
difficulty with this is that each estimation takes 
rather longer and this will usually be an 
important consideration. Secondly, in some 
cases (5% in the present case) the second order 
procedure fails to converge whereas the first 
order one almost always does. 

At convergence we can then generate a final 
sequence of bootstrap samples to provide 
estimates of precision, confidence intervals etc. 
The number of samples required for such 
purposes will generally be larger than used in 
the updating, but as pointed out above we can 
use a running statistic for judging convergence 
at any prespecified accuracy. 

Figure 1 shows the relationship between the 
final and initial MQL estimates and illustrates 

how substantial adjustments can be made when 
the initial estimates are moderately large. 

 
Figure 1. Final iterative bootstrap estimate 
of level 2 standard deviation by initial MQL 
first order estimate.  The value for the initial 
estimate of  zero is the mean over the 22 such 
values. 

Conclusions 

The procedure outlined is quite general, and 
can be applied to any non-linear multilevel 
model. As mentioned above, it will usually not 
be necessary where there are sufficient level 1 
units per level 2 unit. In practice, where the 
number of such units is small, a useful strategy 
is to base model exploration on the second 
order (RIGLS) PQL estimates and then 
compute final bias corrected estimates using 
the first order MQL as here. In many cases the 
second order (RIGLS) PQL estimates will be 
perfectly adequate and further research into the 
conditions for this is needed. For very large 
data sets it is possible that a procedure based 
upon subsampling higher level units and then 
carrying out bias correction on smaller samples 
in order to estimate the relationship between 
parameter estimates, bias and sample size, may 
be useful, and this needs further exploration.  

The criteria chosen for judging convergence 
and the number of bootstrap samples to use are 
somewhat arbitrary and the optimum criteria 
will generally depend on the data themselves 
and further work on this would be useful. For 
the bias corrected estimates the procedure may 
not always converge or convergence may be 
extremely slow. For MQL estimation neither of 
these problems has been encountered but they 
seem more likely to occur with  PQL 



MULTILEVEL MODELLING NEWSLETTER                                        Vol. 8 No. 1 

-6- 
 

estimation and is a further reason for preferring 
the former to the latter. 

A set of MLn macros has been written using the 
convergence criteria described above and 
where convergence parameters can be set by 
the user. 

References 

Breslow, N.E. and Clayton, D.G. (1993). 
Approximate inference in generalised linear 
models. J. American Statistical Association, 88, 9-
25 

Goldstein, H. (1991). Non-linear multilevel models 
with an application to discrete response data. 
Biometrika, 73, 43-51. 

Goldstein, H. (1995). Multilevel Statistical Models. 
London, Edward Arnold; New York, Halstead 
Press. 

Goldstein, H. and Rasbash, J. (1996). Improved 
approximations for multilevel models with binary 
responses. Multilevel Models Project working 
paper, J.Royal Statistical Society, A, (to appear). 

Kuk, A.Y.C. (1995). Asymptotically unbiased 
estimation in generalised linear models with 
random effects. J. Royal Statistical Society, B, 57, 
395-407 

Rodriguez, G. and Goldman, N (1995). An 
assessment of estimation procedures for multilevel 
models with binary responses. J. Royal Statistical 
Society, A, 158, 73-90 

 

Multilevel models for longitudinal 
growth norms 

Huiqi Pan, Harvey Goldstein & Jon Rasbash 
Institute of Education, University of London 

The construction of longitudinal norms for 
growth has been pursued by a number of 
authors, for example Tanner et al (1970), Healy 
(1974), Cameron (1980), Berkey et al (1983) 
and Cole (1994). These have been limited to 
the study of yearly measurements on the 
distribution of a measurement at an (exact) age 

conditional on the same measurement one year 
previously. 

Longitudinal data have a hierarchical structure, 
where level 2 is the individual and level 1 is the 
occasion. Royston (1995) uses a multilevel 
model for the calculation of conditional 
centiles for foetal size based on transforming 
both the measurement and age to force a linear 
relationship between them. 

We have explored a general approach to 
creating longitudinal centiles using multilevel 
models. There are three stages involved: 

Stage 1: Generating Normal scores 

The LMS method of Cole and Green (1992) 
allows skew data to be converted to  an 
approximate Normal distribution. z scores. We 
can also use a 2-level model to fit raw data and 
then transform these using Normal Score.  

We have used both procedures to produce an 
limited set of data which have standard Normal 
distribution conditionally on age. 

Stage 2: Fitting 2-level models to the 
Normalised scores 

If we denote th ij-th score for the j-th subject by 
zij , we have the 2-level model: 

z t u t eij l
l

p

ij
l

lj ij
l

l

q

ij= + +
= =

β
0 0

 

By virture of the prior Normalisation with the 
usual assumption, the random coefficients are 
assumed to have a multivariate Normal 
distribution. 

Stage 3: Establishing norms 

Using the estimates of the fitted model, we can 
calculate any required function of the zij  and 
estimate the population distribution for this 
(Goldstein, 1995). This function could be an 
acceleration, or the distribution of a 
measurement conditional an 2 previous 
measures. There is no requirement for a fixed 
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set of ages and so any set of longitudinal data 
can be used. 

This approach has been used for height and 
weight and for a ‘bivariate’ model for weight 
and height so that longitudinal weight-for-
height norms can be constructed. 

Pc software is currently being developed so that 
users can input data and explore various 
functions and resulting Norms graphically. For 
further details cantact Pan Huiqi at 
teuephq@ioe.ac.uk. 

 (This work is supported by a grant from the 
Medical Research Council in UK.) 
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.  
HLM 4 for Windows and DOS Extender Now Available 

HLM 4 offers a number of advances over 
version 3 in convenience of use. It greatly 
broadens the range of hierarchical models 
that can be estimated. Key new features are: 

Windows Interface. All models can be 
formulated in Windows. As you specify 
variables at each level, the relevant equations 
for each level are immediately constructed in 
a graphics box. These are saved and can be 
easily modified for subsequent analysis. Data 
are also easily read into HLM using 
Windows.  

Interface with Widely Available Statistical 
Packages. HLM 4 can read data from a 
variety of statistical packages, including 
SPSS, SAS, SYSTAT, and STATA.  

Hierarchical Generalized Linear Models. 
HLM 4 allows estimation of Bernouli and 

binomial models for binary data with logit 
link function and Poisson models for count 
data with constant or variable exposure with 
log link function. 
Generalized Estimating Equations. HLM 
provides estimation of population-average 
models using Generalized Estimating 
Equations. 

Fisher Scoring/EM Algorithm. HLM 4 now 
combines an EM algorithm with the Fisher 
scoring algorithm to produce a high standard 
of speed and reliable convergence for both 
two-level and three-level programs. 

Automated Production of Command Files. 
Interactive runs automatically output 
command files which can be executed via 
batch or read into Windows. For more 
information contact:  
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Scientific Software International 
1525 East 53rd Street, Suite 530 
Chicago, Illinois 60615-4530, USA 

Tel: (312) 684-4920, Fax: (312) 684-4979

 
A Snapshot of Windows MLn under development 

We are currently developing a windows version of MLn which is due to be released in late 
Autumn of 1996. Some of the features to be included are  

• = The ability to specify, manipulate and explore the results of models using tabular screen 
objects (such as those in the bottom left of the diagram below) or alternatively using the model 
equations directly (the “Equations” window on the diagram below). 

• = View trajectories of parameter estimates while the model is being estimated. 

• = A scratchpad facility which can include equations, graphs, tables and text which can be printed 
out directly or imported into word processing packages via the clipboard. 

• = User configurable menus for MLn macros. 

• = Improved interactive Cartesian graphs for model exploration and diagnostics. 
 

 
(This screen is taken from the current development version.)                                     Jon Rasbash 
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Abstracts of Some on-Going Studies 
 

Some techniques for assessing bivariate 
normality with applications to multilevel 
models  (Sangeeta Bhattacharya,University of 
Texas,  SPH1309@utsph.sph.uth.tmc.edu) 

Much work has been done on the development 
of standard techniques to test if a given 
univariate data set comes from a population of 
known distribution, usually a normal 
distribution.  However the problem becomes 
more complicated when we have multivariate 
data at hand.  Although the assumption that the 
data come from a multivariate normal 
distribution is often made, satisfactory 
techniques for testing multivariate normality 
still have not been developed.  

This paper attempts to check bivariate 
normality of an arbitrary bivariate sample. 
Three methods have been proposed and used to 
test the assumption that a given bivariate 
sample was drawn from a bivariate normal 
distribution.  Direct analogies have been drawn 
from univariate residual analysis to develop the 
three approaches namely the Mahalanobis Plot, 
Ellipses and Sectors.  The example data sets 
which include repeated measurements on blood 
pressure and jaw measurements help to 
illustrate the point that different tests may be 
needed to capture departures from normality 
depending on the data.  

 

Application of ‘BUGS’ to the problem of 
nonrandom attrition in the Manchester and 
Newcastle longitudinal studies of cognitive 
aging  (Scott Hofer & David Spiegelhalter, 
University of Manchester, 
HOFER@hera.psy.man.ac.uk) 

The goal of longitudinal studies of cognitive 
functioning is to make valid inferences about 
rates, patterns, causes, and concomittants of 
age-related changes in cognitive capabilities. 
One of the greatest obstacles to achieving this 

goal is that of subject attrition. Indeed, results 
based on such progressively elite longitudinal 
samples make generalizations to the target 
population very difficult to justify. Our focus is 
on the application of methods to correct for the 
biasing effect of nonrandom attrition on 
estimates of age-related changes in cognitive 
functioning-specifically where the causes of 
dropout are directly or indirectly related to 
performance on cognitive tests. Growth curve 
(hierarchical random effects) models are used 
to estimate the initial level, age-changes 
gradient, and covariate relationships in P. 
Rabbitt’s Manchester and Newcastle 
longitudinal studies. Results will be presented 
from analyses using Markov Chain Monte 
Carlo techniques (i.e., Gibbs Sampling using 
BUGS), as well as likelihood-based 
procedures, allowing a wide range of realistic 
models for ignorable and nonignorable 
nonrandom attrition to be examined. 

 
Gibbs Sampling for multilevel logistic 
models of infant mortality (Toby Prevost, 
University of Southampton,  
ATP@alcd.soton.ac.uk) 

We use retrospective data from the 1988 
Tunisian demographic and Health Survey. The 
hierarchical structure consists of about 3,000 
women providing information about 8,500 
children. Other studies have identified 
correlation between binary outcomes of 
siblings. We adopt a multilevel logistic model 
to incorporate this ‘maternal heterogeneity’. 
Siblings share the random effect that their 
mother draws from an iid normal distribution. 

We compare one Bayesian and two classical 
approaches to the estimation of the random 
intercepts model, which are implemented in 
BUGS, MLn and EGRET. The Gibbs Sampling 
approach is preferred for its flexibility in this 
area of application. 
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Multilevel multivariate logistic models in 
study of attitudes and vote over the electoral 
cycle  (M. Yang, A. Heath and H. Goldstein, 
Institute of Education, TEMSMYA@ioe.ac.uk) 

Opinion polls regularly show swings against 
the government in the middle of the electoral 
cycle. One explanation for this is that in the 
middle of the cycle voters are more influenced 
by transitory factors whereas at general 
election time they are more influenced by their 
fundamental values and interests. To test this 
hypothesis we use the 1983-86-87 British 
Election Panel Study data. The dataset contains 
measures both of voters’ attitudes towards 
enduring political issues as well as more 
changable perceptions of the parties and party 
leaders in that period. It has three aspects: (i) 
three-level hierarchy with voters nested within 
constituencies, and repeated measures within 
voters; (ii) the outcomes are repeatedly 
measured binary variables for a party voting; 
and (iii) all covariates are time-dependent.  

We apply multilevel multivariate models to 
study the variance-covariance structure of the 
binary outcomes at voter level, to model the 
random contextural effects of attitudes and to 
compare the change of effects of covariates 
over the electoral cycle. The model 
descriptions and output interpretation are 
emphasised from the applied point of view. 
Practical evaluation on the adequacy of the 
model estimates have been carried out. We are 
studying the validity of the standard 

distributional assumption in logistic repeated 
measures models. 

 

Comparison of repeated measures ANOVA 
and multilevel linear model for analysis of 
longitudinal data  (Egon Durban, University 
of Texas, EDURBAN@bcm.tmc.edu) 

In this study, two different statistical models 
were utilized to evaluate data from a 
longitudinal clinical trial and results are 
compared.  The data were chosen from the 
Trial of Antihypertension Intervention and 
Management (TAIM) and modeled by a 
balanced repeated measures 3x3 factorial 
ANOVA (2 factors, drug and diet, each at 3 
levels) with a third factor, time, nested in each 
drug/diet treatment combination.  This  model 
was compared with a  two-stage hierarchical 
model.  The multilevel analysis was found 
superior to the repeated measures ANOVA in 
several respects:  1) All data were utilized in 
fitting the multilevel model regardless of an 
individual's time of repeat visit or number of 
repeat visits, an important consideration in the  
design of clinical trials; 2)  error variances 
were considerably reduced compared with the 
repeated measures design; and 3) the multilevel 
analysis provided a convenient and 
comprehensive graphical summary of the 
analysis. 
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