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Forthcoming Workshops 

7-9 April 2003, a three-day 
introductory workshop to multilevel 
modelling using MLwiN will take place 
at the University of Bristol. 
 
Enquiries to Jean Flowers at Graduate 
School of Education, 35 Berkeley 
Square, Bristol BS8 1HJ, United 
Kingdom. Tel: +44 (0) 117 928 7059; 
Fax: +44 (0) 117 925 5412. Email: 
jean.flowers@bristol.ac.uk 
 
If you plan to run any workshops using 
MLwiN, please notify Amy Burch and 
she will advertise these workshops on 
the multilevel web site. 
 
Multilevel Multiprocess Models 
for Partnership and Childbearing 
Event Histories project 

Fiona Steele, Harvey Goldstein and 
Heather Joshi, within the Bedford 
Group at the Institute of Education, 
have been awarded a grant for a two-
year research project under the ESRC 
Research Methods programme. The 
project is due to start in early 2003 and 
will involve the development of 

multilevel simultaneous equations 
models for correlated event histories. 
The research is motivated by a study of 
the interrelationships between 
partnership (marriage or cohabitation) 
durations and decisions about 
childbearing, using event history data 
from the 1958 and 1970 British birth 
cohort studies. Methodology developed 
under the project will be implemented 
in MLwiN and aML. 
 
Details of the project, including work in 
progress and training materials, will be 
made available on the Centre for 
Multilevel Modelling website at: 
http://multilevel.ioe.ac.uk/team/mmmpceh.html 
 
 
 
 
 

Also in this issue 
An Expectation-Maximization 

Algorithm for Generalised Linear 
Three-Level Models 

Review of ‘Modeling Intraindividual 
Variability with Repeated Measures 

Data: Methods and Applications’ 
Some new references on multilevel 
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Fourth International Amsterdam 
Conference On Multilevel 
Analysis 

The Fourth International Amsterdam 
Conference on Multilevel Analysis will 
be held in Amsterdam on 28-29 April 
2003, followed on 30 April 2003 by a 
half-day course taught by Tom Snijders 
(ICS, University of Groningen) treating 
Sample Size Determination in 
Multilevel Analysis. 
 
The conference will be about all aspects 
of statistical multilevel analysis: theory, 
software, methodology, and innovative 
applications. The conference and course 
will be in an informal style, with much 
room for discussion. 
 
Further information can be obtained 
from t.a.b.snijders@ppsw.rug.nl or at 
http://www.siswo.uva.nl/congressen/congressen
/folders/multilevel%20analyse%202003.htm 
 
Multilevel Modelling Portal from 
UCLA 

The UCLA ATS Statistical Computing 
Group invites researchers to visit the 
UCLA Statistical Computing Portal at: 
http://statcomp.ats.ucla.edu/ 
The portal links to sites with 
information about commonly used 
statistical packages such as SAS, Stata, 
and SPSS and it has a search engine that 
searches across these sites, saving you 
the effort of visiting sites individually 
for the information you seek. The portal 
has a section specialising in multilevel 
modelling at: 
http://statcomp.ats.ucla.edu/mlm/ 
with links on multilevel modelling, and 
multilevel modelling packages such as 

MLwiN and HLM.  The multilevel 
modelling portal has its own search 
engine that allows you to search across 
hundreds of pages from around the 
world on multilevel modelling. Included 
in this search is the UCLA multilevel 
modelling resources page at: 
http://www.ats.ucla.edu/stat/mlm/ 
This is a modest but growing site 
featuring links to downloadable papers 
on multilevel modelling, frequently 
asked questions on MLwiN and HLM, 
and textbook examples (web pages that 
show how to solve examples from 
chapters of books using packages like 
MLwiN, HLM, SAS Proc Mixed, SPSS 
MIXED, etc.). 
 
But the UCLA Stat Computing portal is 
more than a set of links about statistical 
computing or a search engine that 
allows you to search across these pages 
for information about statistical 
computing. This is a site supporting 
collaborations with other consulting 
centres and researchers involved in 
statistical computing and multilevel 
modelling, see 
http://statcomp.ats.ucla.edu/propcollaboration.htm 
for more information. 
 
We invite researchers to visit these 
pages and hope that researchers will 
find them useful for searching among 
the most informative statistical 
computing pages/sites, drawing upon 
the collective efforts of people from all 
over the world. 
 
Michael Mitchell 
Statistical Consulting Group 
UCLA Academic Technology Services 
http://www.ats.ucla.edu/stat/ 
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An Expectation-Maximization Algorithm for Generalised 
Linear Three-Level Models 

Jeroen K. Vermunt 
Department of Methodology and Statistics, Tilburg University 

j.k.vermunt@uvt.nl 
 
Introduction 
 
A popular estimation method for 
generalised linear mixed models is 
maximum likelihood (ML). With 
nonnormal dependent variables the 
likelihood function is approximated by 
means of Gauss-Hermite quadrature. 
Software packages implementing this 
method include the MIXOR family of 
programs (Hedeker and Gibbons, 1996), 
the SAS NLMIXED procedure, and the 
STATA GLLAMM routine (Rabe-
Hesketh et al., 2001). MIXOR is a two 
level program; the other two programs 
can also handle other types of mixed 
models. 
 
If the mixed model of interest is a two 
level model, ML estimation can be 
performed by means of the EM 
algorithm, which is a natural approach 
to estimation problems with missing 
data (Agresti et al., 2000). The standard 
EM algorithm cannot, however, be used 
for other types of mixed models 
because the number of entries in the 
relevant posterior distribution is huge, 
making the method impractical. This is 
a pity because EM is a very stable and 
quite a fast algorithm, especially if one 
realises that NLMIXED and GLLAMM 
maximise the log-likelihood using 
Newton-type algorithms with numerical 
derivatives, which may make these 
procedures somewhat unstable and 
slow. Lesaffre and Spiessens (2001) 

reported difficulties with Newton-type 
algorithms in finding the global ML 
solution in non-linear mixed models: 
different routines may give different 
solutions given a certain number of 
quadrature points. Computation of 
numerical first and second derivates is 
computationally intensive if a model 
contains more than a few parameters. 
 
In this paper it is shown that with nested 
random effects as in multilevel models, 
implementation of the EM algorithm is 
possible by making use of the 
conditional independence assumptions 
implied by a multilevel model. 
Although for simplicity of exposition 
we only deal with the three level case, 
the proposed method can easily be 
generalised to any number of levels. 
 
The next section describes the three 
level model of interest. Subsequently, 
attention is paid to parameter estimation 
by maximum likelihood (ML) and an 
application using an empirical data set 
is presented. We end with a short 
discussion. 
 
The generalised linear three level 
model 
 
Let i denote a level-1 unit, j a level-2 
unit, and k a level-3 unit. The total 
number of level-3 units is denoted by K, 
the number of level-2 units within level-
3 unit k by nk, and the number of level-1 
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units within level-2 unit jk by njk. Let 
yijk be the response of level-1 unit ijk on 
the outcome variable of interest, and let 
xijk, zijk(2) , and zijk(3) be the design 
vectors associated with S fixed effects, 
R(2) level-2 random effects, and R(3) 
level-3 random effects, respectively. It 
is assumed that the conditional densities 
of the responses given covariates and 
random effects are from the exponential 
family. Denoting the link function by 
g[..], the generalised linear three level 
model (GLTM) can be defined as  
 

.
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Here, α is the vector of unknown fixed 
effects, βjk(2) is the vector of unknown 
random effects for level-2 unit jk and 
βk(3) is the vector of unknown random 
effects for level-3 unit k. 
 
As usual, we assume the distribution of 
the random effects βjk(2) and βk(3) to be 
multivariate normal with zero mean 
vector and covariance matrices Σ(2) and 
Σ(3). For parameter estimation, it is 
convenient to standardise and 
orthogonalise the random effects. For 
this, let βjk(2) = C(2) θjk(2), where C(2) is 
the Cholesky decomposition of Σ(2). 
Similarly, we define  βk(3) = C(3) θk(3). 
The reparameterised GLTM is then  
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Maximum likelihood estimation 
Log-likelihood function 
 
The parameters of the GLTM described 
in the previous section can be estimated 

by maximum likelihood (ML). The 
likelihood function is based on the 
probability densities of the level-3 
observations, denoted by 
P(yk|xk,zk(2),zk(3)). To simplify notation, 
the conditioning on the design vectors is 
replaced by an index corresponding to 
the unit concerned, yielding the short-
hand notation P(yk) for the probability 
density of unit k.  The log-likelihood to 
be maximised equals  
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As can be seen, the responses of the nk 
level-2 units within level-3 unit k are 
assumed to be independent of one 
another given the random effects θ(3), 
and the responses of the njk level-1 units 
within level-2 unit jk are assumed to be 
independent of one another given the 
random effects θ(2) and θ(3). 
 
The integrals on the right-hand side of 
equations (1) and (2) can be evaluated 
by the Gauss-Hermite quadrature 
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numerical integration method (Stroud & 
Secrest, 1966; Rabe-Hesketh, et al., 
2001) in which the multivariate normal 
mixing distribution is approximated by 

a limited number of discrete points. 
More precisely, the integrals are 
replaced by summations over M and T 
quadrature points 
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Here, θt(2) and θm(3) are quadrature 
nodes and π(θt(2)) and π(θm(3)) are 
quadrature weights corresponding to the 
(multivariate) normal densities of 
interest. Because the random effects are 
orthogonalised, the nodes and weights 
of the separate dimensions are equal to 
those of the univariate normal density, 
which can be obtained from standard 
tables (see, for example, Stroud & 
Secrest, 1966). Suppose that each 
dimension is approximated by Q 
quadrature nodes. The T = QR(2) and M 
= QR(3) weights are then obtained by 
multiplying the weights of the separate 
dimensions. The integral can be 
approximated to any practical degree of 
accuracy by setting Q sufficiently large. 
 
Implementation of the EM algorithm 
 
ML estimation can be performed by an 
EM algorithm with an E step that is 
especially adapted to the problem at 
hand. This adaptation is necessary 

because a standard implementation of 
the E step would involve computing the 
joint conditional expectation of nk• R(2) 
+ R(3) random effects; that is, the joint 
posterior distribution 
Pk(θt1(2),θt’2(2),θt’’n(k)(2),θm(3) |yk) with M• 
Tn(k) entries. This is only possible for 
very small nk. 
 
Because of the model structure, the next 
step after obtaining the posterior 
probabilities would be to compute the 
marginal posterior probabilities for each 
level-2 unit, Pk(θtj(2),θm(3) |yk), by 
collapsing over the random effects of 
the other level-2 units. In other words, 
in the E step we only need the nk 
marginal posterior probability 
distributions containing M• T  entries. 
This can be seen from the form of the 
(approximate) complete data log-
likelihood, which is defined as  
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It turns out that it is possible to compute 
Pk(θtj(2),θm(3) |yk) without going through 
the full posterior distribution by making 
use of the conditional independence 
assumptions associated with the density 
function defined in equations (1) and 
(2). In that sense, our procedure is 
similar to the forward-backward 
algorithm for the estimation of hidden 
Markov models with large numbers of 
time points (Baum et al., 1970; Juang & 
Rabiner, 1991). Our procedure could be 
called an upward-downward algorithm. 
First, random effects are integrated out 
going from the lower to the higher 
levels. Subsequently, the relevant 
marginal posterior probabilities are 
computed going from the higher to the 
lower levels. 
 
The marginal posterior probabilities 
Pk(θtj(2),θm(3) |yk) can be decomposed as 
follows:  
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Our procedure makes use of the fact 
that in the GLTM  
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i.e., θtj(2) is independent of the observed 
and latent variables of the other level-2 
units within the same level-3 unit given 
θm(3). This is the result of the fact that 
level-2 observations are mutually 
independent given the level-3 random 
effects, as is expressed in the density 
function described in equation (1). 
Using this important result, we get the 

following slightly simplified 
decomposition  
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The computation of the marginal 
posterior probabilities therefore reduces 
to the computation of the two terms on 
the right-hand side of this equation. The 
term Pk(θm(3) |yk) is obtained by  
 

)(
),(

)|( )3(
)3(

kk

mkk
kmk P

P
P

y
θy

yθ =  (4) 

where  

.)|()(

),()(),(

1
)3(

1
)3()3()3(

∑

∏

=

=

=

=

M

m
mkkkk

n

j
mjkjkmmkk

PP

PP
k

θyy

θyθθy π
 

 
The other term, Pjk(θtj(2)|yjk,θm(3)) is 
computed by 
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These equations show that computer 
storage and time increases only linearly 
with the number of level-2 observations 
instead of exponentially, as would be 
the case with a standard EM algorithm. 
It can also be seen that the method can 
easily be generalised to more than three 
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levels. For example, with four levels, 
one would have to compute the three 
terms Pl(θo(4) |yl), Pkl(θmk(3) |ykl,θo(4)), 
and Pjkl(θtj(2) |yjkl,θmk(3),θo(4)). 
 
A practical problem in the 
implementation of the E step is that 
underflows may occur in the 
computation of Pk(θm(3) |yk). More 
precisely, the numerator of equation (4) 
may become equal to zero for each m 
because it may involve multiplication of 
a large number, (nk + 1)(njk + 1), of 
probabilities. Such underflows can, 
however, be prevented by working on a 
log scale. Letting 
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and bk = max(amk), Pk(θm(3) |yk) can be 
obtained by  
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In the M step of the EM algorithm, the 
(approximate) complete data log-
likelihood described in equation (3) is 
improved by standard complete data 
algorithms for the ML estimation of 
generalised linear models. 
 
Standard errors 
 
Contrary to Newton-like methods, the 
EM algorithm does not provide standard 
errors of the model parameters as a by-
product. Estimated asymptotic standard 
errors can be obtained by computing the 
observed information matrix, the matrix 
of second-order derivatives of the log-

likelihood function for all model 
parameters. The inverse of this matrix is 
the estimated variance-covariance 
matrix. For the example presented in the 
next section, we computed the 
necessary derivatives numerically. 
 
The information matrix can also be used 
to check identifiability. A sufficient 
condition for local identification is that 
all the eigenvalues of this matrix are 
larger than zero. 
 
Application to attitudes towards 
abortion data 
 
To illustrate the GLTM, we obtained a 
data set from the data library of the 
Multilevel Models Project, at the 
Institute of Education, University of 
London. 
http://multilevel.ioe.ac.uk/intro/datasets.html 
The data consist of 264 participants in 
1983 to 1986 yearly waves from the 
British Social Attitudes Survey 
(McGrath and Waterton, 1986). It is a 
three-level data set: individuals are 
nested within districts and time points 
are nested within individuals. 
 
The dependent variable is the number of 
yes responses on seven yes/no questions 
as to whether it is a woman’s right to 
have an abortion under a specific 
circumstance. Because this variable is a 
count with a fixed total, it is most 
natural to work with a logit link and a 
binomial error function. Individual level 
predictors in the data set are religion, 
political preference, gender, age, and 
self-assessed social class. In accordance 
with the results of Goldstein (1995), we 
found no significant effects of gender, 
age, self-assessed social class, and 
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political preference. Therefore, we did 
not use these predictors in the further 
analysis. The predictors that were used 
are the level-1 predictor year of 
measurement (1=1983; 2=1984; 
3=1985; 4=1986) and the level-2 

predictor religion (1=Roman Catholic, 
2=Protestant; 3=Other; 4=No religion). 
Because there was no evidence for a 
linear time effect, we included time as a 
set of dummies in the regression model. 

 
Table 1. Fit measures, parameter estimates and standard errors for the estimated models  
 
  Model I Model II  Model III
Fit measures  
 LL  -2188.38 -1711.76 -1708.72
 # parameters  7 8 9
 BIC  4425.5 3479.21 3480.09
Fixed effects  
 Intercept   1.50 (0.07) 1.97 (0.13)  2.09 (0.18)
 Time  
   1983  -0.13 (0.08)  -0.16 (0.08)  -0.16 (0.08)
   1984  -0.55 (0.07)  -0.68 (0.08)  -0.68 (0.08)
   1985  -0.22 (0.08)  -0.27 (0.08)  -0.27 (0.08)
 Religion  
   Catholic   -1.08 (0.10)  -1.07 (0.21)  -1.59 (0.32)
   Protestant   -0.38 (0.06)  -0.49 (0.19)  -0.71 (0.21)
   Other   -0.82 (0.08)  -1.12 (0.17)  -1.32 (0.24)
Random intercepts  
 Level-2 standard deviation 1.20 (0.05)  1.21 (0.07)
 Level-3 standard deviation  0.47 (0.33)
 
Table 1 reports the results obtained with 
the three models that were estimated: a 
model without random effects (Model 
I), a model with a level-2 random 
intercept (Model II), and a model with 
level-2 and level-3 random intercepts. 
We approximated the integrals in the 
log-likelihood function using 10 
quadrature nodes per dimension. The 
reported fit measures show that the 
level-2 variance is clearly significant. 
Based on a log-likelihood difference 
test between Models II and III, one 
would conclude that the level-3 
variance is just significant. The BIC, on 

the other hand, indicates that Model II 
is somewhat better than Model III. 
 
The lower part of Table 1 contains the 
parameter estimates for Models I, II, 
and III. As far as the fixed part is 
concerned, the substantive conclusions 
would be similar in all three models. 
The attitudes are most positive at the 
last time point (reference category) and 
most negative at the second time point. 
Furthermore, the effects of religion 
show that people without religion 
(reference category) are most in favour 
and Roman Catholics and Others are 
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most against abortion. Protestants have 
a position that is close to the no-religion 
group. As can be seen, introducing a 
level-2 variance term increases the time 
effects and introducing a level-3 
variance term increases the religion 
effects. 
 
A natural manner to quantify the 
importance of the random intercept 
terms is by their contribution to the total 
variance. The level-1 variance can be 
set equal to the variance of the logistic 
distribution (π2/2=3.29), yielding a total 
variance equal to 
3.29+1.212+0.472=4.98. Thus, after 
controlling for the time and religion 
effects, the level-2 and level-3 variances 
equal 29% (1.212/4.98) and 4% 
(0.492/4.98) of the total variance, 
respectively. 
 
Discussion 
 
An EM algorithm was presented for the 
ML estimation of GLTMs. This 
upward-downward method prevents the 
need to process the full posterior 
distribution, which becomes infeasible 
with more than a few level-2 units per 
level-3 unit. The relevant marginal 
posterior distributions can be obtained 
by making use of the conditional 
independence assumptions underlying 
the GLTM. As was shown, it is 
straightforward to generalise the 
method to models with more than three 
levels. 
 
A limitation of the GLTM is that the 
numerical integration to be performed 
for parameter estimation can involve 
summation over a large number of 
points when the number of random 

effects is increased. Despite the fact that 
the number of points per dimension can 
be somewhat reduced with multiple 
random effects, computational burden 
becomes enormous with more than five 
or six random coefficients. There exist 
other methods for computing high-
dimensional integrals, like Bayesian 
simulation and simulated likelihood 
methods, but these are also 
computationally intensive. As shown by 
Vermunt and Van Dijk (2001), these 
practical problems can be prevented by 
using a nonparametric random-effects 
model in which the mixing distribution 
is approximated with a small number of 
nodes whose locations and weights are 
unknown parameters to be estimated 
(Laird, 1978). The proposed EM 
algorithm can also be used for the 
estimation of such nonparametric 
GLTMs. 
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quadrature points in a logistic random-
effects model: an example. Applied 
Statistics, 50: 325-335. 
 

McGrath, K and Waterton, J. (1986). 
British Social Attitudes, 1983-1986 
Panel Survey. London: Social and 
Community Planning Research, 
Technical Report. 
 
Rabe-Hesketh, S., Pickles, A. and A. 
Skrondal (2001). GLLAMM: A general 
class of multilevel models and a Stata 
program. Multilevel Modelling 
Newsletter, 13: 17-23. 
 
Stroud, A.H. & Secrest. D. (1966). 
Gaussian Quadrature Formulas. 
Englewood Cliffs, NJ: Prentice Hall. 
 
Vermunt, J.K. & Van Dijk. L. (2001). A 
nonparametric random-coefficients 
approach: the latent class regression 
model. Multilevel Modelling Newsletter, 
13, 6-13. 

Review of ‘Modeling Intraindividual Variability with 
Repeated Measures Data: Methods and Applications’. 

Moskowitz, D. S., and Hershberger, S. L. (Eds.). Mahwah NJ: 
Lawrence Erlbaum Associates Inc. 

ISBN: 0-8058-3125-8, pp. 276. 
Ian Plewis 

Institute of Education, University of London 
 
Increasingly, researchers are seeing the 
value of a multilevel approach to the 
analysis of longitudinal data, especially 
when those data are repeated measures 
of the same underlying construct. The 
approach offers an appealing way of 
modelling change, of relating change 
parameters across variables and of using 
all the available data in analyses. The 
links between multilevel models and 
structural equations models (SEMs) are 

becoming recognised, giving 
researchers a wider range of models that 
will account for the observed variances 
and covariances at different levels. 
Many of these approaches are 
represented in this curate’s egg of a 
collection of nine chapters. 
 
The first chapter (Kenny et al.) shows 
how simple two level models for 
repeated measures relate to traditional 
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ANOVA methods and how Ordinary 
Least Squares (OLS), WLS and 
iterative least squares methods can be 
used for estimation. Their choice of an 
example to motivate the chapter is a 
little odd, not least because they average 
over some of their repeated measures. 
There then follows a solid chapter by 
Raudenbush, firmly located within the 
multilevel tradition and showing how 
different model specifications for 
growth, each making different 
assumptions about the within subject 
covariances, can be tested against a full 
multivariate model. Chapter 3 (Curran 
and Hussong) develop models for 
relating changes in anti-social behaviour 
to changes in reading attainment within 
an SEM framework although the 
specifications of some of these models 
are somewhat curious. Ramsay then 
provides a nicely written overview of 
these three chapters in which he steps 
outside the multilevel/SEM frameworks 
to show how they relate to ideas in 
functional data analysis. 
 
There is not a lot in the remaining five 
chapters to interest multilevel 
modellers. Wallace and Green and 

Singer focus on estimating mixed 
models using PROC MIXED in SAS, 
the latter chapter essentially a reprise of 
her useful article in the Journal of 
Educational and Behavioral Statistics. 
Duncan et al. compare different 
estimation procedures for analysing 
family and adolescent data on alcohol 
use but their decision to base these 
comparisons on complete data over a 
four year period reduces its value. The 
final two chapters are on time series 
methods (Hillmer) and factor analysis 
(Nesselroade et al.). 
 
The collection is restricted to models 
for outcomes assumed to be measured 
on a continuous scale and to nested 
models. It suffers from what might 
charitably be described as a light touch 
from the editors in that there is no 
consistency in notation and little 
attempt to link the chapters to create a 
coherent whole. The production quality 
is poor – there are too many typos and 
the figures, especially those in Chapters 
7 and 9, are so bad that anyone 
spending money on this book could 
reasonably ask for a refund. 

Some Recent Publications Using Multilevel Models 
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Applications, pp 181-208. Mahwah NJ: 
Lawrence Erlbaum Associates Inc. 
 

Goldstein, H., Browne, W. J. and 
Rasbash, J. (2002). Multilevel 
modelling of medical data. Statistics in 
Medicine, 21: 3291-3315. 
 
Moerbeek, M., Van Breukelen, G. J. P., 
and Berger, M. P. F. (2001). Optimal 
experimental designs for multilevel 
models with covariates. 
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Reise, S., and Duan, N. (Eds.) (2002). 
Multilevel Modeling: Methodological 
Advances, Issues and Applications. 
Mahwah NJ: Lawrence Erlbaum 
Associates Inc. 
 
Rothman, S. (2002). School absence 
and student background factors: a 
multilevel analysis. International 
Education Journal, 2 (1): 59-68. 
http://iej.cjb.net. 
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