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Forthcoming Workshop 

6-8 September 2000, a three-day 
introductory workshop to multilevel 
modelling using MLwiN will take place 
in the Institute of Education, University 
of London. 
Enquiries to Anne-Lise McDonald at 
CSERGE, School of Environmental 
Sciences, University of East Anglia, 
Norwich NR4 7TJ, England. Tel: +44 
(0) 1603 593314 or +44 (0) 1692 
538196, Fax: +44 (0) 1603 593739, 
e-mail: a.cox@uea.ac.uk. 
 
8-10 January 2001, a three-day 
introductory workshop to multilevel 
modelling using MLwiN will take place 
in the Institute of Education, University 
of London. 
Enquiries to Amy Burch at 
Mathematical Sciences, Institute of 
Education, 20 Bedford Way, London 
WC1H OAL. Tel: +44 (0) 20 7612 
6688, Fax: +44 (0) 20 7612 6572, 
e-mail: a.burch@ioe.ac.uk. 
 
Bootstrapping Measurement 
Error Project 

Dougal Hutchison at the National 
Foundation for Educational Research 

has received ESRC funding for a 10-
month project which started in January, 
aimed at developing bootstrapping 
techniques for correcting for 
measurement error in dependent and 
explanatory variables in multilevel 
models. Jo Morrison and Rachel Felgate 
of the NFER will be working with him 
on the project.  It is aimed to implement 
developments in forthcoming versions 
of MLwiN. 
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An Instrumental variable consistent 
estimation procedure to overcome the 
problem of endogenous variables in 
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modelling 

mailto:a.cox@uea.ac.uk
mailto:a.burch@ioe.ac.uk


MULTILEVEL MODELLING NEWSLETTER Vol. 12   No. 1 
 

 
 

2

Version 1.10 of MLwiN now available 
 
The new version has the following 
enhancements: 
 

Worksheet and data 
management 

• Comprehensive menu-based data 
manipulation facilities 

• Missing data now handled 
automatically under full user 
control 

• New macro editor with diagnostic 
facilities 

• Variable categories can have 
names attached 

• Windows for viewing the data 
structure 

• Pasting data sets directly from 
other applications via windows 
clipboard 

• Variable subscripts can be named 
 

Graphics 
• Enhanced graphics facilities with 

flexible control over formats 

• Trellis plots for displaying 
multiway graph layouts 

• Identification of points and lines 
in different formats and colours 
and linking across graphs 

 
Modelling 

• Improvements to efficiency of 
MCMC methods and inclusion of 
general binomial and Poisson 
models with enhanced diagnostics 

• Non-parametric bootstrapping 
based on model residuals 

• A range of model diagnostics, 
including leverage and influence 
measures 

• Graphically identify outliers at 
any level and automatically omit 
or “dummy” them out of the 
model 

• Powerful procedures for including 
interaction terms 

• Weighting at any level 
 
Existing users can download an upgrade 
from 
http://multilevel.ioe.ac.uk/mlwin/ 
software-upgrade.html 
 
New users can purchase MLwiN using 
the secure on-line ordering facility at 
https://multilevel.ioe.ac.uk/ordering/ 
orderform.html 
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Free teaching version of MLwiN available from the TRaMSS 
web site. 

 
A version of MLwiN along with two 
extended tutorial examples is available 
for downloading from 
http://tramss.data-archive.ac.uk/ 
 
The software is limited so that it will 
only work with the tutorial data sets but 
otherwise has full functionality. The 
teaching materials are designed to 
introduce users to the basic concepts of 
multilevel modelling through worked 
examples using MLwiN. The materials 
can be used to supplement 
undergraduate and post-graduate 
courses on multilevel modelling, as a 
learning aid for individual researchers, 
or for users to evaluate MLwiN before 
purchasing a full version. 
 

In addition to the materials on 
multilevel modelling the TRaMSS 
(Teaching Resources and Materials for 
the Social Sciences) site contains 
material designed to: 
• Teach users how to find data 

using the Essex Data Archive’s 
catalogue 

• Promote learning about event 
history analysis using worked 
examples from the SABRE 
modelling package 

 
The TRaMSS web site was funded by 
the ALCD (Analysis of Large and 
Complex Datasets) training materials 
programme. ALCD is an ESRC 
initiative. 

 
Free student version of HLM 5 

 
A free student version of HLM 5 is 
available from 
 
http://www.ssicentral.com/other/ 
hlmstu.htm 
 
The student edition contains the 
following: 
 
• All the examples distributed with 

the full HLM 5 version. These 
examples may be run with the 
student edition. 

• An on-line helpfile, as provided 
for the full version too. The 
helpfile includes most of the new 
HLM 5 manual and a complete 
tutorial showing the use of HLM.  

 
The student edition can run all the 
analyses the full version can in terms of 
models selected, statistical options and 
output. Restrictions are, however, 
placed on the data used and the size of 
the model selected. 

 

http://tramss.data-archive.ac.uk/
http://www.ssicentral.com/other/�hlmstu.htm
http://www.ssicentral.com/other/�hlmstu.htm
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An Instrumental variable consistent estimation procedure to 
overcome the problem of endogenous variables in multilevel 

models 
Neil H Spencer1, Antony Fielding2 

1University of Hertfordshire, 2University of Birmingham 
e-mail: n.h.spencer@herts.ac.uk 

 
Introduction 
 
It is not unusual for a multilevel model 
to contain fixed effect explanatory 
variables that can be regarded as 
endogenous. This will happen if the 
variables are subject to the same 
unmeasured influences as the dependent 
response. These influences will be 
incorporated in the random effect 
disturbance terms. Thus, these variables 
are no longer exogenous and are not 
independent of the random effects in the 
model. In such circumstances, a basic 
model assumption is not met and 
obtaining consistent estimators of the 
parameters is not straightforward. Many 
standard multilevel procedures (e.g. 
Iterative Generalised Least Squares: 
IGLS) rely on the independence of 
regressors and model disturbances for 
their consistency properties (as, indeed, 
do single level procedures). Here, we 
present a modelling strategy based on 
instrumental variables and introduce an 
MLwiN macro that provides consistent 
estimators. 
 
For exemplification, we consider a 
simple two level model with 
endogenous variables. Fielding (1998) 
introduces a dataset drawn from 
children in primary schools of the City 
of Birmingham Local Education 
Authority. Data are available on a range 
of school and pupil characteristics. The 

responses are the results of Key Stage 1 
(KS1) tests, and we wish to relate one 
of these test results to gender, age of the 
child in months, and the results of 
baseline tests carried out when the child 
entered the reception classes in the 
school. A model such as this may be 
used to examine the progress children 
are making between reception and KS1 
in different schools. For pupil i in 
school j and where we have just one 
baseline test we may write: 
 

ijjijij

ijij

uBASELINEAGE
GENDERTESTKS

εββ
ββ

+++

++=

32

101
(1) 

 
The term uj in model (1) represents a 
random school effect and εij is a within 
school random pupil effect. The 
endogeneity in this model arises 
because the baseline test may be 
supposed to be related to the random 
pupil effect through the existence of 
important unmeasured and 
unmeasureable influences acting at this 
lowest level of the hierarchy (e.g. home 
circumstances). These influences are 
incorporated in the disturbance εij but 
may also influence baseline test 
performance. It is also possible that 
there are some influences that make the 
baseline test related to the school effect 
uj. The common influences may be such 
things as the locality in which the 
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school is situated and from which the 
pupils generally come. 
 
Overcoming the problem of 
endogeneity 
 
Solutions to the problem of 
inconsistency caused by endogenous 
regressors, particularly when they are 
thought to relate to higher level effects 
such as uj, have been proposed by 
Kiviet (1995) and Rice et al. (1998). 
Kiviet uses a bias corrected version of 
the least squares dummy variable 
estimator (LSDV). Rice et al. use 
conditioned iterative generalised least 
squares (CIGLS). The first of these 
approaches suffers from a problem that 
the bias correction applied may actually 
increase the bias in some circumstances. 
Neither approach can easily cope with 
the case where the level 1 (pupil) 
random effect is correlated with 
regressors. It is this latter situation on 
which we mainly focus. The difficulties 
caused by endogenous regressors in the 
context of generalised linear models for 
count data are also discussed by 
Crouchley and Davies (1999). 
 
A frequently used method of 
overcoming such endogeneity problems 
in single level models is to use 
instrumental variable techniques. We 
adapt these techniques to cover 
multilevel random effects models 
within the framework of the MLwiN 
IGLS estimation procedures. The 
possibility is mentioned briefly and 
independently by Rice et al. (1998). 
Spencer (1997) also suggests such an 
approach for repeat testing in 
educational situations where 
explanatory variables are lagged 

versions of the response. A 
supplementary multilevel model for the 
endogenous explanatory variable is 
constructed using fixed effect 
explanatory variables that are assumed 
exogenous and independent of the 
random part of model (1). We stress 
that the existence of such variables and 
the adequate collection of data on them 
are a necessary pre-requisite. 
Predictions of the endogenous variable 
values for each child are then obtained 
from the fixed parts of the 
supplementary models. These predicted 
values, being independent of the 
random part of the model of interest (1), 
are then used as instruments. 
 
Armed with data on the original set of 
regressors of model (1) and the set of 
instruments (being the original 
regressor set with endogenous variables 
replaced by their instruments), we 
estimate the fixed effect parameters in 
model 1 (see, e.g., Bowden & 
Turkington (1984)). This provides us 
with consistent estimates of the fixed 
parameters but at this stage adequate 
estimates of their standard errors are not 
available. 
 
The next stage, then, is to obtain 
estimates of the random part of model 
(1). This is done by using MLwiN 
procedures to create constraints on the 
fixed parameters. They are forced to be 
equal to those calculated from the 
instrumental variable procedure. The 
resulting estimates of the random part 
of the model will be consistent 
(Goldstein, 1986) and can then be used 
to obtain standard errors of the 
instrumental variable fixed effects 
estimates. 
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MLwiN macros called IV have been 
written to implement this procedure. 
They are available from the authors on 
request or can be downloaded from the 
Birmingham web page 
www.bham.ac.uk/economics/staff/ 
tony.htm 
 
Application 
 
We now use the example of Fielding 
(1999) discussed above to demonstrate 
the use and performance of the 
instrumental variable method embodied 
in the macros. Simulation results are 
also available (Spencer and Fielding, 
2000). The particular response variable 
used is the Mathematics test at Key 
Stage 1, standardised to have mean zero 
and unit variance. 
 
The seven baseline tests available in the 
data (various forms of Mathematics and 
English tests) are inevitably highly 
correlated and so the first principal 
component (accounting for 60% of the 
variation) was used. The supplementary 
multilevel model for the endogenous 
principal component score had a similar 

structure to model (1) with intercept 
random effects for school and pupils. 
Fixed effect explanatory variables 
included pupil's ethnicity, first language 
and attendance at nursery school. The 
ones used were, on investigation, 
related to ability and therefore to 
baseline test scores. However, none 
appeared to have an influence on 
progress. It is unlikely, therefore, that 
they are correlated with disturbances in 
target model (1). Predictions of the 
principal component of baseline scores 
from this model were thus thought to 
provide an instrument that was free of 
the problem of dependence on the 
disturbances in the original progress 
model of interest. 
 
Table 1 shows estimates of the fixed 
parameters (and estimated standard 
errors) of the adapted model (1) 
obtained with and without the consistent 
instrumental variable estimation 
procedure (IV). It is noticeable that the 
influence of gender and baseline testing 
decreases and that of age increases 
(indeed almost doubles) when the 
consistent procedure is applied. 

 
Table 1: Results with and without instrumental variable procedures 
 
 Without IV With IV 
Coefficient for Estimate s. e Estimate s. e 
Intercept -0.0671 0.0520 0.0353 0.0611 
Male gender 
dummy  

 0.102 0.0244 0.0758 0.0335 

Centred age in 
months 

 0.0145 0.00379 0.0281 0.00828 

Baseline 1st 
Principal 
Component 

 0.314 0.00775 0.211 0.0540 

 

http://www.bham.ac.uk/economics/staff/�tony.htm
http://www.bham.ac.uk/economics/staff/�tony.htm
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It is well known that if good 
instruments for the endogenous 
variables cannot be found, then the 
resulting estimates, although consistent, 
may be quite imprecise. In some cases 
standard errors can become so large as 
to make results uninterpretable. 
 
The estimated standard errors produced 
by the IV procedures are substantially 
higher than those produced without it. It 
is a matter of judgement whether the 
price in imprecision is worth paying to 
secure the promise of consistency. 
 
Conclusion 
 
A solution to the problem of 
inconsistency caused by the presence of 
endogenous variables in a multilevel 
model has been proposed, based on 
instrumental variable procedures. The 
implementation of the consistent 
estimation method suggested has been 
made possible using the flexible macro 
facilities of MLwiN. An illustration of 
the method has been presented and the 
results contrasted with those produced 
when the problem of heterogeneity is 
ignored. It is possible that the 
availability of further background data 
might have further improved the 
precision of the estimates. Sound 
planning in data collection is therefore 
important. 
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Extra-binomial variation in logistic multilevel models - 
a simulation 
Marita Jacob 

Max-Planck-Institut for Human Development, Berlin 
e-mail: mjacob@mpib-berlin.mpg.de 

 
Introduction 
 
Multilevel models for binary responses 
are widely used. The usual 
recommendation is to constrain the 
level one variance to 1.0 under the 
assumption of a binomial (or Bernoulli) 
distribution. It is also suggested that the 
variance at level 1 should be estimated 
from the data in a second step, thus 
allowing extra-binomial variation. In 
many applications, only the coefficients 
of the fixed effects are compared if 
there are considerable changes from the 
constrained to the unconstrained model. 
The estimate of the level 1 variance is 
often assessed by a "rule-of-thumb" that 
an estimate close to 1.0 indicates 
conformity to the binomial assumption 
(e.g. Yang et al., 2000). 
 
We concentrate on a binary dependent 
variable Yij distributed as (1, πij) and 
conduct an examination of the estimate 
of binomial variation under different 
circumstances, using simulated data. 
 
Extra-binomial variation 
 
Assuming that the binary variable Yij is 
Bernoulli distributed, its mean and 
variance are given by E(Yij) = πij and 
Var(Yij)= πij (1-πij). In applications, it 
can often be observed that the variance, 
given the theoretical mean, is greater or 
smaller than the expected value πij (1-
πij). This is called extra-binomial 

variation, more precisely 
underdispersion if the variance is 
smaller and overdispersion if it is 
greater. Extra-binomial variation can 
occur for a number of reasons, 
unobserved heterogeneity and positive 
correlations between individual 
responses being the most common. 
Neglecting a relevant predictor, or 
insufficiently modelled cluster effects, 
may have serious effects on the estimate 
of the level 1 variance (Goldstein, 
1995). Both mis-specifications are 
expected to result in overdispersion. 
 
Extra-binomial variation can be 
estimated by introducing a scale factor. 
A variable zij is defined by zij=[πij (1-
πij)]1/2. This variable zij is included in 
the random part as a scale factor for the 
level 1 residual eij. Constraining the 
level 1 variance, σ2

e, to be 1, then leads 
to binomial variance for Yij. To estimate 
extra-binomial variation, σ2

e is no 
longer constrained to 1, and the level 1 
variance is estimated from the data. 
 
Method and datasets 
 
Simulation methods are used to 
distinguish the effects of small sample 
size and two model misspecifications: 
omitting a relevant predictor and 
neglecting a clustering variable. 
 
Five models are compared in two 
separate simulations. As the estimation 
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of the level 1 variance is of main 
interest, three models are estimated 
using a true variance components 
model. We concentrate on two level 
models. 
 

Table 1 lists the different models 
specified in the first simulation for 
estimation. Model 1 is correctly 
specified, in model 2 the predictor X1 is 
dropped and in model 3 a single level 
model is specified, neglecting the 
multilevel structure. 

 
Table 1 Different simulation models I 
Model Logit function Description 
1 logit1(πij)=β0X0ij+β1X1ij+u0j correctly specified 
2 logit2(πij)=β0X0ij+u0j neglecting X1 
3 logit3(πij)=β0X0i+β1X1i single level model 
 
The fourth and fifth simulation models 
are based on a logistic multilevel model 
introducing a second random effect, a 
random slope at level 2. The fourth 

simulation model is correctly specified. 
A single level model is estimated as an 
alternative specification in the second 
simulation. 

 
Table 2 Different simulation models II 
 
Model Logit function Description 
4 logit4(πij)=β0X0ij+β1X1ij+u0j+X1iju1j correctly specified 
5 logit5(πij)=β0X0i+β1X1i  single level model 
 
The two sets of simulations were 
performed using MLn and MLwiN, with 
500 datasets generated for each true 
model. The macros for generating, 
estimating and storing the results are 
available from the author. They are 
similar to those of Wright (1995), who 
kindly gave me access to his macros. 
For parameter estimation the non-linear 
macros of MLwiN discrete were used. 
Parameter values of β0 and β1 were set 
to 1.0 in data generating. The level 2 
random effects u0j and u1j were assumed 
to be normally distributed residuals with 
a centred mean of 0 and a variance of 
0.5. To avoid interpretational problems, 
the predictor X1 has a standard-Normal 
distribution. X0 is a column of 1s. 

Adding the fixed part and level 2 
random effects gives the logit (πij). 
Finally, the values of the binary Yij 
variable are generated by a binomial 
distribution with parameter πij. 
 
Different sample sizes were chosen. 
There are 20 balanced designs, varying 
four different numbers of level 2 units 
(J=10,25,50,100) by five different 
numbers of level 1 units 
(n=5,10,25,50,100) (see Table 3). (Also 
20 moderately unbalanced designs were 
examined, leaving N and J constant but 
randomly distributing the number of 
level 1 units. The results do not differ 
substantially and they are not presented 
here.) 
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Table 3 Sampling design (balanced) 
 
Sample 1 2 3 4 5 6 7 8 9 10 
J 10 10 10 10 10 25 25 25 25 25 
n 5 10 25 50 100 5 10 25 50 100 
N 50 100 250 500 1000 125 250 625 1250 2500 
 
Sample 11 12 13 14 15 16 17 18 19 20 
J 50 50 50 50 50 100 100 100 100 100 
n 5 10 25 50 100 5 10 25 50 100 
N 250 500 1250 2500 5000 500 1000 2500 5000 10000 
 
J  number of level 2-units 
n = nj level 1-units per level 2-unit  
N  sample size  
 
To estimate the parameters, MQL1 
followed by PQL2 was used (MQL2 for 
the single level models 3 and 5). 
 
Results 
 
For small samples (N ≤ 500) non-
convergence or improper solutions were 
observed for models 1, 2 and 4. In 
models 1 and 2 the lowest percentage of 
convergence was 60%, in model 4 only 
41% datasets of the smallest sample 
(sample 1) converged. For N ≥ 500 in 

all models more than 95% of the 500 
datasets converged. Non-convergent 
estimations and improper solutions 
were omitted from the analysis. 
 
In all two level models (model 1, 2 and 
4) the level 1 variance is underestimated 
whereas in the single level models the 
estimates are very close to 1.0. In Table 
4, the model-specific results are 
summarised by the mean of all 
estimates per model. 
 

 
Table 4 Means of the level 1 variance estimates 
 
Model  Mean 
1 0.9459 
2 0.9622 
3 1.0024 
4 0.8789  
5 1.0146  
 
Boxplots of the distributions of the 500 
estimates (or less in the case of non-
convergence or improper solutions) for 

each sample size are shown for models 
1, 3 and 4. 
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Figure 1 Distribution of level 1 variance estimates, model 1 

 
Figure 2 Distribution of level 1 variance estimates, model 3 
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Figure 3 Distribution of level 1 variance estimates, model 4 

 
 
Comparing these three models, the 
greatest deviation from 1.0 can be seen 
in the correctly specified model 1 
(Figure 1). In samples with few level 1 
units per level 2 unit the median is 
about 0.90. Model 3 gives estimates 
very close to 1.0, although the 
multilevel structure in the data is 
neglected (Figure 2). Neglecting the 
level 2 random effects results in a level 
1 variance almost equal to 1.0. The 
estimates of the level 1 variance in 
model 2 are closer to 1.0 and the 
variation decreases considerably. 
Neglecting a predictor leads to better 
results because overdispersion raises the 
estimates closer to 1.0. Thus, an 
estimate very close to 1.0 seems to be 
an indication for the incorrect 
specification rather than for a correct 
binomial assumption. 

In all models, increasing sample size 
improves the median of the simulations, 
and the variation of the estimates 
decreases. Given the number of level 1 
units, by increasing the number of level 
2 units the variation decreases. For J = 
100 (samples 16 to 20) in model 1 
almost all boxplots are completely 
below the line of reference, i.e. only 
possible outliers of the 500 estimates 
are above 1.0. Given the number of 
level 2 units, by increasing number of 
level 1 units the deviation of the median 
and the range of the estimates 
decreases.  
 
The boxplots of the fourth and fifth 
model do not differ substantially from 
the others. Only the boxplots of model 4 
are presented here (Figure 3). The 
deviation from 1.0 and also the range 
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are considerably greater than in the 
variance components models. The 
median in samples with few level 1 
units (n = 5) is less than 0.8. The greater 
the sample size, the lower the range. For 
large samples (N ≥ 1000) the reference 
line at 1.0 is again not included in the 
boxplots. Model 5 is the only model in 
which overdispersion emerges but in 
absolute terms, the difference from 1.0 
is only marginal. In small samples the 
median is about 1.05. 
 
Summary 
 
The objective of this study was to 
investigate the effects of sample size 
and model misspecification on 
estimating the level 1 variance for 
binary responses. The small simulation 
study shows that: 
 
(1) in small samples, estimates around 
0.8 can appear although the model is 
correctly specified under the binomial 
assumption, and 
 
(2) estimates close to 1.0 do not allow 
us to conclude correct model 
specification. Estimating the level 1 
variance in logistic multilevel models 
cannot be treated as a simple indication 
to test the assumed binomial 
distribution. In large sample sizes, the 
estimate is usually close to 1.0, but it 
cannot be used as an assessment of the 
distribution by statistical testing.  
 
Model mis-specification leads to 
"improved" estimates, because 
overdispersion reduces the downward 
bias. The estimation procedure PQL2 
gives downwardly biased results, so that 
"too close" estimates are rather an 

indication of an incorrect model. A 
variance larger than 1.0 emerges only 
when cluster effects are neglected. 
Then, at least, overdispersion can be 
used to detect model mis-specifications. 
 
A further analysis of more complex 
models including more predictors, 
varying the level 2 variance and several 
random effects is necessary, to be sure 
if underdispersion is always found 
under a given binomial distribution. 
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Project report: Application of advanced multilevel modelling 

methods for the analysis of examination data  
Min Yang, Geoff Woodhouse 

Institute of Education, London 
m.yang@ioe.ac.uk 

 
Supported by the Economic and Social 
Research Council and directed by 
Professor Harvey Goldstein at the 
Institute of Education, University of 
London, this project has entered the last 
year of its three-year period. 
 
The main aims of the project are to 
develop existing multilevel 
methodology to handle efficiently 
ordered categorical responses and 
measurement error, and to provide 
substantive conclusions from an 
analysis of a very large cohort of 
students with GCSE and A/AS level 
examination results. The exam data 
were provided by the Department for 
Education and Employment. 
 
Following are summaries of the main 
outcomes of the project. 
 
Study I: Progress from GCSE to A 
and AS level: institutional and gender 
differences, and trends over time 

In this part we study the relationship 
between results obtained in 
examinations for the General Certificate 
of Education at Advanced and 
Advanced Supplementary (A/AS) level 
and those obtained by the same students 
two years earlier in examinations for the 
General Certificate of Secondary 
Education (GCSE). Using 
comprehensive data on four cohorts 
examined between 1994 and 1997 
totalling 696,600 students from 2,794 
educational institutions, we build a 
multilevel, longitudinal model of 
student progress which takes into 
account the age and gender of the 
students and the type and location of the 
establishment they attended. We find 
that progress differs between men and 
women, and between students of 
different ages, and that the size of these 
effects depends upon prior performance. 
The average GCSE performance of the 
students in an establishment is a 
significant predictor of individual 
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progress. Once establishments are 
matched on this measure, and students 
are matched on their own GCSE 
performance, the effects of most 
establishment types are substantially 
reduced: in particular, the average 
progress of students in maintained 
grammar schools does not differ 
significantly from that of students in 
maintained comprehensive schools. 
Using the new model, we find less 
stability over time in the usual residual 
estimates of the relative effectiveness of 
institutions than has been found in 
earlier studies. Despite the apparent 
simplicity of the measures used, the 
relationship between them is complex, 
and we argue that this complexity must 
be respected when judging institutions 
using value added procedures. 
 
Study II: Multilevel ordinal models in 
the modelling of examination grades 
 
In this part we concentrate on A level 
outcome in 1997 for the two subjects of 
Chemistry and Geography for 
substantive and methodological reasons. 
Both the point scores and exam grades 
of 30,910 students from 2,409 
institutions for Chemistry and 33,276 
students from 2,317 institutions for 
Geography are analysed. We fit normal 
multilevel models to the point scores, 
and ordinal multilevel models with a 
logit link to the grades for each subject. 
Comparing the precision of the 
parameter estimates associated with the 
effects of GCSE scores, gender, age of 
students, type of institutions and board 
of examination, we find virtually no 
difference between the two types of 
models. The estimated random effects 
of schools are comparable. The ordinal 

multilevel model is extended further to 
estimate the conditional distribution of 
the grade for each institution, assuming 
variable cut-points of the grades across 
schools. Several institutions are used to 
illustrate how the extended ordinal 
model gives us insights into the grade 
distribution, which is useful for school 
effectiveness research. 
 
Study III: Analysing A/AS level 
mathematical scores using multilevel 
multivariate models 
 
In this part we present the complexity of 
the data of A/AS level results for 
mathematics using students from 2,592 
institutions in 1997. Multiple entries on 
different type of maths courses by a 
single student create multiple responses 
with strong dependencies between some 
of them, typically Main and Further 
maths, Pure and Applied maths. The 
exam entry of 59,369 from 52,587 
students with between 1 and 4 entries 
for each, results in a highly unbalanced 
design. The AS level maths scores, with 
different distributions from the A-level 
scores, form another set of outcome 
variables. Students taking different 
combinations of mathematical subjects 
have different distributions on their 
A/AS level scores for the same 
mathematics course. We fit multilevel 
multivariate models to the data, 
showing how the complexity of the data 
can be modelled by explicitly 
specifying variance and covariance 
terms for different type of maths entry 
by A and AS results at student and 
school levels. We also show how to 
identify the student groups according to 
their choice on course combinations, 
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and how problematic the model could 
be if failing to do so. 
 
Study IV: Adjusting for 
measurement error 
 
It has long been known that institutions 
can be differentially effective for 
students with different levels of prior 
achievement. In the context of A/AS 
levels this differential effectiveness may 
be modelled by random coefficients of 
(functions of) GCSE scores. But GCSE 
scores are subject to measurement error, 
and adjusting for this in the presence of 
a random coefficient is tricky. 
 
We now have a method of adjustment, 
using MCMC estimation, which appears 

from simulations to be both practical in 
terms of processing, and effective in 
retrieving unbiased estimates of 
parameters in simple normal models. 
The next step is to apply this method to 
a subset of the A/AS level data set, 
assuming a normal response and using a 
function of GCSE scores derived from 
our earlier work as the GCSE predictor. 
In this way we shall show the effect on 
inferences of different assumptions 
about the extent of measurement error 
in the GCSE predictor. After that, we 
shall incorporate institutional averages 
as well as the student-level scores. 
 
Papers from the studies will be made 
available by the end of the project in 
early 2001. 

Applying multilevel models to university admissions grades: 
a note 

Anna Cuxart-Jardí 
Universitat Pompeu Fabra, Barcelona, Catalonia, Spain 

e-mail: anna.cuxart@econ.upf.es 
 
High-school graduates in Spain who 
want to enrol at a public university must 
take a set of examinations called 
Pruebas de Aptitud para el Acceso a la 
Universidad (PAAU). In Catalonia, the 
examinations are prepared, administered 
and scored by Coordinació de les 
PAAU, an institution funded by the 
seven public universities in Catalonia. 
Coordinació also maintain an extensive 
database of PAAU and high-school 
examinations grades and scores. The 
PAAU examinations have nine 
components in Catalonia. Five are 
compulsory: Philosophy, Spanish, 

Catalan, a Foreign language (English 
for the 90% of the students) and an 
Essay on a prescribed topic. 
 
This note summarises an application of 
multilevel modelling to the joint 
analysis of these five compulsory 
subjects. The aim is to explore the 
correlational structure of the PAAU 
scores at student and school level. The 
data come from a random sample of 26 
schools (1619 students, June 1993). 
More details can be found in Cuxart 
(1998) and Cuxart and Longford 
(1998). 
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A multivariate multilevel model for the 
analysis of association between subjects 
in PAAU examinations and explanatory 
variables like gender, curriculum and 
type of the school is specified: 
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kijz  are dummy variables (0/1) 

indicators of the responses ijy  (subject 

score); rijx  are explanatory variables; 

kijβ  are random variables varying 
among students and among schools. 
Subscripts i and j stand for the student 
and school, respectively. 

Table 1. Decomposition of overall variation of the five compulsory subjects' 
records in PAAU exams. Variances are on the diagonal and correlations are below. 

 
 Catalan Spanish Philosophy Foreign L. Essay 
Between schools      
Catalan 0.69     
Spanish 0.45 0.44    
Philosophy 0.23 0.40 0.45   
Foreign L. 0.41 0.62 0.27 0.33  
Essay 0.11 0.04 -0.08 0.21 0.51 
Within schools      
Catalan 2.74     
Spanish 0.32 2.05    
Philosophy 0.23 0.27 2.57   
Foreign L. 0.25 0.32 0.22 3.24  
Essay 0.23 0.23 0.19 0.25 1.87 

 
We find that (Table 1): 
 
• Some covariate effects in the two-

level model (scores and students) 
are not present in the three-level 
model. They were caused by 
characteristics of specific schools. 

• There is a significant variation 
between schools in subject means 
for all subjects.  

• The between school correlations 
between Essay and the rest of the 
subjects are low. 
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Review of ‘An Introduction to Multilevel Modelling 
Techniques’ 

R H Heck & S L Thomas. Pp xiii & 209. 
Mahwah, NJ: Lawrence Erlbaum Associates, 2000 

M J R Healy 
Institute of Education, London 

 
With the growing popularity of 
multilevel modelling methodology, 
introductory textbooks are starting to 
appear. Those by Kreft and DeLeeuw 
and by Snijders and Bosker are 
becoming well-known and the present 
book may be regarded as a competitor 
in the same field. It has two 
distinguishing features – the authors 
work in the field of organisational 
research rather than in education, and as 
much or more emphasis is placed upon 
aspects of multivariate modelling as 
upon the more familiar univariate 
methods. 
 
The book opens with an introductory 
chapter specifically aimed at 
organisational research, a field rich in 
hierarchies ready-made for a multilevel 
approach. This chapter classifies data as 
univariate or multivariate and as single-
level or multilevel. It is followed by a 
second more detailed account of 
multilevel methods, again contrasting 
the multilevel approach with less 
satisfactory single level approaches. 
This chapter contains an account of 
shrinkage, attributed to a Bayesian 
approach (the qualifier ‘empirical’ is 
smuggled in without explanation). It 
also contains a discussion of power 
(concluding little more than that its 
calculation in a multilevel setting is 
difficult) and of structural equation 

modelling including multilevel path and 
factor analysis. 
Chapter 3 is simply an account of OLS 
regression. This is presented at 
considerable length although many of 
the practical pitfalls remain 
unmentioned. The example studied 
contains a very obvious and influential 
outlier on which no comment is made. 
 
Chapter 4 is the only one devoted to the 
standard univariate multilevel model 
with potentially random intercepts and 
slopes. The computer program used is 
HLM (MLwiN and other packages are 
mentioned in the introduction to the 
book) and space is given to describing 
the input requirements for this. An 
example is given relating to a sixth-
grade reading test score using as 
predictors gender, socio-economic 
status (as a 0-1 variable) and a previous 
third grade score. The model is two-
level (students nested within schools), 
and the predictors are initially taken to 
be fixed. The slope for previous test 
score is 0.15 and, surprisingly, this is 
interpreted as implying that ‘on average, 
students’ sixth grade test scores are 
15% higher than their score at third-
grade’. Subsequently previous score is 
allowed to become random and a school 
level variable of median parental 
income is introduced. The authors 
cannot be given responsibility for the 
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vagaries of HLM, but it is still a little 
daunting to find in their text that the 
overall mean test score given to no 
fewer than 9 significant figures. The 
program provides estimates of the 
random parameters (labelled ‘variance 
components’) without standard errors. 
The estimated variances are 
accompanied by chi-squared values 
giving p = 0.000 (sic). The 
interpretation of these in the text 
appears to me to be dubious. 
 
The next three chapters (more than half 
the book) are devoted to structural 
equation methods. Chapter 5 is an 
overview of single level methodology, 
chapter 6 deals with confirmatory factor 
analysis and chapter 7 with multivariate 
structural equation modelling. I have to 
confess that as one unfamiliar with this 
rather specialised aspect of multivariate 
analysis I found much of the material 
(including many pages of LISREL input 
and output) almost incomprehensible. It 
was not encouraging to find what 
should be the routine calculation of 
within-group and between-group 
covariance matrices described as 
‘somewhat problematical’. It is 
regarded as a virtue of LISREL that it 
routinely provides ten different 
indicators of goodness of fit, and the 

fact that the value of chi squared 
reflects the sample size is taken to be an 
‘undesirable property’. 
 
A strong impression left on reading this 
book is that the authors have not given 
enough thought to defining their 
readership. Readers requiring an 
elementary introduction to simple 
regression or needing to be told that 
‘researchers often set the α region for 
rejection of a null hypothesis at 0.05 or 
0.01’ are unlikely to make much of the 
matrix algebra and multiple suffix 
notation in the later chapters. It is 
worrying to read such statements as ‘the 
sample data may depart from normality 
and therefore may not represent the 
population accurately’ or ‘sufficient 
sample sizes are required to determine 
whether parameters are indeed 
significant’. There are a number of 
printers’ errors, some of them in simple 
mathematical formulae. 
 
Statistics is a difficult subject and 
producing a useful introductory text is 
not an easy task, much the less so when 
the special topic is as complex as 
multilevel analysis. In spite of its non-
standard coverage, this book cannot be 
recommended. 

 
Some Recent Publications Using Multilevel Models 

 
Barbosa, M. F. (2000). Discrete 
Response Multilevel Models for 
Repeated Measures: An Application to 
Voting Intentions Data. Quality & 
Quantity, 34, 323-330. 
 

Burton, P., Gurrin, L. & Sly, P. (1998). 
Extending the simple linear regression 
model to account for correlated 
responses: an introduction to 
generalised estimating equations and 
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multilevel mixed modelling. Statistics 
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Meta-analysis using multilevel models 
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geese: a study using natural and 
experimental manipulations. Journal of 
Animal Ecology, 68, 753-768. 
 
Mealli, F. & Rampichini, C. (1999). 
Estimating binary multilevel models 
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Hierarchical Ordinal Probit model for 
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Spikman, J.M., Timmerman, M.E., van 
Zomeren, A.H. & Deelman, B.G. 
(1999). Recovery versus retest effects in 
attention after closed head injury. 
Journal of Clinical and Experimental 
Neuropsychology, 21 (5), 585-605. 
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B. (2000). Baseline Assessment and 
Progress during the First Three Years at 
School. Educational Research and 
Evaluation, 6 (2), 105-129. 

Please send us your new publications in multilevel modelling 
for inclusion in this section in future issues. 
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We have used the format from previous newsletters for this 
electronic version. If, however, you would prefer a single 

column layout please let us know. Any other comments on the 
Newsletter would be welcomed. 

 

 
 

 
MLwiN Clinics in London 2000 

 
Tuesday 5 September 2000 
Tuesday 10 October 2000 

Tuesday 7 November 
Tuesday 5 December 2000 

 
at 
 

Multilevel Models Project 
11 Woburn Square, London WC1A 0SN 

 
Contact Min Yang for appointments 

Tel: +44 (0) 20 7612 6682/6688 
Email: m.yang@ioe.ac.uk 
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