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Editorial

I have taken over editing the newsletter from
Min Yang, and I am sure you would all want to
join me in thanking Min for all her hard work
over the last eight years. The change in
editorship coincides with a change in publishing
policy. This is the last newsletter to be sent out
as hard copy. From the first issue in 2000, we
will send it out as an e-mail attachment in PDF
format so you will need the latest version of
Acrobat (freely available from http://www.
adobe.com/products/acrobat/readstep.html) to be
able to read it. In addition, we will put all the
articles on our web site. We have had to make
this change because our latest research grant
from the ESRC (see page 2) does not cover
printing and mailing costs for the newsletter. We
hope you will not find this change too
inconvenient. At present our mailing list is
approximately 2100.

We plan to send out two issues a year and you
might find it helpful to know what our editorial
policy is. We aim for a mixture of technical and
less technical material, look for material
generated by the electronic discussion list (to
subscribe, mail multilevel@mailbase.ac.uk with
the message ‘join multilevel’) and we encourage
articles reporting work in progress. In addition,
we will always publish relevant news items. The
newsletter is not a refereed journal. We do not,
however, accept everything submitted to us, and

we do ask two people attached to the Multilevel
Models Project to give an opinion on articles
submitted.

I hope you continue to find the newsletter useful,
and I look forward to receiving plenty of
material for future issues. It would be helpful if
you could submit articles as Word documents.

IAN PLEWIS
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New ESRC Funding

The multilevel models project has recently
started a new 3-year ESRC funded project,
under the direction of Harvey Goldstein and
Jon Rasbash, which is aimed at providing
materials, including software, to help users
gain understandings of complex data
structures. Full time research officers are Jon
Rasbash, Min Yang and Bill Browne, with
support from Geoff Woodhouse and Ian
Plewis. Amy Burch has been appointed as
the half time administrator for the project. A
wide network of collaborators has also been
established.

More forthcoming Workshops

5-7 April 2000, a three-day introductory
workshop to multilevel modelling using
MLwiN will take place in the Institute of
Education, University of London.
Enquiries to Anne-Lise McDonald at Health
Policy and Practice Unit, UEA, Norwich,
NR4 7TJ. Tel: +44 (0)1603 514867, Fax:
+44 (0)1603 593739, e-mail:
a.cox@uea.ac.uk.

A Non-parametric bootstrap for multilevel models
James Carpenter1, Harvey Goldstein2, Jon Rasbash2

1 London School of Hygiene and Tropical Medicine, London
2 Institute of Education, London
e-mail: j.carpenter@lshtm.ac.uk

1. Introduction

Bootstrapping is now a well established
procedure for assessing the bias and standard
error of parameters in statistical models
(Davison and Hinckley, 1997). Given a fitted
model and parameter estimates, the idea is to
generate synthetic (termed bootstrap) data
from the fitted model, and then refit the
model to the synthetic data, thus obtaining a
set of synthetic (termed bootstrap) parameter
estimates. These synthetic parameter
estimates stand in approximately the same
relationship to the model parameter
estimates as the model parameter estimates
stand in relationship to the population
parameters. Thus, we can estimate quantities
of interest relating the population parameters
and the estimated parameters (such as bias,
confidence intervals) by looking at the
relationship between the estimated
parameters and the synthetic, or bootstrap,
parameters.

Broadly speaking the synthetic data can be
generated in one of two ways, termed the
parametric and non-parametric bootstrap.
The parametric bootstrap, already
implemented in MLwiN, generates the
bootstrap data from the full parametric
model. For example, consider the 2-level
model fitted to the tutorial data example in
the MLwiN user’s guide,

y x u u x eij ij j j ij ij= + + + +β β0 1 1 0 1 1

(i=1,2,…, jI ; j=1,…,J) (1)

where the response is the normalised exam
score, the explanatory variable is the
standardised LRT score and there are

jI pupils within school j. Suppose we have
fitted the model and obtained estimates of all
the parameters. Then the parametric
bootstrap simulates

1) *
ije ~ N (0, �σ e

2 ), (i=1,2,…, jI ; j=1,…,J),
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where �σ e
2  is the estimate of  2

eσ = Var( ije )
obtained from the data
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where the �σ u
2 ’s are elements of the variance-

covariance matrix of the u ’s estimated from
the data.
The bootstrap data set is then ( ijij xy 1

* , ),
(i=1,2,…, jI ; j=1,…,J), where

ijijjjijij exuuxy *
11

*
0

*
110

* ˆˆ ++++= ββ

A large number, B, typically 1000, such
bootstrap data sets are generated, and the
model fitted to each one. We thus obtain B
bootstrap estimates of each parameter in the
model, which we can then use to estimate
bias, standard error and confidence intervals,
as described in the MLwiN user’s guide. We
can also obtain bootstrap estimates of other
quantities, such as the level 2 residuals.

Here we outline a non-parametric alternative
to the parametric bootstrap, and show that it
can yield a substantial reduction in the
coverage error of parametric bootstrap
confidence intervals when the data are not
truly normally distributed.

2. A Non-parametric bootstrap for
multilevel models

Non-parametric bootstrapping can take two
forms. In the first kind, case re-sampling, we
build a bootstrap data set from the original
data by sampling with replacement from the
( ijij xy 1, ) pairs that make up the data.
However, in a multilevel context doing this
crudely would break the structure of the
dataset; if, as an alternative, we resample
‘blocks’ of data, it is not at all obvious which
‘level’ the blocks should correspond to.
Furthermore, work in the standard regression
context suggests that while this approach
might be useful for deciding between
models, it does not give accurate inference

for parameters within such models, which is
our principal goal.

We therefore propose to generalise the
residual non-parametric bootstrap for
regression models to the multilevel case. A
crude residual bootstrap for model (1) would
be the following:
1) Fit the model (1) to the data, and

calculate the set of residuals
{ } ,.... ; ....eij i I j Jj= =1 1  and {( , )} ,....u uj j j J0 1 1=

2) Sample with replacement from these two
sets, obtaining two new
sets { }

JjIiij
j

e
,...1;,...1

*
==

 and {( , )}* *
,....u uj j j J0 1 1=

3) The bootstrap data set is then ( ijij xy 1
* , ),

where

ijijjjijij exuuxy *
11

*
0

*
110

* ˆˆ ++++= ββ

The drawback of this simple approach is that
we will underestimate variances in particular
because the crude residuals are ‘shrunk’
towards zero. We therefore need to ‘reflate’
the residuals before passing them back
through the fitted model as in step (3) above.
We now outline a procedure for doing this.
For convenience we shall illustrate the
procedure using the level 2 residuals, but
analogous operations can be carried out at all
levels.  Rewrite model (1) as
y X ZU e

U U U
ij ij j ij

T

= + +

=

( ) ( )

{ , ....}

β

0 1

(2)

Having fitted the model we calculate the
residuals:

....}ˆ,ˆ{ˆ
10 uuU =

Write the empirical covariance matrix of the
estimated residuals at level 2 in model (2) as

S U U
J

T

=
� �

and the corresponding model estimated
covariance matrix of the random coefficients
at level 2 as R. The empirical covariance
matrix is estimated using the number of level
2 units, J, as divisor rather than J-1. We
assume that the estimated residuals have
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been centered, although centering will only
affect the overall intercept value.
We now seek a transformation of the
residuals of the form
� �*U UA=

where A is an upper triangular matrix of
order equal to the number of random
coefficients at level 2, and such that

� � / � �* *U U J A U UA A SA R
T T T T= = = (3)

The new set of transformed residuals � *U
now have covariance matrix equal to that
estimated from the model, and we sample
sets of residuals with replacement from � *U ,
as described in the residual bootstrap
algorithm above.

To complete the residual bootstrap, we
repeat this process at every level of the
model, with sampling being independent
across levels. Details of how to form A are
given in the appendix below.

3. Example

Consider the following 2-level model fitted
to the tutorial data example in the MLwiN
User’s Guide, using RIGLS estimates. The
model is
y x u u x eij ij j j ij ij= + + + +β β0 1 1 0 1 1 . (4)

We simulate data from this model using the
parameter estimates given in the second
column of Table 1, with residuals at level 2
simulated from
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and at level 1 we simulate from a chi-
squared distribution with 1 degree of
freedom.

Five hundred data sets were generated from
this model, containing 4059 level 1 and 65
level 2 units. For each of these data sets the
bootstrap parameter estimates and
confidence intervals were constructed using
500 parametric and 500 non-parametric
bootstrap data sets.

Table 1 gives the parameter estimates and
estimated coverage probability for a nominal
95% interval computed directly from the
ranked bootstrap replications for each
bootstrap set, for the parametric bootstrap
and Table 2 for the non-parametric
bootstrap.

Both bootstrap procedures produce unbiased
estimates for all the parameters. The
coverage proportions are satisfactory except
for the level 1 variance in the parametric
bootstrap where it is only 0.55 compared to
the nominal value of 0.95.

Table 1. Parametric bootstrap estimates
Parameter Expected value* Bootstrap mean Coverage proportion
β 0 2.00 2.00 0.95
β1 0.50 0.500 0.93
σ u0

2 0.20 0.200 0.94

σ u01
0.05 0.049 0.96

σ u1
2 0.20 0.202 0.95

σ e
2 2.00 2.00 0.55

*The expected value for a chi squared distribution with 1 degree of freedom (=1) is added
to the intercept. The variance of a chi squared distribution with 1 degree of freedom is 2.
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Table 2. Non-parametric bootstrap estimates
Parameter Expected value* Bootstrap mean Coverage proportion
β 0 2.00 2.00 0.95
β1 0.50 0.500 0.95
σ u0

2 0.20 0.198 0.93

σ u01
0.05 0.050 0.95

σ u1
2 0.20 0.202 0.94

σ e
2 2.00 1.99 0.93

*The expected value for a chi squared distribution with 1 degree of freedom (=1) is added
to the intercept. The variance of a chi squared distribution with 1 degree of freedom is 2.

4. Conclusions

We have briefly described a residuals non-
parametric bootstrap for multilevel models.
This residuals bootstrap provides a robust
alternative to a fully parametric bootstrap,
and can be used, for example where
standardised residual plots indicate
departures from normality. The bootstrap can
also be used to estimate other functions. For
example we can estimate residuals for each
bootstrap replicate and use the resulting
chains for inference about the residual
estimates themselves.

This non-parametric bootstrap procedure is
implemented in MLwiN release 1.1 (Autumn
1999).

5. References

Davison, A. C. and Hinkley, D. V. Bootstrap
Methods and their Application, Cambridge
University Press, Cambridge, 1997.

6. Appendix

To form A we note the following.
Write the Cholesky decomposition of S, in
terms of a lower triangular matrix as

S L LS S
T=

and the Cholesky decomposition of R as

R L LR R
T=

We have

L L U U L L J
L L S L L L L R

R S
T

R S
T

R S S
T

R
T

R R
T

− −

− −

=
= =

1 1

1 1

� � ( ) /
( ) ( ) ( )

Thus, the required matrix is

A L LR S
T= −( )1 .
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Random effects meta-analysis of trials with binary outcomes using
multilevel models in MLwiN

Rebecca M Turner1, Rumana Z Omar1, Min Yang2, Harvey Goldstein2, Simon G Thompson1

1 Imperial College School of Medicine, London
2 Institute of Education, London
e-mail: rebecca.turner@ic.ac.uk

Introduction

In meta-analysis we aim to combine the
results from a series of similar trials and draw
a unified conclusion from an overall estimate
of treatment effect.  Multilevel models
provide a general framework for meta-
analysis; meta-analysis corresponds to a
multilevel model (patients within trials)
whether summary data at trial level or
individual patient data are available.  A
multilevel modelling approach also allows
meta-analysis of a combination of summary
and individual patient data (Goldstein et al.,
1999).  The aim of this article is to describe
implementation of random effects meta-
analysis methods, and related confidence
interval construction, in MLwiN (Turner et
al., 1999).

Summary data methods

The traditional random effects model for
meta-analysis assumes that the true treatment
effects vary randomly between trials.  Here
we consider the log odds ratio to be the
measure of treatment effect.  Assuming
normality of the log odds ratio, the model can
be written for trials i=1…n:

( )
( )2

2

0,N~

,N~

τ
σθ

i

iii

v
vy +

where iy  is the observed log odds ratio from

the ith trial, 
2

iσ  is its (within trial) variance,
usually assumed known and 

2τ  is the
between trial variance of the true log odds
ratios.  Maximum likelihood (ML) or
restricted maximum likelihood (REML)
estimates of the parameters can be obtained
within MLn/MLwiN using IGLS or RIGLS

respectively; implementation of this model is
described by Lambert and Abrams (1995).
The conventional method of estimation of
this model is non-iterative, employing a
method of moments estimator for the
between trial variance 2τ  (DerSimonian &
Laird, 1986).

It is possible within MLn to construct
likelihood based and parametric bootstrap
confidence intervals for both θ  and 2τ , as
well as Wald intervals derived from
asymptotic standard errors.  For θ , likelihood
and bootstrap intervals are preferable to Wald
intervals since they allow for the imprecision
in estimation of 2τ ; bootstrap intervals also
relax the assumption of normality required
when interpreting likelihood intervals as
confidence intervals.  Both Wald and
likelihood methods are problematic for 2τ
since the normality assumption is likely to be
invalid; therefore bootstrap intervals are
preferred.  When using REML estimation,
likelihood intervals should not be constructed
for θ  since REML likelihood ratio tests may
not be strictly valid for fixed effects (Welham
& Thompson, 1997).  REML likelihood
based intervals may be computed for 2τ
(Morrell, 1998).  However REML log
likelihood is not available in MLn or MLwiN.

The procedure for obtaining likelihood based
intervals is described below and may be used
directly in MLn or within the Command
interface window in MLwiN.  To construct
bootstrap intervals we use the parametric
bootstrap (Efron & Tibshirani, 1993), in
which a series of data sets are simulated
under the distributional assumptions of the
initial model.  This is directly available in the
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MLwiN software but can alternatively be
implemented as an MLn macro.  A bootstrap
set of parameter estimates are generated, and
confidence intervals may be based on the
smoothed percentiles of the bootstrap
distributions.

Construction of likelihood based intervals
in MLn/MLwiN

First we fit the simple random effects model
as described by Lambert and Abrams (1995):
we use trial identifiers at level 2, CONS
(vector of 1s) as identifying variable at level
1, LOR (log odds ratios) as response, CONS
as a fixed effect and as a random effect at
level 2, LOR_SE (standard errors of log odds
ratios) as a random effect at level 1 with the
corresponding parameter estimate constrained
to equal 1.  We use IGLS to provide
maximum likelihood estimation and note the
resulting value of –2*log(likelihood), call this
L.  To find a 95% likelihood based interval
for θ , we calculate the maximised log
likelihood for different possible values θ~

until we find values ( UL θθ , ) for which –
2*log (likelihood) is equal to L ± 3.84, where
3.84 is the 95% point of the 2

1χ  distribution.
A similar procedure is used for 2τ .

To examine the likelihood corresponding to a
value θ~ , we use the command FCON to
constrain the fixed parameter to equal θ~ .  To
try the value –0.5 for example, assuming that
the model still has only one fixed effect
CONS, we store the vector (1,–0.5)T in an
empty column (c20 say) and then type
‘FCON c20’.  Unfortunately we cannot use
the corresponding command RCON to
constrain the level 2 random parameter to
possible values 2~τ , because the level 1

random parameter is already constrained and
models with all random parameters
constrained may not be estimated in MLn.
Instead we use the value 2~τ  as an offset at
level 2.  First remove CONS from the level 2
random part, create a new column ZERO
(vector of zeros) of the same length and
declare this to be random at level 2.  Then,
for example, to try the value 2~τ =0.8, create a
column (c21 say) of the same length as
CONS in which every entry is 0.8 and type
‘OFFS 2 c21’.

Example

To demonstrate the methods we use a data set
consisting of 22 trials for prevention of
respiratory tract infection.  Patients in
intensive care units were randomised to
receive treatment by a combination of non-
absorbable antibiotics or to receive no
treatment (Smith et al., 1995).  The table
below presents results from employing either
conventional non-iterative moment
estimation or maximum likelihood estimation
in MLn.  The bootstrap intervals are based on
1000 replications.

Differences between the widths of the two
Wald confidence intervals for θ  merely
reflect differences in the estimates of 2τ .
The bootstrap and Wald intervals for 2τ  are
of similar width, but both bootstrap and
likelihood intervals cover ranges further from
zero than those covered by the Wald
intervals.  The discrepancy between
likelihood and bootstrap intervals is greater
for 2τ  than for θ  because the normality
assumption required for interpretation of
likelihood intervals is less sound for 2τ .
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Estimates and 95% confidence intervals from summary data meta-analysis example

Log OR
(θ )

(95% CI) Between trial
variance ( 2τ )

(95% CI)

Conventional
moment
estimation

(Wald CI) -1.27 (-1.61, -0.92) 0.36

ML estimation (Wald CI) -1.29 (-1.65, -0.92) 0.42 (0.01, 0.83)
       (likelihood based CI) (-1.73, -0.92) (0.12, 1.19)
                  (bootstrap CI) (-1.63, -0.92) (0.06, 0.86)

Individual data methods

When a binary outcome meta-analysis data
set is set up with one record per patient, the
above model may be fitted as a random
effects logistic regression, involving terms

iv  representing the deviation of each trial’s
true log odds ratio from the average.  We
need to allow the log odds to vary across
trials as well as allowing the log odds ratio to
vary; these trial effects can be assumed either
fixed or drawn from a random distribution.
If the former, we write ijy =0/1 to indicate
the outcome for the jth individual in the ith
trial where ijπ = Pr(yij=1), and include as
explanatory variables TREAT (treatment
group indicator xij=0/1) together with n
dummy variables wijk=0/1, k=1…n
representing trial effects, we then also
declare TREAT as random at level 2:

( ) ( )

( )2
1

0,N~

logit

τ

βθπ

i

n

k
ijkkijiij

v

wxv ∑
=

++=

A similar procedure can be used for grouped
binary data, where j represents the group
(treatment or control) rather than individual.
Since even PQL with second-order
approximations may give downwardly
biased estimates of the between trial variance

2τ  when the number of trials is small or
when the probabilities of events are extreme,
we used the bias corrected parametric
bootstrap procedure now directly available in

MLwiN (Goldstein, 1996).  Bias corrected
estimates may be obtained and confidence
intervals for θ  and 2τ  constructed from the
quantiles of the bootstrap distributions using
a method suggested by Kuk (1995).
Likelihood based intervals may not be used
since reliable log likelihood values are not
available in MLn/MLwiN for multilevel
models with binary outcomes (Goldstein,
1995).

Rather than using fixed trial effects to allow
the log odds to vary across trials, we can
instead assume these to be random by
removing the n trial indicators and adding an
explanatory variable CONS (vector of 1s) as
both a fixed effect and a random effect at
level 2:

( ) ( )
( ) ( ) ( ) ρσττσ

θαπ

=

+++=

iiii

ijiiij

vuvu

xvu

,Cov,0,N~,0,N~

logit
22

It is important to include ( )ii vu ,Cov  rather
than assume this to be zero, because of
implications for the between trial variance-
covariance matrix of the bivariate log odds
parameter (i.e. log odds in control groups,
log odds in intervention groups).  In data sets
with few trials it may not be possible to
achieve convergence when including

( )ii vu ,Cov ; we experienced this in a data set
involving nine trials (Thompson & Pocock,
1991).  If in such cases ( )ii vu ,Cov  must be
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excluded from the model, it may be
preferable to use ±½ rather than 0/1 coding
for the treatment covariate TREAT, thereby
placing more realistic assumptions on the
variance-covariance matrix.

Summary

This article describes how to perform the
basic methods required for meta-analysis of
binary outcome data within the multilevel
models framework.  The principal advantage
of multilevel modelling for meta-analysis is
its flexibility which enables a number of
desirable extensions.  Individual-level and
trial-level covariates are easily included,
three-level models are a possibility for meta-
analysis of multi-centre or cluster
randomised trials, and methods are available
for more complex outcomes, such as ordinal,
survival or mixed multivariate data.
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Standard errors in multilevel analysis
Nick Longford

De Montfort University, Leicester
ntl@dmu.ac.uk

The subject of this note is estimation of
standard errors in multilevel analysis, and its
essence is that the traditional approach has a
profound flaw which is ubiquitous in
multilevel analysis as we use it at present. I
illustrate this on simple examples.

By standard error of a (general) estimator β̂
I mean the square root of its sampling

variance, )ˆvar(β . When we attach
interpretation to the ‘standard errors’
produced by a (any) software package, most
of us are not aware that the standard errors
are themselves estimated. I agree that
assessing the precision of the standard errors
may appear to be taking things too far, but
what if the standard errors are estimated so
poorly as to render them totally useless? The
standard errors are not only estimated but
also asymptotic; however, the errors due to
the asymptotics not holding for the realised
sample (size) are often minute in comparison
to the errors due to estimation.

For a simple illustration, consider the
‘empty’ two-level model

;jjj εδµ ++=y

jy  are jn  x 1 vectors of outcomes
( )2,...,1 Nj = , and { }jδ  and the

jjnN Σ= elements of { }jε  are two mutually

independent random samples from ( )2
2,0 σN

and ( )2,0 σN  respectively. Instead of 2
2σ  it

is practical to estimate the variance ratio
22

2 /σστ = because it is unaffected by a
linear transformation of the outcomes.

The asymptotic standard error of the ML
estimator of τ  is

( ) ( )
2
1

2

2

1 12
1;ˆ

−

= 











+
= Σ

j

j
n

j n
n

SE
τ

ττ (1)

(Longford, 1993, Section 2.3). As a matter of
routine, it is estimated by ( )ττ ˆ;ˆSE , given by
default in most software implementations. In
the balanced design, when

( )nnnn m ==== ...21 , equation (1)
simplifies to

( ) 




 += τττ

nm
SE 12;ˆ (2)

Thus, the estimator τ̂  is perfectly correlated
with the estimated standard error ( )ττ ˆ;ˆSE ;
the error committed in estimating τ  is
present also in estimating its standard error.
For unbalanced designs, equation (2) does
not apply, but a good approximation is
obtained by replacing n  with the arithmetic
average of the sample sizes jn , even when
the imbalance is severe.

In Figure 1, the (exact) values of ( )ττ ;ˆSE
given by (1) are compared with the
expression (2) in which n  is replaced by the
arithmetic, geometric, and harmonic
averages of the sample sizes. The cluster-
level sample sizes used,

( )
( )196,20

14,14,14,11,11,11,11,11,11,10,10,10,10,10,8,7,6,6,6,5

==
=

Nm
n

were generated by a random process.

In the left-hand panel, the standard errors are
plotted against the variance ratio for

10 ≤≤ τ . (In general, ∞+≤ τ0 .) The range
of the exact (and approximate) standard
errors is so wide ( )350.0031.0 −  that the
four linear functions are indistinguishable.
Better insight is gained by plotting the ratios
of the approximations to the exact values, as
done in the right-hand panel. The

mailto:ntl@dmu.ac.uk
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approximations dominate the exact values
for τ close to zero, by not more than 4% for
the arithmetic average. For 2.0>τ , the
approximations are very good; the error is
smaller than 2% for either average. These
errors are minute in comparison with the
errors ( ) ( )ττττ ;ˆˆ;ˆ SESE − .

Suppose that in fact 15.0=τ . Then
( ) 081.0;ˆ =ττSE , so the value of 0ˆ =τ

would be judged as quite feasible. If we do

obtain an estimate 0≅τ , then the standard
error is estimated by ( ) 031.0ˆ,ˆ =ττSE ; it
suggests that 15.0=τ  is not feasible. This
paradox can be resolved by evaluating (1), or
its approximation based on (2), for a range of
values of τ , and then ascertaining for which
τ the estimate obtained (say, 0≅τ ) is
feasible. For instance, ( ) 097.02.0,ˆ =τSE ,
the z-ratio is 0.2097.0/2.0 ≅ , so 2.0=τ  is
on the borderline of feasibility.

Figure 1: Exact asymptotic standard errors for the variance ratio τ̂ , and its
approximations.

The dependence of ( )τ̂var  on τ  can be
reduced (though not removed completely) by
estimating ( )τγ += −1log n , where

( ) mnnn m /...1 ++= . Then, asymptotically,
( ) m/2ˆvar =γ . But this is a rather unnatural

a scale.

Of course, the problem with misleading
( )ττ ˆ,ˆSE  would not arise had we explored

the profile likelihood for τ . This is done in
Figure 2 for a simulated example with the 20

within-cluster sample sizes listed above. The
ML estimator is 094.0ˆ =τ  and the
conventional estimate of the standard error is

( ) 062.0ˆ,ˆ =ττSE . The symmetric 95%
confidence interval based on these estimates
is ( )216.0,029.0− . The confidence interval
based on the profile likelihood,
( )311.0,003.0 , is much more appropriate; see
Lindsey (1999) for a discussion.



MULTILEVEL MODELLING NEWSLETTER Vol. 11 No. 1

-12-

Figure 2: The profile likelihood for the variance ratio τ .
The horizontal line is drawn 3.84 above the minimum deviance attained at the ML estimator

( )''093.0 ML . The lower and upper limits of the 95% confidence interval are ( )''003.0 L  and
( )''311.0 U .

The discrepancy between the two ways of
generating confidence intervals persists
when REML is applied, or when the variance

τσσ 22
2 =  or the proportion of the

aggregate-level variance ( )ττρ += 1/  or
their square roots are estimated. Equation (1)
holds even when the model is supplemented
by regressors:

jjjj εδ ++= βXy , (3)
so all conclusions about ( )ττ ˆ,ˆSE  apply also
to these models. Between-cluster variation is
often a nuisance, so estimation of τ  is often
of limited concern. However, the estimate of
the regression parameter vector β  and of its
sampling variance matrix depend on the
(unreliable) estimator τ̂ .

The ML and REML estimators of β  in a
general two-level model are given by the
expression

jj
T
jjjj

T
jj

yVXXVXβ 1
1

1 ˆˆˆ −
−

− Σ


 Σ= ,

where jV̂  is the ML or REML estimator of

( )jyvar ; ( )β̂var  is estimated by the inverse in
the above expression. For the model (3) with

a single covariate x ,

( )
1

2
2ˆvar

−







Σ−Σ

ΣΣ
=

jjjj
T

jjj

jjjjj

xwnxw
xww

τ
σ

xx
β (4)

where x  is the vector of values of the
covariate, jx  its mean in cluster j , and

( )τjjj nnw += 1/ . In the balanced case, when

mnnn === ...21  and the within-cluster

totals 
jn

T
j 1x  are constant, (4) reduces to

1

2
2

0
0 −







− xN

mw
T xx

σ ,

where w  is the common value of the jw .
Similarly, in the balanced case,







−

= −−

yxN
yNw

T
T

yx
yVX 21 σ

( y  is the sample mean of y ). Hence, in the
balanced case, the estimate of the slope 2β
does not depend on τ , and coincides with
the ordinary least squares estimator. When x
is close to balance, τ̂  has little impact on
estimating the slope 2β .
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Without balance, an adequate approximation
to ( )2var β  is

( ) 2
,,

2
,

2

1 τσσ
σ

xBxW mN −+
,

where 2
, xWσ  is the within-cluster variance of

the covariate and 2
,, τσ xB  the between-cluster

variance, calculated with weights ( )τjn+1/1 .

For a cluster-level covariate x , β̂  is
profoundly affected by τ̂  only in some
esoteric situations. In the balanced case,

nn j ≡ , β̂  does not involve τ̂ . However, the

sampling variance of 2β̂ ,
( ) ( )21 / xNn T −+− xxτ  does depend on τ .
When the cluster-level sample size m  is
moderate or small substituting a subjectively
chosen value of τ  may yield a more reliable
estimated standard error than substituting the
unreliable estimate τ̂ . Or, we can consider
the entire range of feasible values of τ .

Similar conclusions are arrived at for
estimating the regression parameter for a
covariate that is associated with variation.
For the model

jjjjjj εδδββ ++++= xxy 2,1,21 ,
with the usual assumptions,

( ) ( ) 112ˆvar −−Σ= j
T
jjj XXGβ σ , where

j
T
jj XΩXIG += 2  (Longford, 1993, Ch. 4).

In the balanced case, when j
T
j XX  is

constant,

( ) ( )
( )

2,2

22

2
var

1ˆvar Ω+−= ∧ mx

N σσβ ,

where 2,2Ω  is the ( )2,2  element of Ω and

( )x
∧

var  is the sample variance of x . So, the
standard error of 2β̂  depends on an (often
poorly) estimated 2,2Ω .

In the balanced case, 2β̂ does not depend on
Ω̂ . Heuristically, as we depart from balance

2β̂  depends more and more strongly on Ω̂ .

In approximations to the standard error of

2β̂  we may consider an average matrix G ,
so long as the magnitudes of the within-
cluster cross-product matrices j

T
j XX  do not

vary a great deal.

Of course, these problems are avoided if
inferences are based on the profile
likelihood. The results and their discussion
suggest that in approximately balanced
designs ( )2

ˆvar β  depends most strongly on

2,2Ω , so exploring the (one-dimensional)
profile likelihood on it is useful. As we
depart from balance, the two other unique
elements of Ω  exert their influence, not only
on the estimated standard error of 2β̂ , but on
the estimate itself.

In conclusion, the estimated standard errors
for variance parameters have a strong
element of ‘self-fulfilling prophecy’ -
smaller estimate is associated with smaller
estimated standard error. The error in
estimating between-cluster variation
parameters is present also in estimating the
sampling variance of the regression
parameters. Variation balance (constant
cross-products j

T
j ZZ ) obviate some (but not

all) of these problems. Likelihood ratio and
exploration of the profile likelihood are
much more appropriate tools for model
comparisons.
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Review of ‘Multilevel Analysis’
T A B Snijders & R B Bosker. Pp ix & 266. London: Sage, 1999.

M J R Healy
Multilevel Models Project, Institute of Education, London

It is a sign of the maturity of multilevel
modelling techniques that introductory
textbooks are starting to appear.  Hox’s
Applied Multilevel Analysis dates back to
1994, Kreft and de Leeuw’s Introducing
Multilevel Modelling appeared in 1998 and
now Tom Snijders and his colleague Roel
Bosker have produced this Introduction to
Basic and Advanced Multilevel Modelling.
As an indication of its expected audience,
the reader should have ‘a good working
knowledge of statistics’, including ‘the
basics of hypothesis testing and multiple
regression analysis’ and should be able to
‘understand formulae of the kind that occur’
in this context.

Chapters 1 to 3 are an introduction to the
main concepts of multilevel data and
associated models, pointing out the
importance of allowing for the variance
structure in the analysis.  Chapter 4
introduces the random intercept model and
chapter 5 extends this to random slopes.
Chapter 6 describes various significance
tests and includes a useful discussion of the
issues underlying model building.  These
chapters constitute the more elementary part
of the book.

Chapter 7 is something of a digression into
assessment of explained variance.  Chapter 8
deals with complex variances and chapter 9
gives a deeper treatment of model checking.
Chapter 10 contains a useful but complex
discussion of study design and sample size
determination.  Crossed models are the
subject of chapter 11, longitudinal data are
treated in chapter 12, chapter 13 describes
multivariate models and chapter 14 is
devoted to discrete data. The final chapter

describes several of the generally available
software packages.

Many examples are given, some of them
available along with MLwiN and HLM
programs on a website.  Most of these, apart
from some which use artificial data, are
based on social science material, largely
from educational studies.  The datasets are
usually large and the models often complex.
Interpretation of the results of a multilevel
analysis is often tricky and a fuller treatment
of some of the examples would have been
useful.

It will be seen that most of the topics
encountered in the handling of multilevel
data are covered in the book (a notable
exception is meta-analysis which receives no
more than a passing mention).  The level of
sophistication assumed is fairly high; the
reader must not be put off by quite lengthy
algebraic equations, nor by the elaborate
notation of suffices, superfices, bars and hats
which seem inevitable in the multilevel
context.  Variance being defined as what any
two statisticians are at, I would quarrel
mildly with some of the material included,
such as Fisher’s combination of probabilities
test which has the unfortunate property of
ignoring the (possibly inconsistent) signs of
the effects to be combined.  But putting
together a book with this coverage is a
horribly difficult exercise, and the authors
have tackled it very successfully.  I would
have no hesitation in recommending it to
beginners in multilevel analysis – at least, to
those with a statistical or mathematical
background – and I shall keep my copy
handy for reference in the future.
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Modelling Structured Categorical Data
Following the successful one-day conference on ‘Applications of Random Effects/Multilevel
Models to Categorical Data in Social Science and Medicine’ in October 1998, the most recent
issue (Volume 162, Part 3) of ‘Statistics in Society’ (Journal of the Royal Statistical Society,
Series A) is devoted to a selection of papers presented then.  The issue is available from
Blackwell Publishers Journals (e-mail: jnlinfo@blackwellpublishers.co.uk). (Ian Plewis, Institute
of Education, University of London)
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inclusion in this section in future issues.

MLwiN/MLn Clinics in London 1999/2000

Tuesday 11 January 2000
Tuesday 8 February 2000
Tuesday 7 March 2000
Tuesday 4 April 2000

at

Multilevel Models Project
11 Woburn Square, London WC1A 0SN

Contact Min Yang for appointment
Tel: (0)20 7612 6682 / 6657, Email: m.yang@ioe.ac.uk
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SEND YOUR E-MAIL ADDRESS TO a.burch@ioe.ac.uk AS SOON AS POSSIBLE,
AND READ THE EDITORIAL IN THIS ISSUE.
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