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1. Introduction 

Murphy (1996) discusses a key issue in the analysis of population household data. He 

points out that households are dynamic, changeable units whose definition over time is 

problematical. In longitudinal or panel studies of household composition and its influence 

on individuals, these dynamic structures raise difficult issues of interpretation: the 

number of possible household structures over time is extremely large and difficult to 

summarise.  

He suggests that a fruitful way of looking at this is from the point of view of the 

individual, where an individual, such as a student, may 'belong' to several different 

household units their characteristics shared among these units. Murphy makes an analogy 

here with ‘fuzzy set’ theory and this is one theme we shall develop below. 

Our main objective is to extend Murphy’s discussion by positing explicit statistical 

models for studying dynamic household structures which allow many of the difficulties to 

be resolved within a formal framework whose complexity of structure matches that of the 

system being studied. The class of models we use are known as ‘multilevel’ or ‘random 

coefficient’ models which have been developed since the mid 1980s so that they are now 

capable of dealing with a wide variety of data structures including those generated by the 

dynamics of household composition. These models allow for both continuous and 

discrete responses as well as for hierarchies and crossings of units at any level of a data 

hierarchy such as the individual or the family. They can handle data as repeated 

measurements or as durations as in event history models. 

We begin by describing the basic multilevel model and follow this with various 

extensions of increasing complexity showing how these can be used to describe 

household dynamics. 

2. Population structures  

Human populations are structured in complex ways, but particularly exhibit hierarchical 

groupings, whereby, for example, individuals are grouped within households. A 
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household is defined as a group of individuals with or without family links living together 

in the same dwelling. When data from populations are modelled it is important to take 

account of such structures if the data values are related to them. Thus, for example, 

individuals within a household tend to be more alike in terms of attitudes and behaviours  

than individuals from different households. Failure to take account of such structures can 

lead to incorrect inferences. In addition the properties of such structures and their 

influences on responses are important to understand and hence to build into statistical 

models. Multilevel models attempt to do this by explicitly incorporating information 

about population structures into the model and estimating associated parameters. 

In addition to such hierarchies population units can be cross-classified, for example a 

child will generally belong to both a particular school and a geographical neighbourhood. 

Likewise, individuals may belong to a household and to one geographical neighbourhood 

where they live and another where they work. A more complex structure arises where 

individuals may belong to more than one unit of the same type, for example individuals 

may work in more than one location. An important case occurs in longitudinal studies 

where individuals may pass from one unit to another, such as children who change 

schools or individuals who move between households. We will develop these two 

examples later. Since the mid 1980s the methodology for model specification and fitting 

has developed steadily and it is now possible to fit all these kinds of model. In the next 

section we will briefly review the basic theory. Following this we will show how more 

complex models can be specified and then discuss some applications.   

3. The basic multilevel model. 

For simplicity consider a simple data structure where a response is measured on 

individuals in a number of areas, together with one or more covariates. Instead of areas 

we could think of households, schools, etc. We wish to model a relationship between the 

individual response and the explanatory variables, taking into account the possibility that 

this relationship may vary across areas. The response might be a continuous variable such 

as income or survival time, or a discrete variable such as a voting preference or death. We 

shall assume in what follows that we are dealing with a continuously distributed 

response, and for simplicity that this has a Normal distribution. Extensions to other kinds 
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of responses follow similar lines and these are discussed by Goldstein (1995) and we 

briefly refer to one such extension, an event duration model, in our discussion of the 

example. We shall refer to the areas as higher level units and individuals as lower level 

units. In the present case we just have two levels with areas as level 2 units and 

individuals as level 1 units. A simple such model can be written as follows 

y x u e
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ij ij j ij
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= + + +
=
=
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where yij  is the response and xij  the value of  a single explanatory variable (covariate) 

for the i-th individual in the j-th area. The slope coefficient β1  is for the present assumed 

to be the same for all the areas while the random variable u j0  represents the departure of 

the j-th area’s intercept from the overall population intercept term β 0 . The first two terms 

on the right hand side of (1) constitute the fixed part of the model and the last two terms 

describe the random variation. As mentioned we shall develop the model initially 

assuming that the random variables have a (multivariate) Normal distribution. This model 

could be viewed as a standard analysis of covariance if we treated each u j0  as a fixed 

parameter to be estimated. Such a model however will often be inappropriate, for the 

following reasons. 

First, we may have a very large number of areas, leading to a very large number of 

separate parameters to estimate. Secondly, some of the areas may have very few 

individuals, so that their individual departures will be poorly estimated. Most 

importantly, we may be interested in treating the areas as a sample from a population of 

areas and wish to make general inferences about the likely behaviour of other areas in this 

population rather than, or in addition to, providing separate estimates for each area in the 

sample. For all these reasons it will usually be more appropriate to regard u j0  as random 

and to write 

u N e Nj u ij e0 0
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Note, however, that we are also at liberty to ‘fix’  one or more of the u j0  using an 

associated dummy (0,1) variable as an explanatory variable, for example if we knew that 

it was special and should not be considered as a member of the same population as the 

remainder. This is often useful for exploring ‘outliers’ (Langford and Lewis, 1998). We 

can elaborate (1) by allowing the coefficient β1  to vary across areas and rewrite the 

model in the more compact form 
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This model is often referred to as a ‘random coefficient model’ by virtue of the fact that 

the coefficients β 0ij  and β1 j  in the first equation of (2) are random quantities, each 

having a variance with a covariance between them. As more explanatory variables are 

introduced into the model, so we can choose to make their coefficients random at the area 

level thereby introducing further variances and covariances, and this will lead to models 

with complex covariance structures. One of the aims of multilevel modelling is to explore 

such potential structures and also to attempt to explain them in terms of further variables.  

Having fitted such a model we can obtain  estimates for the individual ‘residuals’ 

( u u ej j ij0 1 0, , ) at either level by estimating their expected values (or other functions of their 

distributions),  given the data and model estimates. Thus, for example, we can 

estimate E u u Yj j( , | , , )0 1 β θ  where  

β β β θ σ σ σ σT
u u e= { , } , , }1 2 01 1

2
0

2  = { u0
2       (3) 

and substituting model estimates for the unknown parameters. The multilevel model is 

here described in non-Bayesian terms. For a full Bayesian specification of this model we 

would need to add prior distribution assumptions for the parameters in (3). The interested 

reader is referred, for example, to Rasbash et al. (2000) for details with worked examples. 
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These procedures are all implemented in the software package MLwiN  (Rasbash et al., 

2000). 

4. Cross classification of units 

Across a wide range of disciplines it is commonly the case that data have a structure 

which is not purely hierarchical.  Subjects may be clustered not only into hierarchically 

ordered units (e.g., students nested within classes, within schools), but may also belong to 

more than one type of unit at a given level of a hierarchy.  In this exposition we use 

educational data to illustrate our ideas and we shall then apply the models to population 

structures. Thus, a student might be classified as belonging sequentially to a particular 

combination of primary school and secondary school, in which case the student will be 

identified by a cross classification of primary schools and secondary schools.  

Alternatively, a particular student may spend a proportion of time in one school and the 

remaining proportion in another school. In this case, the student has multiple membership 

of units at a given level of clustering. 

Raudenbush (1993) and Rasbash and Goldstein (1994) present the general structure of a 

model for handling complex hierarchical structuring with random cross classifications.  

For example, assuming that we wish to model the achievement of students taking into 

account both the primary and the secondary school attended by each student, then we 

have a cross classified structure, which can be modelled as follows: 

y X u u e

j J j J i N
i j j i j j j j i j j( ) ( ) ( )( ) ,

,... , ,... ,...
1 2 1 2 1 2 1 2

1 1 2 21 1 1

= + + +

= = =

β   

       ,      
      (4) 

in which the score of student i, belonging to the combination of primary school j1 and 

secondary school j2 , is predicted by a set of fixed coefficients ( ) ( , )X i j jβ
1 2

.  The random 

part of the model is given by two level 2 residual terms, one for the primary school 

attended by the student (uj1
) and one for the secondary school attended (uj2

), together 

with the usual level 1 residual term for each student. We note that the latter may be 

further modelled to produce complex level 1 variation (Goldstein, 1995, Chapter 3). 
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5. The multiple membership model 

Considering now just the secondary schools, suppose that we know, for each individual, 

the weight wij2
, associated with the j2 -th secondary school attended by student i   with 

wij
j

J

2

2

2

1

1
=
� = . These weights, for example, may be proportional to the length of time a 

student is in a particular school during the course of a longitudinal study. Note that we 

allow the possibility that for some (perhaps most) students only one school is involved so 

that one of these probabilities is one and the remainder are zero. Note that when all level 

1 units have a single non-zero weight of 1 we obtain the usual purely hierarchical model. 

We can write for the case of membership of just two schools {1,2}: 
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Thus, in the particular case of membership of just two schools with equal weights we 

have 

w    i1 = = =�w w ui ih h u
h

2
20 5 2. , var( ) /σ  

Where a student does not belong to a school the corresponding weight is zero. Thus (5) is 

a 2-level model where the level 2 variation among secondary schools is modelled using 

the set of weights for each student across all schools as explanatory variables. A similar 

formulation can be used to model the case where, for some students, there is no 

identification of the school(s) to which they belong. If we are able to assign a set of 

probabilities of membership among a subset of schools, however, then utilising the 
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(square root) of these probabilities as weights (standardised to sum to 1) we can still carry 

out a valid analysis (Hill and Goldstein, 1998). 

An extension of (5) is also possible and has important applications, for example in 

modelling spatial data. In this case we can write 

1 2

1 2

} 1 1 2 2

2 2
1 1 2 2 1 1 2 2

1 2 12 1 2

       

          

i{j }{ j } i{ j ih h ih h i{ j }
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y ( X ) w u w u e
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β
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σ

∈ ∈
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= = = =

= =

� �

� �    (6) 

There are now two sets of higher level units which influence the response. In spatial 

models one of these sets is commonly taken to be the area where an individual (level 1) 

unit occurs and the other set consists of the neighbouring units which have an effect. The 

total weights for each set will need to be carefully chosen; in spatial models the 1 2W , W  

are typically chosen each to equal 1 (see Langford et al, 1999 for an example). Another 

application of such a model for household data is where households share facilities, for 

example an address. In this case the household that an individual resides in will belong to 

one set and the other households at the address will belong to the other set. We can 

readily extend (6) to the case of multiple sets - which we refer to as the ‘extended 

multiple membership model’ – and this will allow us additionally to incorporate multiple 

spatial structures into household models. 

In terms of households we can have two kinds of multiple membership. The most 

frequent is the case where, as in the case of students changing schools, an individual 

sequentially moves from one household unit to another. But we can also observe 

individuals who alternate between households and may be considered as simultaneously 

belonging to more than one2. . Both these cases can be dealt with, and combined together, 

by using weights which reflect time spent within each household. 

Multiple membership models bear a close relationship to fuzzy sets (see for example, 

Manton et al, 1994, for an introduction, and Haberman, 1995 for a critique) where 

                                                 
2 This is the case for example for individuals aged 60 and over who are living alone part of the week but 
cohabitate with a partner during the second part of the week. The same may be observed for young people 
leaving home progressively. 
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individual units also can belong to several groups at a time, with 'membership 

coefficients' being equivalent to our weights. There appears to be no explicit application 

of fuzzy set theory, however, to general hierarchical structures. 

We now look at ways in which we can utilise the models introduced so far, in a 

systematic way to describe population structures of some complexity. 

6. Dynamic household composition 

Many different kinds of complex population structures exist. We shall describe in detail 

the specification and analysis of one of these which is of particular interest and look at 

other examples in a final discussion section. 

In studies which follow households over time we shall consider that a household is 

defined at a given time solely by its composition, that is all individuals living together in 

the same dwelling Due to individuals leaving existing households to enter others or to 

form new households,  household composition is changing all the time. To simplify our 

approach we shall consider that all changes of composition of an existing household 

result in a new household composition and thus in a new household. According to this 

definition a birth or a death will produce a new household. The same is true for all 

migrations, except if the whole household is moving together at the same time. If the 

existence of a household per se is assumed to influence the individual measurements of 

interest, e.g. attitudes or behaviours, then a particular individual will be expected to 

acquire influences from all the households that they 'belong' to during the course of a 

study. These households will be differentiated by their type (e.g. in terms of the numbers 

and ages of children within them, income or the number and types of adults) which will 

also be expected in general to influence measurements. The following model illustrates a 

simple case where individuals are measured regularly with information available on how 

long they spent in each household.  

In this formulation the total sample of households is defined as the ‘superset’ consisting 

of the union of the samples which exist over time. Thus, for example, a young person 

may leave a household to start another household with other young people and this new 

household will be added to the total sample of households. In general we would wish to 
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measure all the people in this new household, because this will then enable us properly to 

characterise that household and model its influence. Let us assume that the practical 

problems associated with an increased burden of measurement can be overcome. To see 

how we might model this structure consider the following study. 

We have a sample of households at two occasions. At the first occasion all the household 

members are measured in the set of households H1 . Some of these households ( H1 1, ) 

remain intact, while at the second occasion, among the total second set of households 

(H2), some of the occasion 1 households ( H1 2, )  have amalgamated, or lost or acquired 

one or more members. Some of these new households will include people who were not 

present in the sample at the first occasion or were present but the identification of their 

household is unknown ( H2 1, ). Others of these new households will include people who 

have been present in different but known households at the first occasion ( H2 2, ). There 

may also be households at occasion 2 which contain no members who were in occasion 1 

households ( 2 3,H ). 

Assume that the response variable (y) of interest is continuous, e.g. individual income, 

and we wish to model y at the second occasion as a function of its value at the first 

occasion, together with person characteristics. Household characteristics are specific to 

each occasion and we assume that such measurements are available – we shall discuss 

later a special case where they are not. A simple model, using (5a) and generalising the 

notation can be written as 
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+ =

= = =

α β

σ σ    
   (7) 

where 1 2,j j  index the households at occasions 1 and 2 and the superscript also refers to 

the occasion at which the measurement is made and we have a common between-

household variance. This model assumes that a person belongs to at most 2 households, 

but can be extended to the multiple household case using (5b). For the set H1 1,  one of the 

weights is zero since only one household is involved. For the set H2 2,  each person will 
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have two weights. Since the analysis is conditional on the first measurement, a reasonable 

choice is to make them proportional to the time spent in each household between  

occasions 1 and 2. Other choices are possible, for example giving relatively more weight 

to the most recent household. In other kinds of model, such as a repeated measures model 

we might choose weights proportional to time measured from an origin prior to the first 

measurement and care will be needed in making a choice.  

The major problem is set H2 1,  for which we will have generally no data at occasion 1 and 

no identification of the household either; similar issues arise for the case of completely 

new households at occasion 2. These individuals will provide relevant information when 

the response variable measured on the individual present at time 1 is influenced by the 

characteristics of the other household members in set H2 1, . This will be particularly 

important when these characteristics are time dependent, for example, in the case when, 

say, a change in income between time periods occurs. In some cases the missing data 

could, in principle, be handled by a suitable imputation procedure (see for example 

Goldstein and Woodhouse, 1996) and in this situation the assumption of completely 

missing at random will generally be reasonable.  

If the identification is unknown but we do know that the households actually belong to 

H1 , then we can assign a probability of belonging to one of the first occasion households 

and use the procedure described by Hill and Goldstein (1998) for estimation. For those 

who entered the sample for the first time at occasion 2, this will generally not be possible 

and the following procedure can be used. 

We assume that for each of these individuals, we know or can estimate the weights 

w wi i1 2, , possibly using the mean weights derived from those sample members with 

known weights. We also assume that they come from distinct households, although if 

there is information that some come from the same household this can be incorporated. 

We now write (6) as 

y y X w u w u w u w u e
w w

i j j i j j i j j i ij j ij j i ij j ij j i j j

ij ij

( , )
( )

( , )
( )

( , )
*

( , )( ) ( )( ) ( )
1 2 1 2 1 2 1 1 2 2 1 1 2 2 1 2

1 2

2 1 1

1

= + + − + + + +

+ =

α β δ δ

 (8) 
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where δ i  is 1 if a person belongs to H2 1,  and zero if not. The random effect uj1
*  is 

specific to the set H2 1,  and if we assume that it comes from a population with the same 

characteristics as H1  will have a variance constrained to be equal to σ u
2 . To fit this model 

we use the same device as in the general multiple membership model, for uj1
* , defining a 

set of dummy variables with coefficients random at the highest level whose variances are 

constrained to be equal. 

As an alternative to imputation for the missing occasion 1 variable we can write a 

modified version of (8) for the members of H2 1, as 

y X w u w u e
w w

i j j i j j i ij j ij j i j j

ij ij

( , )
( )

( , )
* * *

( , )
*( ) ( )

1 2 1 2 1 1 2 2 1 2

1 2

2

1

= + + +

+ =

β δ
        (8a) 

Where there are households at occasion 2 with members of  both H2 1,  and H2 2,  we have 

u uj j2 2
, *  from the same household and this therefore allows us to estimate the correlation 

between these two random terms and thus provides an efficient modelling procedure. 

In practice, and especially if the numbers are small, the set H2 1,  can be omitted from the 

analysis. While this will reduce statistical efficiency it will not lead to biases if we can 

assume that the joint distribution of the characteristics of this set is the same as the 

remainder of the sample. In practice, however, this may not be reasonable since one 

might expect the less stable households to have different characteristics. For example, 

suppose an explanatory variable is measured at the household level and is an aggregation 

of individual characteristics. If we use the average income at the first occasion of all the 

second occasion household members as a predictor and if we exclude all the households 

that contain members of H2 1,  we may introduce biases, since these will tend to be the 

more volatile households. Instead we can use the aggregate measure based just upon 

those individuals for whom it is available; this will then constitute an explanatory 

variable measured with error, where the error variance is known or can be estimated. 

Woodhouse et al (1996) discuss how to handle such models. 
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The extension to the case where individuals may belong to more than 2 households is 

relatively straightforward, so long as the multiple weights are available, although 

complexities will be introduced where multiple households are involved and some 

identifications are missing. We now turn to the interpretation of the results of these kinds 

of analyses. 

7. Further elaborations 

The results of an analysis such as that of model (7) will yield the following parameter 

estimates: a between-household variance, a between-person variance and a set of fixed 

coefficients representing the regression of the response on its previous value and 

covariates measured at either occasion. Such a model, however will generally not capture 

the full complexity. Thus, for example, the variation among some kinds of household 

members may differ, perhaps according to age. Likewise, the variation among households 

may differ according to household or individual characteristics. Age again may be 

important, or educational and socio-economic level. We can introduce random 

coefficients to accommodate such structures. Thus, we may find that the between-

household variance is an increasing function of age – that the average income, say, of 

younger persons within a household varies less than the average income of older persons. 

Or we may find that the variation in attitudes between persons within a household 

increases with educational level. Such findings and the possibility of explaining such 

variation by incorporating further covariates, will often be as important as the values of 

the fixed (regression) coefficients. In longitudinal repeated measures studies which study 

trends in, say, opinions with respect to time, the comparative stability of such trends 

according to individual or household characteristics can readily be studied by these 

complex models. 

In some situations we may wish to define certain patterns of multiple membership as 

household types in their own right. For example there may be pairs of households which 

exchange members on a regular basis, say a child spending part of their time with a 

mother and part with a father living apart. A pair of such households may be more 

usefully viewed as a single household in terms of its members rather than as two separate 

households with regularly changing membership.  
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In some cases we may also wish to relax our strict definition of a household unit as being 

composed of a given set of individuals. Thus, for certain kinds of event, we may choose 

not to define a new household, but simply to record a changing characteristic which will 

appear in our model. We might wish to do this for, say, the death of a particular kind of 

person or the birth of a child. In such cases, however, no other household is created or 

destroyed, and we cannot adopt such a procedure within our modelling framework when 

this occurs, for example if we try to define households solely in terms of their ‘head’ 

Finally we can introduce multiple, correlated, responses giving multivariate models, 

These can be incorporated within the same framework as above using the general 

procedures described by Goldstein (1995, Chapter 4). 

8. Example 
The data are taken from the population of Charleroi, Belgium (Population Register) 

where, between the 1st January 1995 and the 1st January 2000, 65,000 individuals who 

lived in a set of selected addresses within the town were followed. For each individual, 

over a 5 years period, there is information on their household membership. For present 

purposes the total duration is divided into 10 semesters  and the household membership 

recorded at 11 occasions, every six months. In addition there is information about marital 

status, household position, gender and nationality. The household address is also recorded 

and in some cases there are several households living at one single address. In principle, 

sharing an address may be an influential factor and address could be incorporated within 

an extended multiple membership model as described above. For simplicity, we shall 

ignore this possibility in the following analysis. 

Interest centres on the length of time a household survives intact. Once one or more 

individuals leave a household it ceases to exist and new households are formed. The 

length of time that is spent in a specific household composition can be expected to be a 

function of individual and household characteristics, including factors such as age and 

sex of individuals, size and age distribution within the household. Each individual, during 

the course of the study, will be part of one or more households for varying lengths of time 

so that the basic data structure is that of repeated (within) individual measures, with 

individuals belonging to one or more households, that is, a multiple membership model of 
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the type described above. If we simply measure, for each occasion, the duration length for 

an individual in a specific household, then we could use this as the response in our model. 

A more efficient alternative is to use an event duration model where the probability of 

belonging to a new household composition is modelled as a function of time spent in the 

household (see discussion). In both cases, for our data, there will be a slight 

underestimation of duration length since, for those individuals present during the first 

period it is not known how long they have been at that address. A serious difficulty for 

present purposes, is that there is confounding between individual and household. Thus, 

during the time an individual belongs to a particular household composition, all 

individuals in that household by definition will have the same value for the response 

variable. If one person leaves the household the composition will change for all members 

of the original household and the length of time spent by all members in that household is 

strictly the same. This implies that once household variation is incorporated into the 

model there will be no between-individual variation, and this is in fact what happens 

when the model is fitted. This will not be the case if we choose other responses like 

voting preferences, attitudes, individual income… for which all members of a given 

household will not have the same response. 

In the present case therefore, to illustrate our models, we have chosen as the response 

variable the average duration of stay for an individual in all households up to and 

including the current one. Thus, assume an individual belongs to household A at time 1 

(T1) and time 2 (T2) and to household B at T3, T4 and T5, and we assume her to have 

spent  0.75 years in the first household (A) and 1.25 years in the second (B). In this case, 

the first response value is 0.75 and the second is 1,0. During the first occasion, ending at 

(T2) they will be designated as belonging to household A only with a weight of 1.0 and at 

the second occasion, ending at (T5) will be designated as belonging to households A and 

B, each with weight 0.5, etc. Other weighting systems are possible, for example giving 

less weight to previous households. We note that this is a somewhat extreme example in 

that, while there is no longer complete confounding between individual and household, 

there remains a strong association since the average durations for all individuals within a 

household includes  a component which is the same current household duration length. 
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For this reason we will expect the between-individual variation to be smaller than that 

between households. 

The model is as follows 

2 21      

ij{ k } ij{ k } j ijh h ij{ k }
h { k }

ijh u h v
h

y ( X ) u w v e

w , var( u ) , var( v )j

β

σ σ
∈

= + + +

= = =

�

�
      (9) 

where i, j, k  refer to the levels occasion, individual and household. Since there is no 

repetition within the cells of the classification  of individuals by households, level 1 

variation represents that which is not accounted for by the multiple membership structure. 

The distribution of average duration is skewed and we might wish to transform the data, 

for example using Normal scores, but for presentational purposes we remain with the 

original scale; in fact a Normal score analysis produces very similar general inferences.  

Table 1 shows the results from three separate analyses using different predictor variables. 
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Table 1. Multiple membership model for average (cumulative) 
duration of stay 

 Model A Model B Model C 
Fixed Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) 

Intercept 1.438 (0.0078) 1.626 (0.0086) 1.494 (0.0116) 

Gender  0.0058 (0.0046) -0.0072 (0.0048) 

Size of household  -0.0814 (0.0012) -0.0774 (0.0012) 

Age – 30 years  0.0034 (0.00014) 0.0060 (0.00020) 

Spouse – head of house   0.0536 (0.0042) 

Child – head of house   0.0822 (0.0052) 

 Is married   0.0684 (0.0054) 

Is Belgian nationality   0.0246 (0.0074) 

Random    

Between household 
variance 

1.46 (0.0132) 1.390 (0.0128) 1.364 (0.0124) 

Between individual 
variance 

0.140 (0.0016) 0.128 (0.0012) 0.128 (0.0012) 

Residual (level 1) 
variance 

0.0108 (0.00012) 0.0100 (0.00012) 0.0100 (0.00012) 

-2 * Log-Likelihood 84660.7 79742.5 79159.8 

 

We see that, as expected, the between–individual variance is much smaller than that 

between households, about 10%. If  an individual in fact moves between 10 different 

households over the whole period then the household contribution to the variance should 

be equivalent to the between – individual variance as is the case, for the household 

contribution is 
10

2 2 2 2

1
10h v v u

h
w /σ σ σ

=

= ≅� . 

We also see that age is associated with a longer duration and household size with a 

shorter, with little gender difference. Heads of households tend to have shorter durations 

than spouses and children have the longest. Married people have longer durations and 

being of Belgian nationality is associated with longer durations. We have not studied any 

interactions among these variables. 
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9. Conclusions 

 

Other kinds of complex structures exist in real populations and in principle the methods 

we have described can be extended to these situations. One example is the study of the 

way in which extended family structures influence individual characteristics, such as 

physical or attitudinal ones, and here our models overlap and extend some of those used 

in genetics (see for example, Sham, 1998). A separate paper using these models is in 

preparation. 

We have shown how the use of multiple membership models provides a powerful 

procedure for describing complex population structures, including those of a dynamic 

kind where these change over time. The use of these models provides greater efficiency 

in analysis and also allows structures to be defined and explored which are difficult or 

impossible to handle with conventional techniques. It needs to be stressed, however, that 

in practice we may expect to encounter difficulties when fitting complex models, both in 

terms of obtaining satisfactory numerical convergence and interpreting results. Likewise, 

the weights are predetermined and the choice of weights is clearly important and in 

practice it will often be useful to try different weighting systems and observe their effects.  

 

Murphy (1996) points to the need to be able to model the interrelationships among 

individuals in a household and suggests that network models may be appropriate. In the 

models discussed in the present paper, such relationships among individuals within 

households are often implicit and modelled via the correlation structures within and 

between households. For example if we are studying the relationship between income and 

a political attitude variable then we could choose these both as response variables. Fitting 

a bivariate response at both individual and household level would allow us to study the 

correlation between these measures at individual level within households and to see how 

far this might be explained by further covariates such as age. We could further allow for 

different associations among different kinds of household members, as in the examples 

we have discussed.  
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While our exposition has been in terms of Normally distributed responses, binary and 

other discrete outcomes can be handled. The models can also be extended in 

straightforward ways to accommodate multivariate responses including cases of mixtures 

of continuous and discrete data (Goldstein, 1995) and to weights applied to units at 

different levels of a hierarchy. 

An important application of multilevel models is to event history data (Goldstein,1995, 

Chapter 9). Thus, we may wish to model the time that each household member is in 

employment and to see whether there are distinguishable household effects. In our 

example we have seen that care needs to be exercised since separating effects may not be 

possible when the durations for the different kinds of units are partially or totally 

confounded. 

If the models we have discussed are to be applied there are important implications for the 

type and extent of data needed. For studying changing household compositions, 

longitudinal or panel data on individuals and households are required with detailed 

information on transitions as in our example. Such data are difficult to gather and the use 

of administrative population registers is one possibility.  

We believe that the approach in this paper resolves, at least in principle, the long standing 

issue about how dynamically changing households are to be defined as units. By 

generalising the definition of a household unit we are able fully to model the complexity 

arising from changing structures. 
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