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Multifactorial Inheritance see Path
Analysis in Genetics

Multifactorial Threshold Models
See Genetic Epidemiology, Overview

Multihit Model see Dose—Response
Models in Risk Analysis

Multilevel Models

Biostatistical data often have a hierarchical struc-
ture. Typically these structures are naturally occurring
ones: animal populations are characterized by indi-
viduals nested within parents, themselves often nested
within groups or herds which may also be nested
within spatial entities. In other cases the structure
may result from research designs, as in multicenter
clinical trials (see Multicenter Trials) where patients
are nested within clinics. In yet other cases the data
may not obviously seem to be nested, yet view-
ing them as such may yield new insights or more
efficient analysis techniques. Examples are repeated
measure designs, where measurements are “nested”
within individual subjects (see Longitudinal Data
Analysis, Overview), and multivariate response data,
where measurements are “nested” within individuals.

In addition to nesting relationships among data
units we may also have cross-classifications. For
example, an individual cow may be nested within
a herd of cattle, but also be the offspring of parent
stock, where any parent may contribute to several
herds: individual cows are thus cross-classified by
parents as well as nested within their herds. A further
complexity is also often present whereby individual
units at one level of a data hierarchy may be nested
within more than one higher-level unit. An example
is spatial data, where each individual person can be
classified by the geographical locality where they
live, but will also be influenced in terms, say, of their
health or behavior, by surrounding localities. In this
case we regard them as belonging to a primary unit
plus a number of secondary units.

In the following sections I develop a set of mod-
els for describing such data, increasing in complexity
as they move from simple hierarchies with contin-
uously distributed responses, to cross-classifications
and multivariate data and to discrete responses. Vari-
ous extensions and special cases will also be consid-
ered. The emphasis is on model specification rather
than estimation, although there is a brief section on
the latter.
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The Basic Multilevel Model

For simplicity consider a simple data structure where
an outcome is meadsured on patients in a number
of centers, together with one or more treatments or
covariates. We wish to model a relationship between
the outcome and the explanatory variables, taking
into account the possibility that this relationship may
vary across centers. We shall refer to the centers as
higher-level units and patients as lower-level units. In
the present case we just have two levels with centers
as level 2 units and patients as level | units. A simple
such model can be written as follows:

Yij = Bo + Bixij + upj + eij,
2
var(e;;) = oy, €D]
el
var(i;) = o,

where y;; is the response and x;; the value of a sin-
gle explanatory variable for the ith patient in the jth
center. The slope coefficient f) is for the present
assumed to be the same at all centers, while the ran-
dom variable up; represents the departure of the jth
clinic’s intercept from the overall population intercept
term Bg. The first two terms on the right-hand side of
(1) constitute the fixed part of the model and the last
two terms describe the random variation. We develop
the model initially assuming that the random vari-
ables have a (multivariate) normal distribution, and
discuss the nonnormal case later. This model could
be viewed as a standard analysis of covariance if we
treated each wup; as a fixed parameter to be estimated.
Such a model, however, often will be inappropriate,
for the following reasons.

First, we may have a very large number of centers,
leading to a very large number of separate parameters
to estimate. Secondly, some of the clinics may have
very few patients, so that their individual departures
will be poorly estimated. Most importantly, we may
be interested in treating the centers as a sample from
a population of centers and wish to make general
inferences about the likely behavior of other centers
in this population rather than, or in addition to,
providing separate estimates for each center in the
sample. For all these reasons it will usually be more
appropriate to regard ug; as random and to write

up; ~N(O0,05),  eij ~ N, 0.

We can also elaborate (1) by allowing the coefficient
Bi to vary across centers and rewrite the model in

the more compact form

Yij = Boi jxo + B1j*xtij
Boij = Bo + uo; + eij,
Bij = B +uij, (2)

U= {Ll()j,l.lu}, E(U) =0,

2
cov(U) = ( u0 2 ) )

2
var(ei) = o;.
g0l Oy

This model! is often referred to as a “random coef-
ficient model” by virtue of the fact that the coefh-
cients fy;; and B); in the first equation of (2) are
random quantities (see Random Effects). It is pos-
sible, however, to have random coefficient models
that are only single level (see below); we thus drop
this term in order to emphasize the hierarchical data
structure.

As more explanatory variables are introduced into
the model we can choose to allow them random cocf-
ficients at the center level, thereby introducing further
covariances as well as variances at level 2. This
will lead to models with complex covariance struc-
tures. One of the aims of multilevel modeling is to
explore such potential structures and also to attempt
to explain them in terms of further variables. Having
fitted such a model we can obtain posterior estimatcs
for the individual “‘residuals” (ug;, uy j, €p;;) at either
level by estimating their expected values (or other
functions of their distributions), given the data and
model estimates. Thus, for example, we can estimatc
E(ug;lY, B, ), where

BT = (81, Ba),

The multilevel model is here described in non-
Bayesian terms. For a full Bayesian specification of
this model we would need to add prior distribution
assumptions for the parameters in (3). The interested
reader is referred, for example, to [3] for details with
examples.

In the next section we look at a general
formulation and then some important special cases-
A fully detailed treatment of the topics is not
possible here and the reader is referred to 9l
and [4] for details of methodology with examples
and a discussion of computer software. A World
Wide Web site has been set up which contains
information about current developments, references:
etc. at http://vwuw.ioce.ac.uk/multilevel/. It 1%

2 2 2
8 = {070, w01, 031 Teol- &
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intended that this will be further developed (see
Internet).

Cross-Classifications

Many data structures are not purely hierarchical, but
mixtures of hierarchies and. cross-classifications. For
cxample, in a school health survey children may be
assessed by raters, each school having just one rater.
Thus we have a structure where children are grouped
within cells defined by the cross-classification of
raters by schools, and we wish to model the level-2
variation as a function of both the between-rater and
between-school variation. If the design were changed,
so that a separate team of raters visited each school
and each child was measured by a single rater, then
the cross-classification would be that of raters by
children nested within schools. If, again, there was
a single team of raters who visited every school, then
the cross-classification would be of raters by children
across the whole sample. In this case we have no
scparable hierarchy and we would wish to model the
lolal response variation as a function of the between-
child, between-school, and between-rater variation.
Rasbash & Goldstein [12] discuss various exam-
ples of this kind and set out the appropriate models
togcther with procedures for efficient estimation. Cor-
responding to the first and second examples given
above we can write the following models, using a
more general notation for the fixed part of the model,

where i indexes children, j; indexes schools, and j,
indexes raters.

We write
YiGija) = XiG B tujy tuj, +eig ) @)

for the first model with children nested within the
level-2 cross-classification and with the following
fevel-2 covariance structure

. — 2
COV0¥itj1ja) Yriji i) = Oy

. 2
COVOijia)s Yy a)) = T &)
var(i(j, j)) = cov(¥i(jy ja)r Y ja))
2 2
=0y, + Ty
"he second model is written as
Mivinj =X(,'|,'2)jﬂ+uj+ei‘j+e,'2j. (6)

" both (4) and (6) we have assumed an “additive”
odel for the variance contributions, and the

adequacy of this can be tested against a model which
includes an interaction term, e.g.

Yirinyj = X(iyin) B+ uj + €iyj + €iyj + €(iyiy)j-
)
In addition, we can have furt_her random coefficients
"and levels of nesting or crossing.

Multiple Unit Membership

We have assumed so far that each lower-level unit,
such as a school student or patient, belongs to just
one higher-level unit of a particular kind. In many
cases, however, such units may belong to more than
one higher-level unit. For example, in a child growth
study, children may change schools from one occasion
to the next, and a particular case is that of spatial data
where an individual is influenced by the geographical
unit where she lives and also (with differing weights)
by neighboring areas. We can write a simple two-level
model of this kind as follows where, for simplicity,
we suppose the maximum number of level-2 units to
which a level-1 unit may belong is two:

Yitjjz) = XitjB + Wiijitjy
+W2ijyttjy F € ja)s
wiij +waij, =1,
var(yi(j, jp)) = (w%,-jl + w%ijz)orf + 03(8)
COVOYitji o) Yirtjrj2)) = Wiiji Wi,
+ Wi, Worr Yoz,
2
COV(y,'(jljz), yl;(jr) jz)) = Wz,vjz WZ("jzau .
As before, we can further elaborate this model by
allowing random coefficients, further hierarchical lev-
els, and further crossing factors. For example, in the
example of children changing schools we may cross-
classify the schools by the neighborhoods where the

children live with the possibility of multiple neigh-

borhood membership in the above sense and across
time.

Repeated Measures Data and Multivariate
Data

An interesting special case of a two-level structure
is that of repeated measures models such as the
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following:
yij = Boj + B1jxij + eij, ()]

where the response, say, is the weight of an animal
related to a linear function of age, x, with the inter-
cépt and slope varying across animals (see Random
Coefficient Repeated Measures Model).

Another important special case is that of multivari-
ate data, where the response is a vector. Consider first
a “single-level” multivariate linear model, with two
responses, height and weight, measured on a sample
of males and females. For the jth variable (j = 0 for
height, j = 1 for weight) measured on the ith subject
we have the following model equation:

yij = Boi1ziij + Bozzaij + Briziijx;
+ Br2zaijxj + uyj + uy;j

{ 1, if height,

2= 0, if weight,

22ij = 1 — z1ij,
{ 1, if female,
Xj=

10
0, if male, (10)

2
var(uy ;) = oy,

2
var(uzj) = 0,5,

cov(uyj, i) = o2

A part of the data matrix for this structure might be
as given in Table 1, so that at level 2 we have the
variances and covariance of height and weight while
there is no variation at level 1, and the fixed part
of the model is defined using the relevant dummy
variables associated with each response. Notice that
in the data matrix the third individual has no weight
measurement. By specifying the multivariate model
as in (10) we can implicitly fit data where some
responses are missing: we simply omit the relevant

Table 1 Example data for a repeated measures design

Intercepts (z)
Individual Response Height Weight Gender (x)

1 (female) it 1 4] 1
1 Y12 0 1 1
2 (male) Y21 1 0 0
2 y22 0 1 0
3 (female) ¥31 1 0 1

level-1 unit corresponding to the missing observatig,,
The model can be generalized readily in the \vay;
already discussed by allowing random Coefficieny,
cross-classifications, etc. and further levels of nestip,
An example of a multivariate model analysis wij| l';c
given later.

Modeling Variances

In addition to specifying the average responsc
modeled in the fixed part of the model, we hyye
discussed modeling the covariance structure at feye|
2 (and higher levels) by introducing random coefl;-
cients. We may also introduce random coefficiens
which vary across level-1 units and this provides
a flexible general procedure for variance modeling.
Consider the following model:

yij = Bo + Bixij + (uj + eoij + eyjjij),

var(eo[j) = 0’30, var(e“j) =0, (n

cov(eqij, €1ij) = Tenl,

so that the level-1 contribution to the overall variance
is the linear function

2
Oon 1+ 20601%; .

Note that we have constrained one of the “variances”
at level 1 to be zero in order to give a linear rather
than a quadratic variance function. In fact, the param-
eters UeZOv 031, and o.g1 are not to be interpreted as
separate variances and covariances, but simply as
parameters defining the variance structure. The vari-
able, x, may be any kind of explanatory variable. For
example, if it were a dummy variable for gender,
then the model would allow a separate level-| vari-
ance for males and females. In this way it is possible
to model the variance, as well as the mean, as func-
tions of explanatory variables. Examples are given in
Goldstein [4, Chapter 3].

In some circumstances, linear models for a vari-
ance, such as implied by (11), are inappropriat¢
because they may predict an overall level-1 variance
which is negative for part of the range. In this cas
we can consider alternative models where the level-|
variance has the form

var(e;j) = exp(B5 — Bixij), (1)

which is nonnegative and where we require estimates
of the B and B}. Goldstein [4, Appendix 5.1] shows
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how maximum likelihood estimates for such models
can be obtained.

Nonlinear and Generalized Linear Models

We can write a two-level generalized linear model
in the form

mij = f(XijBj)s (13)
where 7 is the expected value of the response for
the ijth level-1 unit and f is a nonlinear function
of the “linear predictor” X;;B;, where we can have
random coefficients at level 2. We need to specify a
distribution for the observed response y;j|n; j: where
the response is a proportion this is typically taken to
he binomial, and where the response is a count taken
to be Poisson (see Poisson Regression). Eg. (13) is a
special case of a monlinear regression model which
is completed by specifying a suitable link function
f(-). Thus, for binary response data we might have
a simple model:

logit(mij) = Bo + Bix1ij + uoj,
‘ (14)
yij ~ bin(l, 7;;),

with a corresponding model for counts using a
log link function. The random part of (14) can be
claborated with further random coefficients, cross-
dassifications, etc.

These models can be extended to multinomial
{ordered or unordered) responses [4, Chapter 7].

Survival Models

Sury

: ival time data (see Survival Analysis, Over-
vie

W) will often have a multilevel structure: for exam-
Ple we may measure illness durations within centers
U waiting times in hospitals with variation across
‘eniers and hospitals. We may also have repeated
:’:;:il\l(on epi.sodes w.ithin individuqls,. for examgle
ft‘rcr;le}ij' periods of_dlsease and remlsS}on, where‘ dif-
mentiy lEds of episode also may exist. We brleﬂy
mulli]cn ere th_ree common types of model afld their
Golds e\{&l specification. Further details are given by
Sein [4, Chapter 9].

,he first type is the extension of the semipara-
' Cox regression model, often referred to as a
. ::’r]model. When defining risk sets for this model

choose to order our failure times across the

metr,
fraiy

whole data set or within level-2 units, say hospitals.
In the former case the marginal relationship between
the hazard and the covariates is not generally propor-
“tional, and in the latter case it is proportional within
level-2 units.

At each failure time ! we define a response variate
for each member of the risk set

1, if{is the observed failure,

Yijk(ty = {o if not

where / indexes the members of the risk set, and j and
k level-1 and level-2 units, respectively. The response
is treated as a Poisson variate with mean function for
a simple variance components model given by

k) = expley + X jkB + up), (15)

where there is a “blocking factor” a; for each failure
time. The second type of model is a “log duration”
or accelerated failure time model which can be
written as
lij = In(tij) = XijBj + eij, (16)

for the failure times #;;. This is in the standard form
for a two-level random coefficient model. A com-
plication is that we may have (level-1) censored
observations, and this implies that we need a careful
specification of the level-1 distribution to incorpo-
rate censoring information in the estimation. Some
common choices are the normal, extreme value, and
log-gamma distributions (see Parametric Models in
Survival Analysis).

The third type of model, which leads to a partic-
ularly simple form, is the discrete time proportional
hazards model. For a two-level model we write

log[—log(l — 7 jxy)l = X jkBr + a1y, (17)

where, as before, the «() are constants to be esti-
mated, one for each time interval. This leads to a
model where the response is a binomial variate, being
the number of deaths divided by the number in the
risk set at the start of the interval. As with the first
type, any censored observations in an interval are
excluded from the risk set.

Estimation

The basic model assumes multivariate normality and
standard (as well as restricted) maximum likelihood
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methods are available using Fisher scoring, iter-
ative generalized least squares (see Generalized
Linear Model) or the EM algorithm. Bayesian esti-
mation is available using Markov chain Monte
Carlo (MCMC) methods such as Gibbs sampling [3],
which is also available for generalized linear mod-
els with the appropriate distributional assumptions.
An alternative in this case is to use quasi-likelihood
estimation together with appropriate bias correction
procedures [5], or the related generalized estimating
equation (GEE) procedure, [8]. For inference, inter-
val estimates are obtained directly from MCMC and
via large sample deviance statistics or bootstrapping
for likelihood estimation.

An Example

To illustrate the flexibility of multilevel models we
fit a bivariate two-level mode! where one response is
normal and the other is binary.

The data are part of the “Health and Lifestyle
Survey”, a sample of 9003 individuals within house-
holds nested within 396 electoral wards in Britain
and carried out in 1984/85. For present purposes data
on smoking habits are analyzed using information
about gender and age. Further details are given in [2].
The information about smoking behavior consists of
whether or not the respondent smoked cigarettes and
if they did, how many per day. Sixty-five percent did
not smoke and the mean number smoked for those
who did is 15.2 with a standard deviation of 9.3.
The distribution of the number smoked is positively
skewed which suggests a normalizing transformation.
The use of this, however, does not substantially alter
the results and the analysis is presented in terms of
the actual number smoked.

One aim of the analysis is to ascertain how the
probability of smoking and the number smoked each
relate to the explanatory variables. The other is to
estimate the between-area variation, and in particular
to see whether areas where the proportion of non-
smokers is high are also the areas where smokers tend
to smoke greater numbers of cigarettes. We write the
model as

yije = & ({1 +expl—(X18D)ijk ~ uned} ™! + e i)
+ (1 = 8)(X2B2)iji + u +e2jil,  (18)

5 { 1, if binary,
T 0, if continuous,

where 1y, and upg, respectively, refer to the warg.
level contributions to the discrete and continuoyg
parts of the model. The eyjx and e are similarly
defined for the variation among individuals. Thig
model combines a model for smokers where the
response is the number of cigarettes smoked and g
model with a binary response which is whether or
not the subject smoked. Thus, each smoker will haye
two responses, a “1” for the binary response variable
and the number smoked for the continuous response,
Each nonsmoker will have just one response, a “0”
indicating that they are a nonsmoker.

This model has been fitted with the MLn software
package [13] using specially written macros. The
bivariate structure is modelled as level 1, where there
is no random variation, so that the full model is three-
level. The results are presented in Table 2.

At the electoral ward level there is a high corre-
lation (0.81) between the proportion of smokers and
the number smoked. Men are more likely to be smok-
ers and to smoke more and there is an age effect
for the number smoked, with a maximum among 50
year olds, and declining thereafter. The relationship
is weaker for the probability of smoking. A model
that allowed gender to have a random coefficient at
level 2 was fitted, but a large sample test for the
extra variance and two covariance terms gave a X’
value of 6.8 on three degrees of freedom (P == 0.08).
Attempting to fit the age coefficient as random at
level 2 produces a zero estimated variance. We can

Table 2 Bivariate model for smoking/nonsmoking and
number smoked. Gender is coded | for male and 0 for
female: age is measured about the mean of 45.9 years. The
level-1 variance is constrained to 1.0 which corresponds to
binomial variation

Parameter Response
Binary (se) Continuous (se)

Fixed
Intercept ~0.54 15.7
Gender 0.14 (0.05) 2.82 (0.32)
Age —0.03 (0.03) 1.22 (0.21)
(Age)? 0.0011 (0.0007) —0.02 (0.005)
(Age)® ~0.000012 (0.000005) 0.00009 (0.00003)
Random
Level 2:

Intercept

variance 0.17 (0.03) 1.45 (0.81)

covariance 0.40 (0.11)
Level 1:

Intercept 1.0 79.2 (2.1)

R
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also test the assumption of binomial variation for the
smoking response by fitting extra binomial variation
in the form of an estimated rather than a theoretical
unit variance at level 1. This is estimated as 0.98 with
a standard error of 0.015, providing little evidence of
extra binomial variation (see Overdispersion).

Further Topics

Finally, we mention briefly some further topics, most
of which are currently the subject of methodological
research.

The standard meta-analysis model can be viewed
as a special case of a general multilevel model. For
the jth study in such an analysis we can define the
standardized effect d ; where this is a dimensionless
quantity. It may, for example, be a correlation coeffi-
cient, a standardized regression coefficient, group dif-
ference, or weighted group difference. We can write
a simple model as follows:

di =8+vj+uj, var(uj)=o]2-,
var(vj) = o2, (19)

where in the usual case o2 is assumed known and is

treated as an offset in the random part of the model,
but may also in some circumstances be estimated. The
parameter § is the population parameter of interest
and o2 is the between-study (level-2) variance of the
standardized effect. We can add random coefficients
and covariates representing study factors to (19) in an
atlempt to explain between-study differences, which
is a further aim of meta-analysis studies.

As in single-level models, diagnostics are impor-
lant. We can estimate standardized residuals at any
level of a data hierarchy and study these together with
|(?<)king for influential units. A detailed discussion is
given in [7]. '

.Funher important issues are those concerned with
missing units and missing data generally, especially
where the missingness is informative, and research
s being conducted in this area (see Nonignorable
D“_’Pout in Longitudinal Studies). Another topic
which is actively being researched is that of mul-
tilevel Structural equation modeling [10, 11].

Software

S|0,me of the major software packages, for exam-
Pl¢ SAS and GENSTAT, can handle many, although

not all, of the models described in this article (see
Software, Biostatistical). Several general-purpose
software packages have been written, e.g. HLM [1],
VARCL [9], and MLn [13]. A review of these pack-
ages has been carried out by Kreft et al. [6].
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