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MULTILEVEL MODELS

The technique of multilevel modeling is now well established and has been in-
corporated into most standard statistical packages. It is convenient for present
purposes to consider educational data that exhibit a hierarchical structure of stu-
dents nested within classrooms nested within schools—a three-level structure.
Other examples are repeated-measures data with occasions nested 555 subjects,
and surveys with people nested within households, both of these being two-level
data structures, More-complex data structures such as cross-classifications and
multiple-membership structures are extensions for which models have been devel-
oped. Goldstein (2003) provided a detailed exposition with references to further
application areas.

A general model for the three-level schooling case, assuming normality, can be
written as

ik = (XBYipe + Ziow + Z5v e + e,
w ~ EZAO' m.u.ev. v~ Ezﬁo. m.uev. AHV
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where the superscripts indicate the level; the more general n-level model can be
written compactly as

Y=XB+Zu+e, u~MVNQO,Q), e~N(0,02I)

moH»moumeNoamboEan&.mmwimﬁrmcgﬁwamcoumm,2085.0%8&5%%
have .

g@)=XB+ Zu, u ~ MVN(0, @,), Y ~Bemoulli(1,7), (2)

where g is a suitable link function and X 8 refers to the fixed-coefficient (regression)
component of the model. We shall assume that the Level 1 residual matrix is
diagonal, and this also will apply to our factor models.

First, we review briefly the traditional approach to estimating these models .

based on maximum likelihood.

MAXIMUM LIKELIHOOD ESTIMATION

For the normal model the standard (twice) the log likelihood is
2L(2, B)

—log |V} — tr(V='8) = —log |V — (¥ = XB)T V(¥ — XB)

S=@-XB(Y -XB)", V =cov(Y|XB), @) ;

where Q is the set of random parameters comprising the variances and covariances
in Equation 1. If we have an ML estimate of 3, then

2L(Q, B) = —log V| — tx(V"15) = —log |V| — (¥ - XA V'Y - xB) @4

is the profile likelihood for the random parameters Q. A convenient algorithm
known as iterative generalized least squares (IGLS) alternates between maximizin,
Equation 4 and then obtaining the conditional ML (GLS) estimate of _E.,
convergence.

We can write the extended likelihood, referred to in different contexts as
penalized likelihood or an h-likelihood (Lee & Nelder, 2001), that includes
actual random effects (residuals) as parameters:

2L(Q, B, u) = —log |R| — (Y = XB — Zu) R\(Y — XB — Zu)
—log |21 — uTQ; 'y,
R = QNN.

If we maximize Equation 5 for the random effects, given (8, 2), we obtain E
" usual estimator, which can be written conveniently as

= (2TR™'Z + Q1) ZT(Y - XB).

14. MULTILEVEL FACTOR ANALYSIS MODELS 455

Given 2 and u, the profile likelihood for the fixed effects is thus

2L(Q,8) = —log |R| - (¥ — Xp— Za)T R~\(Y - XB — Zd)
—log|Q.| —aTQ a. )

Thus, a convenient modification of the IGLS procedure is to iterate between cal-

‘nEwm:m the fixed effects using Equation 7, which, when R is diagonal, is just

ordinary least squares (OLS), calculating the random effects from Equation 6 and
then the random parameters using the same step as is used in the standard IGLS
algorithm.
Expression 3 is known as the marginal log likelihood because it is obtained by
integrating out the random effects regarded as nuisance parameters. .
Because the random effects depend on the random but not the fixed parameters,
more generally we can write

log [L(8, 2, U)l =Y _ {log [f(¥|U; B)] +log [ £ (U; D]} ®)

The marginal likelihood is thus given by

LB, Q) = \ FU; B fU;)au, ®

where the first term on the right-hand side is the distribution function for the
responses conditional on the random effects, or residuals, U. The second term is
the distribution function for the random effects. The first term, given U, depends
only on the unknown parameters §, and the second depends only on the unknown
parameters £2. Thus, for example, for a two-level logistic binary response model
where the random effects are assumed to be multivariate normal we have, becanse
the random effects are independent across units,

16,9 = [ [ [T w2 —mo~] 0z 2 s,
J i

= [1+exp(—X;; 817", Bj =B +uj, (10

where @ is the multivariate normal density function for the u;, and n;; and s;;
are the number of trials and number of successes, respectively. The integral in
Equation 10 can be written in the form [ P (u;)®(u;)du;.

Gauss-Hermite quadrature approximates such an integral as

[+

. Q
\ Pe™dv =) P(x)w,, (11)

oo =1
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where the right-hand side is a Gauss—Hermite polynomial evaluated at a series
of quadrature points indexed by q. Hedeker and Gibbons (1994) gave a detailed
discussion and also considered the multicategory (multinomial) response case. This
function is then maximized using a suitable search procedure over the parameter
space. Rabe-Hesketh, Pickles, and Taylor (2002) used quadrature to fit general
multilevel structural equation models with a variety of link functions. An alternative
to quadrature is to use simulated maximum likelihood, which is attractive for
models with large numbers of random parameters (Goldstein, 2003, Appendix 4.2).
We now look at multilevel factor models. We briefly refer to the maximum like.-
lihood analysis of multilevel factor analysis models and then develop an alternative
approach using Markov chain Monte Carlo (MCMC) estimation. :

A MULTILEVEL FACTOR MODEL

We begin by considering a simple single-level factor model for continuous re-
sponses, which we write as

Yri = Avi + ey,
v ~ N(0, 1),

r=1,...,R,
Eri \.(ZAO. o.anv_

i=1,...,N, .
(12)

where r indexes the responses and i indexes individuals. This can in fact be viewed
as a two-level model with a single Level 2 random effect (v;) with variance con-
strained to 1 and R Level 1 units for each Level 2 unit, each with its own (unique)
variance. . .

If we knew the values of the “loadings” A,, then we could fit Equation 12 di-
rectly as a two-level model with the loading vector as the explanatory variable f
the Level 2 variance, which is constrained to be equal to 1; if there are any me;
sured covariates in the model, their coefficients can be estimated at the same tim
Conversely, if we knew the values of the random effects v;, we could estimate thi
loadings; this would now be a single-level model with each response variate havin
its own variance. These considerations suggest that an expectation-maximizatio
-algorithm can be used in the estimation where the random effects are regardé;
as missing data (Rubin & q.uwv&,h 1982). They also motivate the use of MCM
estimation, which we discuss later.

We now add a second level with its own factor structure and write
Y = Ava+u+ Ay +e,
Y = Av.:. j _,

r

u= :«ﬁ? €= Aﬁwr

L....p, N.HH...._E.. i=1...,J,
.CN ~ ZAO. Hv. .—: ?ZAO. Hv. Qﬁ )\ZAO~ Q.NN~.V~
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where the “uniquenesses” 4 (Level 2) and e (Level 1) are muty
and there are Ppresponse measures. Here Ajand A are the loadi
Level 1 and Level 2 factors, respectively,

vectorsatLevel 1 and Level 2, respectively. Note that we can have different numbers

of factors at each level. We adopt the convention of regarding the measurements
themselves as constituting the lowest level of the hierarchy, so that Equation 13 is
regarded as a three-level model. Extensions to more levels are straightforward.
We can write the normal log likelihood ?n,mazmmou 12 as

ng matrices for the
and v; and v, are the independent factor

2L(R; B,v) = —log|R| — (Y — AVTR™I(Y — Ap)
—log|Q,| - vT Qs 1y,
A =(A14)y),

( 5

wﬂ&mm?m...:qnwv.

vl = (v 1),
with corresponding expressions for other link functions. A general approach to
estimation is to form the marginal likelihood as described earlier. McDonald and

. ‘ $ as two “populations,” we can also
Impose constraints on, say, the loadings using an algorithm mo&mmazgnno:mq
fitting structural equations across several populations.

This chapter describes a general approach to the estimation of such multileve]

mmoBa.mbp_%mmm models using MCMC. In the standard multilevel model described in
Equation 1, MCMC treats the random effects at

¥

L

EiAe

e



458 GOLDSTEIN AND BROWNE

14. MULTILEVEL FACTOR ANALYSIS MODELS

we can obtain exact interval estimates based on quantiles rather than relying on
large-sample approximations.

We now describe the details of an MCMC algorithm for the factor analysis
model.

45

Prior Distributions

For the algorithm we assume the following general priors:
p(B) ~ N (B, 0}),

PR7) ~ NOS», 62,),

plow) ~T7 (@}, b},),

MARKOV CHAIN MONTE CARLO
ESTIMATION FOR THE FACTOR
ANALYSIS MODEL

PO ~ N (Aol

urs 14 AQ«N..V ~ —JI— AhMﬂ. @va .
We first develop our MCMC algorithm for the multivariate normal model. This is
followed by an extension to the binary and mixed response cases, where we also
give a detailed example. Further discussion of the multivariate normal model can
be found in Goldstein and Browne (2002).

To show the steps of the MCMC algorithm we write Equation 13 in the more
detailed form

Known Factor Variance Matrices

We wmszo Emm the mmoﬁm:. <.mnm=oo matrices are known, so that we can use a Gibbs
mwﬁwgm algorithm, é.__ow _.=<o_<om updating parameters in turn by generating new
values from the following eight sets of conditional posterior distributions.

S

.:% 1. Update current value of Br=1,..

e oy wv. from the following distribu-

y“ur)

F G
4@ 2 1
yrij = Br + M »w.wcmc.v + M »%cm_.w. + urj +enij, urj ~N Ao QNV
r=1

45
g=1 Nvﬁmﬁv ~N U?. MCN — + |m“. ’ b?. ’
Oér Oy
ey ~ N(0.62), v ~MVNs©, ), Vi) ~MVNGO, @), (1 where
J . 2 .— ~1
r=1,...,R, ~N”r 21, i=1...,J, MuE.HZ P:HA.QM+MV and &m\ﬂm&.+mﬁ.
j=1 r
Again we have R responses for N individuals split between J Level 2 units.: - Step 2. Update A?
. =1, CF .
have F sets of factors cm.v defined at Level 2, and G sets of factors cmw. define the »d:oiuﬂ &mﬁwwmon. oo Rif =1,.... F, where not constrained) from
Level 1. We also introduce the fixed part of the model, but for simplicity res . ’

our algorithm to a single intercept term B, for each response, although it is
to extend the algorithm to arbitrary fixed terms. The residuals at Levels 1
erij and u,;, respectively, are assumed to be independent.

Although this allows a very flexible set of factor models, it should be note
for such models to be Ennm_,mmzo. suitable constraints must be put on the pa
eters. See Everitt (1984) for further discussion of identifiability. These consi
fixing the values of some of the elements of the factor variance matrices &
€2, and/or some of the factor loadings A and »mw.

L@ @
POAD) ~ N p® i Vsidyy A3

2
Qn\w

)
a2 »Dgr Js

2)\2 ~1
DD _ X ?& + 1y @ @. @
Q‘nNﬁ Q‘NN\ﬁ g&. &:..\.\ = Nﬂ_..\. +».\~..C\.\-

fr
Aﬁa&moagmvnomgaaam?nmnowmmonéwﬁ.&noﬁa.Eamomuuﬁmu

thatis constrained will simply maintain its chosen value and wil] not be upda .

initially assume that the WMW_. variance matrices 2 and Q, are known Awoam Sl following distribution: +» G, where not constrained) from
constrained) and then discuss how the algorithm can be extended to encon i
partially constrained variance matrices. The parameters in the following ste
those available at the current iteration of the algorithm.

) 1)
T A Y (V8
Ay ~ m Muc Veij%rijg
P(x) ~ N | D pr s e o 120
er lgr

)

9
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where

-1
1)
2 1 1
cA ncv + = and &:ﬁ = eyij +»mw M.w.

Q—w..

1) _
DY =

Step 4. Update &.uv (=1,...,J) from the following distribution:

@) (2) S ».Anvmm.w 2)
p(vi’) ~MVNg | D; MMU a2 D7y

r i=1
where

-1
fnp® 0"

U.M.NV.II. MU.\-‘AN\V +m-—
Q-Nw.

r

and

F
2 2)_ (2 2] ) 2) E (2) T
RMCN"mz.\nTM ”».Mawt“cv‘ ?Mv”AP_:....? v ’ Ac:.....csv,.

ms_.mE&aacen_.:.::.:.u_.:;:woaslo:o&nm&mag-
tion: ¢

».A:&A: o
m m Zr Trij 1
p(v{) ~ zEzQ D M = DY,

where
-1
[ AD (A 0)7
ay _ r \Ar -1
D =\ "+ %
r er
and
1 1) $)) (1) (¢)) m\7
mmw = ey M&% _Acv. AL = (0,...2G v v V= (Vg va) -
Step 6. Update u,;(r=1,...,R;j=1,...,J) from the following distribu-
tion:
DY WA )
pGr) ~ N M&u. D%},

n-. i=1
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where

n; 1\!
UM@ = AL + (v and RA.\ = ey +yj .

Step 7. Update 62 from the following distribution:

p(a2) ~ T Yaur, bur),

where

1
Gw=J/2+a, ad by=; M:w +,.

Step 8. Update o2 from the following distribution:
P (02) ~ T @ur, b2,

where
.1
by =N/2+a;, and  by=> > ek +b,.
, ij

Note that the Level 1 residuals ¢,;; can be calculated by subtraction at every step
of the algorithm.

Unconstrained Factor Covariances

In the general algorithm we have assumed that the factor variances are all con-
strained. Typically we will fix the variances to equal 1 and the covariances to equal
0 and have independent factors. This form will allow us to simplify Steps 4 and 5
of the algorithm to univariate normal updates for each factor separately. However,
we may wish to consider correlations between the factors. Here we modify our
algorithm to allow another special case, where the variances are constrained to be
1 but the covariances can be freely estimated. Where the resulting correlations ob-
tained are estimated to be close to 1 or -1, then we may be fitting too many factors
at that particular level. As the variances are constrained to equal 1, the covariances
between factors equal the correlations between the factors. This means that each
covariance is constrained to lie between ~1 and 1. We consider here only the factor
variance matrix at Level 2 because the step for the Level 1 variance matrix simply
involves changing subscripts. We use the following priors:

P(Q24m) ~ Uniform(—1,1) VI #m.
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Here Q) is the Imth element of the Level 2 factor variance matrix. We up-
date these covariance parameters using a Metropolis step and a normal random
walk proposal [see Browne (2003) for more details on using Metropolis~Hastings
methods for constrained variance matrices].

- . -1

Step9. Atiteration? generate Q3 ;, ~ N Abm iv. Esv where o2 ‘pim 158 Proposed

distribution variance that has to be set for each covariance. Hrou if Q3,, > lor
—1 '

Q) < —1,set Dmci = bm Nsv as the proposed covariance is not valid, else form a

proposed new matrix &3 by replacing the Imth element of bmlc by this proposed
value. We then set
b%s = bm.i with EocmcEQ min A_ P _c@v \ lbwnc_&.vv
bwc?_ = bmﬂ% otherwise.

Here
p(@s) = TTies 2 exp [(¥P)" (@) 1v{) /2]
J

p(@2"1%) = TT10E "1 e [(4)" (247°) v /2].

J

This procedure is repeated for each covariance that is not constrained.

Missing Data

Where some of the responses are missing, this poses no problem for the MCMC
methods if we are prepared to assume missingness is at random or effectively
so by design. This is equivalent to giving the missing data a uniform prior. We
then have to simply add an extra Gibbs sampling step to the algorithm to sample
the missing values at each iteration. As an illustration, we consider an individual
who is missing response r. In a factor model the correlation between responses
is explained by the factor terms, and conditional on these terms the responses for

an individual are independent, and so the conditional distributions of the Inissing
responses have simple forms. :

Step 10. Update y,;; (r = H...: R;i = H.....:..L =1,...,J; Yy,; that are
missing) mnoB the following distribution, given the current values Prij ~
NGrijoo 2 where

F
L= 2., 1
w:& luwn__lm»r\wt\g +MPM~M Mﬁw +§E..
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Goldstein and Browne (2002) discussed the extension of this model to the general
structural equation case.

BINARY RESPONSE FACTOR MODELS

Modeling of data that consist of binary or ordered responses to questions in an
achievement or similar test instrument has a long history. Goldstein and Wood
(1989) described the history of mental testing from the early work of Lawley
(1943) and the work of Lord and Novick (1968) on item response models to
more recent developments of general factor analysis modeling (Bock, Gibbons, &
Muraki, 1988). Rod McDonald made important contributions to this area through
his discussions of test item dimensionality and models for nonlinear factor analysis
(McDonald, 1981, 1985). .
The early work was characterized by “fixed-effect” models of the kind

F(r) = Bor + Bir6i (16)

relating the probability of a correct response to the rth item for the ith respondent,
where typically a logit link function is used for the probability. The most common
link function f is a logit or probit. The response y is typically (0, C and we have
the local, or conditional, independence assumption

.._f
¥ij ~ Bin(1, pij).

This is often referred to, somewhat inaccurately, as a two-parameter model, where
in Equation 16 each response is characterized by an intercept fo, and a factor
coefficient fB;,, and each respondent has a factor value ;. This gives rise to a
model with N + 2p parameters, where N is the number of respondents and p is
the number of items or questions. Extensions to the case where responses are on
an ordered scale (a graded response or partial credit model; Baker, 1992) relate the
cumulative proportion of success to a linear function via a suitable link function,
for nxmb_o. the cumulative odds model for category & of item r:

MUH.N:\ M” u._.u: Hmo;.+ m:m_... - h=1,.. 4, amn

g=h+1

where ¢, indexes the final category of item .

Such fixed-effect models have more recently been superseded by “random ef-
fects” models (Bartholomew & Knott, 1999), where the individual parameter 6;
is assumed to have a distribution, typicaily normal, across individuals. This. pro-
vides both more efficient estimates and straightforward ways of handling missing
responses. More important, it allows for the fitting of more than one parame-
ter for individuals, so that we can write down a general multidimensional binary
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(or ordered) extension of Equation 16,

q
f@i) = Por + MF:&:.. 6; ~ MVN(0, Q),

iid

w1 ~ Bin(1, va. (18)

. which is simply a mEm_n,_Q\oH binary response factor model.
. Having fitted such a model, we can obtain estimates of factor values, or scores,
for each individual on each factor. In practice, models with more than one factor
dimension have been used rarely, or typically are covariates incorporated, for
example, for gender or other predictors. We explore some of the consequences of
this in the analysis of a large-scale data set.
‘We now introduce a multilevel model, as with the normal response case, that
recognizes that groups maor as schools may differ in their response probabilities.
We write

2) 52
EQ..TMECV MW.W+MWAV Av+=2.,
h=1 h=}
6> ~ MYN(Q, &), 6> ~ MVN(, 22),

frn .~.v
(19)
id .

Yrji ~ Bin(1, 7ryji).
‘We have now added a second set of factors, indexed by the superscript (2), varying
at the group Level 2, independent of the individual level factors, indexed by the
superscript (1). In contrast to the normal response factor model, the Level 1 variance
is constrained by the assumption of binomial variation, and the factor structure has a
nonlinear liuk with the responses. We retain the notational conventions for binary

response models, generalized, from Equation 17, where we have the following
equivalences for the factor structure between Equations 18 and 15:

D _ 0 @ _ ;@
Env = ?Mﬁf h .?;

M= O @ = @
Ouj = Vg Onf =V

The Level 2 residuals u,; are assumed independent, N(0, o).

‘We show how to specify and fit such a model and use it with a large-scale survey
of student achievement.

- DATA

The data are taken from the Programme for International Student Assessment
(PISA) carried out under the auspices of the Organisation for Economic Co-
operation and Development (OECD) in 2000 in 32 industrialized countries
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(Organisation for Economic Co-operation and Development, 1999). The data sets,
together with full descriptions, are available online (www.pisa.oecd.org). The full
data set included a student and school questionnaire together with tests of reading,
mathematics, and science. A sample of 14~ to 15-year-old school students was
selected in each country with a 70% response rate as a minimum requirement for
inclusion. The OECD program plans further surveys every 3 years. The major aim
of the survey was to develop a “literacy scale” for each of the three areas tested
and to compare countries in terms of their average performance on these. The
resulting continuous scales had distributions approximately normal with a mean
of 500 and a standard deviation 100. Each scale was divided into six “proficiency”
categories, each characterized in terms of responses to chosen sample test items.
The scores were also analyzed by background factors such as gender and parental
education, and a multilevel analysis was also carried out to study variation between
schools.

The three OECD literacy scales were constructed using the model of Equa-
tion 18 with a single factor. Each scale used only those items designated as
Reading, Mathematics, or Science. Factor scores were computed for use in sub-
sequent analyses. For these analyses a multiple imputation procedure was used as
follows. .

Each student has a factor score based on a linear predictor using his or her
individual responses and the estimated model parameters. Under the model as-
sumptions, these scores have an approximate normal distribution, the accuracy of
the approximation being a function of the number of item responses for an indi-
vidual. Using an estimate of the standard error, multiple imputation is used; that
is, a set of (typically five) random draws from this estimated normal distribution
is made and these are then used for subsequent modeling (Rubin, 1996).

‘We refer to some of the limitations of this as a general procedure later, but for
now note that a key feature is the use of a one-dimensional factor model, and we
will discuss the incorporation of further dimensions.

For present purposes we chose the Mathematics test items for two countries,
France and England. In total there are 31 Math questions. In fact several questions
are grouped in that they all relate to the same problem. For example, one problem
described a pattern of trees planted as a set of squares of different sizes, and asso-
ciated with this problem there were three separate questions. For a model such as
that of Equation 18 it is doubtful whether for such questions the local independence
assumption will hold, although this was assumed in the OECD analysis. A more
satisfactory treatment would be to combine the three separate questions into an
ordered scale, for example, by forming an a priori suitably weighted combination
of the responses, and treating this as an ordered categorical response as described
earlier. For present purposes we selected 15 items, each of which is a response
to a different problem, and dichotomized responses into correct/incorrect, treating
part-correct answers as correct.



466 GOLDSTEIN AND BROWNE

ESTIMATION FOR THE BINARY
RESPONSE FACTOR MODEL

The OECD analyses use the logit link function. ‘.;o probit function . generally
produces similar results and has certain »%mba.mm.nm in terms of n.oauzsnona con-

venience. One important advantage of the probit is n.z: we can think of E.m response
as a threshold from an underlying (unknown) oo:gc.osw Tesponse, SEQ.H is nor-
mally distributed (Albert & Chib, 1993). We use the Gibbs sampling Em.o:&mc Mon
normally distributed responses described earlier and adapted for a probit mode 8..
mosz“,”Bm that we have a binary variable y; collected for mo<9.w_. F&S%Em i ; that
is, a threshold version of an (unknown) continuous normally Qmﬁﬁ.ﬁz& <mnm.¢,~o".
v.u.._. Now, if we knew the value of y, then we could fit the standard Gibbs mmEﬁ.ﬁ:m
Lmoan:n for normal response models. So we .RE an m”xn.m mﬁw. to the Gil .vm
sampling algorithm and generate y;" at each :Q”mno.n mnoB its ocnn_wonw_ womﬁwnom
distribution, which is a truncated normal distribution with a.ﬁwu o.b m.uo stan E.M.
single-level probit model) Xg and <wnm=mo one. The Ewuomnou ﬂoﬁ: is Mn_.o. .H»._M «
if y; is zero, y; has to be negative, and if y; is one, y;" has to be Woz ve. This
step is inserted into the existing algorithm for the uonum; response mnﬂoa EW.E
It should be noted that this model can also be updated using Zaﬂoworm meM ing,
but the Gibbs sampling algorithm is faster and produces fewer correlated chains
Consider the standard two-level model

Y=XB+2U+e, e~N(@O,1). (2
Given current estimates of parameters and residuals, we E.Em Y~ N(XB
ZU, 1), and for the probit model the observation of a ﬁoz._uﬁ value AVS. :
the wnmmn of Y corresponds té the observation of a “success” on the probabili

scale and the observation of a negative (<0) value corresponds to a “failure.”

~

.

probit function that determines the underlying chance of a correct response is
cumulative probability given by

\, $()ds,  (r) is pdf of N(XB + ZU, 1),
0 .

. simple single-level probit model is fitted for eac
- try means, We see that, of the 10 statis

4 (all free-response items) and worse on 6 (3 free
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a positive value occurs when y; j > 0. We then have

Pr(yij > 0) = Pr(e;; > ~I(XB); + (zUy,Dy,

. i we observe a 1

truncated normal distribution [-X* 00], X* = (X8 + ZU), and if we observe a
0, we sample from [~o00, ~X *]. This is then applied to Equation 20 to give a new
value Y*. This procedure

is applied as an extra step in the factor analysis model
for example, before Step 1, with the Temaining steps as before,

This approach is readily extended to the case of ordered categories, which
can be applied to “partial-credit” models, We

assume that there is an underlying
normally distributed response and that for p-category observed responses there are
P — 1thresholds. Assume a proportional odds model, where for the sth cumulative
probability we have (Goldstein, 2003)

»

probit (y ) = o® + (X) + zv,
so that corresponding to Equation 21 this gives
>

/

~(e94X8+20)

and sampling is conditional, as before, i
parameters /),

$(e)dt,

ncluding the current values of the threshold

RESULTS

The analyses reported here were carried out using MLwiN Beta version 1.2
(Browne, 2004; Rasbash et al., 2000). Table 14.1 shows a basic model in which a
h item allowing for different coun-
tically significant items, France does better on

-Tesponse and 3 multiple-choice
tems) than England. The interpretation of the probit function is that it predicts a

or equivalently

value from an underlying standard normal distribution with mean zero and stan-
dard deviation one. This can be turned into a probability using the Cumulative
o \
\ $(t)dt, ¢(¢) is pdf of N(O, 1). ponse Geometry item) but 0.7 standard deviations behind
—(xprzv) B item 161Q01 (a multiple-chioice Geometry item).
We now fita single factor at each level (the student and the school), with results
under Analysis A in Table 14.2. For convenience we present only the estimated

Tactor loadin 8s. Atboth levels we have a common factor with comparable loadings

Alternatively, if we write the value of the ijth response as

yij = (XB)i; + (ZU);; + &,
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TABLE 14.1 TABLE 14.2
Separate Country Anpalyses With Probit Response Model for Each Item Factor Loadings With a Single Factor at Each Level
ltem England France~England Analysis B
Student level ) Item Analysis A Loadings France-England
33q01 (MC) 0.80 —0.06 (0.05)
ﬁme (FR) -025 _ 0.03 (0.06) Student level
37q01 (FR) 0.65 —0.11 (0.07) 33q01 0.46 (0.04) 0.46 (0.04) —0.08 (0.04)
124901 (FR) 0.01 —~0.18 (0.07) 34401 0.70 (0.04) 0.71 (0.05) 0.01 (0.07)
136901 (FR) ~0.23 0.69 (0.05) 37q01 096 (0.09) 0.92 (0.07) —0.16 (0.10)
144901 (FR) 0.16 0.40 (0.05) 124q01 0.69 (0.07) 0.72 (0.07) —0.20 (0.10)
145001 (FR) 0.65 —0.13 (0.06) 136901 0.69 (0.05) 070 (0.06) 0.96 (0.08)
150q01 (FR) 0.78 —0.35 (0.06) 144q01 0.55 (0.05) 0.54 (0.05) 0.46 (0.07)
15501 (FR) 0.54 0.27 (0.06) 145q01 0.63 0.05) 0.62 (0.05) —0.21 (0.08)
159q01 (MC) 0.89 ~0.24 (0.06) 150q01 0.59 (0.05) 059 (0.04) —0.41 (0.07)
161g01 (MC) . 0.96 ~0.70 (0.06) 155q01 0.51 (0.05) 0.52(0.04) 0.33 (0.07)
179901 (FR) " —0.11 0.64 (0.06) 159q01 0.46 (0.04) 0.47 (0.05) -0.31 (0.07)
192q01 (MC) —028 0.07 (0.06) 161901 0.30 (0.04) 033(0.04) . —0.78(0.07)
26601 (MC) -075 —0.26 (0.06) 179q01 0.54 (0.06) 0.52 (0.06) 0.79 (0.08)
273q01 (MC) —0.04 0.03.(0.06) 19201 0.68 (0.04) 0.68 (0.05) 0.09 (0.07)
266q01 0.36 (0.05) 0.38 (0.05) —0.28 (0.07)
Note. Columns show the English mean and the French-English differ- 273q01 047 (0.04) 0.46 (0.05) 0.03 (0.06)
ence between means. Standard errors are shown in parentheses. There are School level
10,000 Markov chain Monte Carlo iterations with default priors. The type of 3301 0.26 (0.03) 0.26 (0.03)
item is shown by each item name. MC, Multiple choice; FR, free response. 34401 0.39 (0.03) 0.39 (0.03)
37q01 0.77 (0.06) 0.74 (0.06)
on each item, although at the student level the multiple-choice items tend to have 124401 0.71 (0.05) 0.71 (0.05)
smaller loadings. The next model fits a different mean for each item for France 136401 0.49 (0.04) 0.54 (0.04)
and England, namely , 144401 0.31 (0.04) 0.31 (0.03)
) 145q01 0.47 (0.04) 0.48 (0.04)
. M) @4@) 150901 0.41 (0.04) 0.42 (0.04
Probit(rije) = Por -+ 8edr + By, 0y; + By 01 + urj, GWMS 029(004) 031 Mo.ouw
A o Nl 2 @ . 2 15901 035 (0.04) 0.36 (0.04)
bij ~ NO.og), 6 ~N(0,03), 16101 023(004) 024 (0.03)
.~ Bi g = 17901 042 (0.05) 0.46 (0.04)
Irije ms.c + rije): 1.2 @3) 192401 0.43 (0.03) 0.43 (0.04)
0 if g=1, 266401 0.33 (0.04) 0.33 (0.04)
mm = — 1 if g=2. 273901 0.35 (0.03) 0.35 (0.03)

Note that in Equation 23, g identifies country and takes the value 1 for England
and 2 for France, and we actually fit a global mean vector plus a difference term,
d;, which captures the difference between French and English scores. The factor
loadings are virtually unchanged. The means for the two countries, however, do
differ somewhat for certain items. Thus, given the factor values, the French are
somewhat further ahead than before on item 136Q01. This suggests that there may

Note. Analysis A ignores country differences; analysis B fits the model
of Equation 23 and shows the loadings together with French-English diffes-
ence. Factor variances are set equal to 1.

but where the factor structures are the same in each country. Thus we can extend
Equation 23 for country g as follows:

be different factor structures in the two countries, and we return to this later, probit(x,ije) = Borg + Rw mm\w + umvmmw + u,j,
If we ignore the interaction between country and item, it is possible (but not 8 M 2 @ @ 2
otherwise) to use these models for purposes of comparing countries. There are Ouje ~ N(kg o), 61 ~ N(w?, 03) @4

two natural extensions where we allow the factor means to vary between countries Yrijg ~ Bin(1, 7rije)s g=12.




470 GOLDSTEIN AND BROWNE

Typically we would be interested in modeling the same overall shift at each leve]
1, so that we have u = p,. In this case for a single-factor model, we can write
Equation 24 in the m:n_.:mné form

probit(r,ije) = Bor + 8,d (B + @v+m€ mw B62 +uyy,

Yrijg ~ Bin(1, Trijg), g=12

Clearly we can extend such a model to other explanatory variables such as gender,
in effect obtaining a structural equation model for the factor mean structures. We
note that the OECD procedure for country and group comparisons wiil not in
general produce the same inferences because the model that is fitted assumes no
differences. Likewise, the OECD model assumes only a single (student) level,

with school-level variation estimated in the second-stage analysis. In the case of

factor models the OECD approach to group comparisons leads to interpretational
difficulties because the factor structure that is fitted, in the presence of real group
differences under a model such as Equation 23, is incorrect. We also note that for
those with at least one valid mathematics item response (55%), the average number
of Mathematics items responded to by students is 12.6, with a range from 1 to 16,
so that the normal approximation implicit in the use of plausible values may not
be very accurate for some of the students.

The OECD country comparisons for Mathematics show a small difference be-
tween England and France, and this is borne out by our results, although we have
used a reduced set of items. -

An alternative formulation for country and group differences is to write Equa-
tion 25 as

i

probit(r,;;) = B+ ddg + B1YOY) + BP6D + ury,

Mw ~ N(0,93,). @ ~ MVN(0, 03, (26)

 Yrje ~ Bin(1, mrj).

This mode] additionally constrains the item differences for each country to be con-
stant. If we estimate the parameter d in Equation 26, we obtain the value 0.02 with
standard error 0.03, so that we would conclude that the French-Englishi difference
is small and nonsignificant. In Table 14.2, however, we show considerable indi-
" vidual differences. Thus, if we had only fitted Equation 26 representing a simple
overall country effect, as in the PISA analysis, we would be missing potentially
important differential (interaction) effects.

The next model fits two orthogonal factors at the student level and one at school
level. In the present set of analyses we do not report fitting more than one factor at
the school level. In Table 14.3 the first factor at the student level is again a general
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TABLE 143

Loadings for Two Orthogonal Factors at Level 1 and One Factor at Level 2

Item Factor 1 Factor 2

Student level

33q01 0.51 (0.06) 0

34q01 0.67 (0.05) 0.22 (0.09)

37q01 0.81 (0.10) 0.42 (0.14)

124q01 - 0.56(0.11) 0.80(0.21)

136q01 - 0.60 (0.09) 047 (0.12)

14401 0.58 (0.10) 0.08 (0.10)

145q01 0.57 (0.06) 0.19 (0.12)

150q01 0.72 (0.10) ) —0.07 (0.18)

155q01 0.44 (0.06) 0.28 (0.10)

159q01 0.50 (0.06) ~0.04 (0.12)

161q01 0.43 (0.07) -0.27 (0.14)

179901 0.46 (0.08) 0.46 (0.17)

192q01 0.62 (0.06) 0.28 (0.10)

266q01 0.41 (0.06) ~0.10 (0.09)

273q01 0.42 (0.06) 0.21 (0.12)

School level

33q01 0.27 (0.03)

34901 0.39 (0.04)

37q01 0.76 (0.06)

124g01 - 0.82 (0.10)

136q01 0.52 (0.05)

144901 0.32 (0.04)

145001 0.47 (0.04)

150901 0.45 (0.05)

155q01 . 0.31 (0.04)

159901 0.36 (0.04)

161q01 0.25 (0.04)

179401 0.46 (0.05)

192q01. 0.44 (0.04)

266q01 0.34 (0.04)

273q01 0.36 (0.03)

Note. The first loading of factor 2 is constrained to zero. The variances
constrained to one.

common factor, and the second factor tends to distinguish the free-respense from
the multiple-choice items. We also studied three factors at the student level, but
the results are not easy to interpret, perhaps unsurprisingly given only 15 binary
response variables.

‘We now fit separate factors for the two countries. Table 14.4 shows the results
for a single factor at each level. We see that there are different patterns of loadings
at both levels and those for France are much closer to the factor loadings estimated
from the combined country data set, perhaps unsurprisingly because there are
almost twice as many French students in the combined sample. We computed the
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TABLE 14.4

Loadings for Single-Factor Models Separately for Each Country
Item England ) France
Student level
33q01 0.49 (0.08) 0.46 (0.04)
34901 0.56 (0.10) 0.75 (0.05)
37q01 069(0.12) 1.09 (0.11)
124q01 0.50 (0.10) 0.82 (0.09)
136401 0.5 (0.14) 0.71 (0.06)
144901 0.48 (0.09) 0.58 (0.06)
145q01 0.38 (0.09) 0.68 (0.05)
15001 - 0:50 (0.11) 0.62 (0.06)
155q01 0.31 (0.08) 0.59 (0.05)
159901 0.34 (0.09) 0.51 (0.06)
16101 0.32 (0.09) 0.33 (0.05)
179901 . 0.34 (0.09) 0.62 (0.07)
192q01 ' 0.75 (0.14) 0.68 (0.05)
266q01 : 0.33 (0.09) 0.41 (0.06)
273q01 0.44 (0.09) 0.48 (0.05)
School level
33q0t 0.36 (0.06) 0.22 (0.04)
34901 0.46(0.07) 0.36 (0.04)
37901 - 0.73 (0.09) 0.79 (0.08)
124901 0.80 (0.10) 0.68 (0.06)
136901 0.75 (0.08) 0.44 (0.04)
144901 0.41 (0.06) 0.25 (0.04)
145901 0.72 (0.08) 0.39 (0.04)
150g01 . 0.44 (0.06) 0.43 (0.04)
155q01 0.23 (0.06) . 0.35 (0.04)
159901 ) 0.47 (0.07) 0.31 (0.04)
161q01 . 0.27 (0.06) . 0.24 (0.04)
179q01 Ve 0.50 (0.07) 0.45 (0.05)
192901 0.42 (0.08) 0.44 (0.04)
266401 0.38 (0.07) 0.30 (0.05)
273q01 . ) 0.41 (0.06) 0.32 (0.04)

factor scores for the English stndents from the combined and separate analyses .

and these show a high correlation (.98). This reflects the fact that the factor score is
effectively a weighted mean of the item responses, and the two sets of loadings are
all positive and comparable in size. It is also inflated because the factor scores are
“shrunken” estimates with shrinkage a function of the number of items responded
to. A simple comparison of the mean factor scores from the joint analysis with a
single factor at each level gives a nonsignificant difference. Thus, whereas a joint
analysis will lead to comparable rankings for individuals, as indeed will a simple
scoring system using just the average percentage correct (the correlation is .84),

the same.
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Atthe school level for France the factor loadings are approximiately proportional
to those at the school level for the combined analysis, but this is not the case for
England, which has different orderings for the loadings. In the pooled analysis the
comparison between student and school loadings is more like that for France.

CONCLUSIONS FROM THE ANALYSIS

‘We have not atterapted to study reasons for country differences in any detail in these
analyses. Our intention has been to show how multilevel binary factor models can
be specified with covariates and group differences. We show that for the purposes
of comparing countries it is important to fit a model that explicitly includes country
effects. In this case we show that, in the simple case where one general factor is
fitted at each level, student and school, the factor structures are somewhat different
for each country. Thus, a single “pooled” set of factor loadings used for purposes of
country comparisons leads to considerable difficulty in interpreting results because,
as in this case, the pooled factors will be influenced by the weightings implicit
in the numbers of students in each country. Where several countries are pooled
as in the OECD PISA analyses, the factors are even more difficult to interpret, as
are resulting country differences. Furthermore, and perhaps more important, we
showed that, after fitting a single-factor model there are still differences between
countries in item response probabilities (Table 14.2). This implies that the choice
of items to use will determine the factor loadings, in that if we choose a majority
of items that all load highly on a factor, then that factor will tend to dominate the
structure. If those items also happen to favor a particular country then that country
will tend to have higher factor scores, but this could only be ascertained by carrying
out a multidimensional analysis.

DISCUSSION

The issues that surround the specification and interpretation of single-level factor
and structural equation models are also present in our multilevel versions. Param-
eter identification has already been mentioned; with the ability to include prior
distributions we can often treat identification problems with more fiexibility. In
the traditional model, overparametrization requires setting one or more parameters
or functions of parameters to known values. In our case we can obtain estimates by
imposing informative prior distributions on each of the parameters, which, when
combined with the data, will provide the joint posterior distribution. An example is
in the estimation of factor correlations where the assumption of a prior in the inter-
val (0, 1) can allow the joint posterior of all the parameters in an “overidentified”
model to be estimated. .

Another potential advantage of our approach, common to all MCMC proce-
dures, is that we can make exact inferences based upon the Markov chain values.



474 - GOLDSTEIN AND BROWNE

This will be a particular advantage for small data sets where we may be unwilling
to rely on likelihood-based approximations. .
Another issue is the boundary, Heywood case. We observed such moEnoE
occurring where sets of loading parameters tend toward zero or a correlation tends
toward 1.0. A final important issue that only affects stochastic procedures is the
problem of flipping states. This means that there is not a unique solution even in a
one-factor problem because the loadings and factor values may all flip their sign to
give an equivalent solution. When the number of factors increases there are greater
problems because factors may swap over as the chains progress. This means that
identifiability is an important consideration when using stochastic techniques.
We can extend the models considered here to mixtures of binary, ordered, and
continuous responses. We have separately discussed all three types of responses.
They are linked via the threshold probit model, so that at Level 1 we have a set of
independent normal variables (uniquenesses), each one arising from a continuous

response, a binary response, or an ordered response. At higher levels the random:

effects are assumed to have a multivariate normal distribution and the MCMC
estimation proceeds in a straightforward fashion.

Such an example might arise in a health application where individuals respond
to a health questionnaire at the same time as a set of continuous measurements of
health status are made. It might also arise in an educational examination where,
for example, some responses are multiple-choice binary questions and some are
free responses marked on a continuous scale. Another important application is to
questionnaires that contain mixtures of ordered rating scales and binary responses.

A major drawback of current implementations of binary factor (item response)
models that attempt to account for multilevel data structures is that they fit a
multilevel model in two stages: first estimating a single-level model and then
fitting a multilevel model using the estimated factor scores, typically using multiple
imputation via plausible values. Such a procedure does not allow the exploration
of any factor structure at higher levels. We showed that this may be important,
especially when comparing groups or countries. )

Finally, we note that all of our models can be extended straightforwardly
to more-complex data structures involving cross-classifications and multiple-
membership structures (Browne, Goldstein, & Rasbash, 2001).
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