Multilevel Models for Binary Responses

Preliminaries

Consider a 2-level hierarchical structure. Use 'group' as a general term for a level 2 unit (e.g. area, school).

Notation

- \square *n* is total number of individuals (level 1 units)
- \blacksquare J is number of groups (level 2 units)
- In n_j is number of individuals in group j
- $x y_{ij}$ is binary response for individual *i* in group *j*
- x_{ij} is an individual-level predictor

Recall model for continuous y

$$y_{ij} = eta_0 + eta_1 x_{ij} + u_j + e_{ij}$$

 $u_j \sim N(0, \sigma_u^2)$ and $e_{ij} \sim N(0, \sigma_e^2)$

or, expressed as model for expected value of y_{ij} for given x_{ij} and u_j :

$$\mathsf{E}(y_{ij}) = \beta_0 + \beta_1 x_{ij} + u_j$$

Model for binary y

For binary response $E(y_{ij}) = \pi_{ij} = Pr(y_{ij} = 1)$, and model is

$$F^{-1}(\pi_{ij}) = \beta_0 + \beta_1 x_{ij} + u_j$$

 F^{-1} the link function, e.g. logit, probit clog-log

Random Intercept Logit Model: Interpretation

$$\log\left(\frac{\pi_{ij}}{1-\pi_{ij}}\right) = \beta_0 + \beta_1 x_{ij} + u_j$$
$$u_j \sim N(0, \sigma_u^2)$$

Interpretation of fixed part

- **a** β_0 is the log-odds that y = 1 when x = 0 and u = 0
- β_1 is effect on log-odds of 1-unit increase in x for individuals in same group (same value of u)
- exp(β₁) is an odds ratio, comparing odds for individuals spaced 1-unit apart on x but in the same group

$$\log\left(\frac{\pi_{ij}}{1-\pi_{ij}}\right) = \beta_0 + \beta_1 x_{ij} + u_j$$
$$u_j \sim N(0, \sigma_u^2)$$

Interpretation of random part

- u_j is the effect of being in group j on the log-odds that y = 1; also known as a level 2 residual
- As for continuous y, we can obtain estimates and confidence intervals for u_i
- σ_u^2 is the level 2 (residual) variance, or the between-group variance in the log-odds that y = 1 after accounting for x

Response probability for individual i in group j calculated as

$$\pi_{ij} = \frac{\exp(\beta_0 + \beta_1 x_{ij} + u_j)}{1 + \exp(\beta_0 + \beta_1 x_{ij} + u_j)}$$

Substitute estimates of β_0 , β_1 and u_j to get predicted probability:

$$\hat{\pi}_{ij} = rac{\exp(\hat{eta}_0+\hat{eta}_1x_{ij}+\hat{u}_j)}{1+\exp(\hat{eta}_0+\hat{eta}_1x_{ij}+\hat{u}_j)}$$

We can also make predictions for 'ideal' or 'typical' individuals with particular values for x, but we need to decide what to substitute for u_j (discussed later).

Example: US Voting Intentions

Individuals (at level 1) within states (at level 2).

Results from null logit model (no x)

Parameter	Estimate	se
β_0 (intercept)	-0.107	0.049
σ_u^2 (between-state variance)	0.091	0.023

Questions about σ_u^2

- 1. Is σ_{μ}^2 significantly different from zero?
- 2. Does $\hat{\sigma}_u^2 = 0.09$ represent a large state effect?

Testing \mathbf{H}_0 : $\sigma_u^2 = 0$

- Likelihood ratio test. Only available if model estimated via maximum likelihood (not in MLwiN)
- Wald test (equivalent to t-test), but only approximate because variance estimates do not have normal sampling distributions
- Bayesian credible intervals. Available if model estimated using Markov chain Monte Carlo (MCMC) methods.

Example

Wald statistic =
$$\left(\frac{\hat{\sigma}_u^2}{se}\right)^2 = \left(\frac{0.091}{0.023}\right)^2 = 15.65$$

Compare with $\chi^2_1 \quad \rightarrow \mbox{ reject } H_0 \mbox{ and conclude there are state differences.}$

Take p-value/2 because alternative hypothesis is one-sided (H_A : $\sigma_u^2 > 0)$

State Effects on Probability of Voting Bush

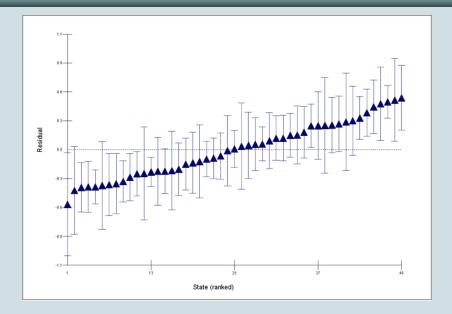
Calculate $\hat{\pi}$ for 'average' states (u = 0) and for states that are 2 standard deviations above and below the average ($u = \pm 2\hat{\sigma}_u$).

 $\hat{\sigma_u} = \sqrt{0.091} = 0.3017$

$u = -2\hat{\sigma_u} = -0.603$	\rightarrow	$\hat{\pi} = 0.33$
u = 0	\rightarrow	$\hat{\pi} = 0.47$
$u = +2\hat{\sigma_u} = +0.603$	\rightarrow	$\hat{\pi} = 0.62$

Under a normal distribution assumption, expect 95% of states to have $\hat{\pi}$ within (0.33, 0.62).

\hat{u}_j with 95% Confidence Intervals for u_j



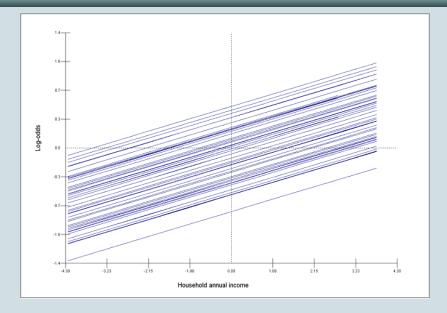
Adding Income as a Predictor

 x_{ij} is household annual income (grouped into 9 categories), centred at sample mean of 5.23

Parameter	Estimate	Standard error
β_0 (constant)	-0.099	0.056
eta_1 (income, centered)	0.140	0.008
σ_u^2 (between-state variance)	0.125	0.030

- -0.099 is the log-odds of voting Bush for household of mean income living in an 'average' state
- 0.140 is the effect on the log-odds of a 1-category increase in income
- expect odds of voting Bush to be $\exp(8 \times 0.14) = 3.1$ times higher for an individual in the highest income band than for an individual in the same state but in the lowest income band

Prediction Lines by State: Random Intercepts



As in the single-level case, consider a latent continuous variable y^* that underlines observed binary y such that:

$$y_{ij} = \begin{cases} 1 & \text{if } y_{ij}^* \ge 0 \\ 0 & \text{if } y_{ij}^* < 0 \end{cases}$$

Threshold model

$$y_{ij}^* = \beta_0 + \beta_1 x_{ij} + u_j + e_{ij}^*$$

As in a single-level model:

 $e_{ii}^* \sim N(0,1) \rightarrow \text{probit model}$

 $e_{ii}^* \sim \text{standard logistic (with variance } \simeq 3.29) \rightarrow \text{logit model}$

So the level 1 residual variance, $var(e_{ii}^*)$, is fixed.

Impact of Adding *u_i* on Coefficients

Recall single-level logit model expressed as a threshold model:

 $y_i^* = \beta_0 + \beta_1 x_i + e_i^*$

$$\operatorname{var}(y_i^*|x_i) = \operatorname{var}(e_i^*) = 3.29$$

Now add random effects:

$$y_{ij}^* = \beta_0 + \beta_1 x_{ij} + u_j + e_{ij}^*$$

$$var(y_{ij}^*|x_{ij}, u_j) = var(u_j) + var(e_i^*) = \sigma_u^2 + 3.29$$

Adding random effects has increased the residual variance \rightarrow scale of y^* stretched out $\rightarrow \beta_0$ and β_1 increase in absolute value.

Single-level vs Random Intercept Coefficients

 $\beta^{\it RI}$ coefficient from a random intercept model

 β^{SL} coefficient from the corresponding single-level model

For a logit model

$$\beta^{RI} = \beta^{SL} \sqrt{\frac{\sigma_u^2 + 3.29}{3.29}}$$

Replace 3.29 by 1 to get expression for relationship between probit coefficients.

NOTE: Adding random effects to a continuous response model does not 'scale up' coefficients because the level 1 variance is not fixed and so: $var(e_i) \simeq var(u_j) + var(e_{ij})$

Single-level vs Random Intercept Coefficients

Simulated data where distribution of x_1 and x_2 same in each level 2 unit.

$$\hat{\sigma}_u^2 = 1.018$$
 so expected RI:SL ratio is $\sqrt{rac{1.018+3.29}{3.29}} = 1.14$

Variable	β^{SL}	β^{RI}	$\beta^{\rm RI}/\beta^{\rm SL}$
Constant	0.221	0.257	1.163
<i>x</i> ₁	0.430	0.519	1.207
<i>x</i> ₂	0.498	0.613	1.231

In practice, RI:SL ratio for a given x may be quite different from that expected if distribution of x differs across level 2 units.

Impact of Adding level 1 x

In random effects model for continuous y

- Reduction in level 1 residual variance σ_e^2
- \blacksquare Reduction in total residual variance $\sigma_u^2 + \sigma_e^2$
- Coefficients of variables correlated with x will change (increase or decrease)

In random effects model for binary y

- Level 1 residual variance $\sigma_{e^*}^2$ cannot change; fixed at 3.29 (logit) or 1 (probit)
- So addition of x will tend to increase proportion of variance that is at level 2, i.e. ratio of σ_u^2 to $\sigma_{e^*}^2$
- $\blacksquare \rightarrow$ increase in level 2 residual variance \rightarrow stretches scale of y^*
- $\blacksquare \rightarrow$ increase in absolute value of coefficients of other variables

Variance Partition Coefficient for Binary y

Usual formula is:

 $VPC = \frac{level 2 residual variance}{level 1 residual variance + level 2 residual variance}$

From threshold model for latent y^* , we obtain

$$\mathsf{VPC} = \frac{\sigma_u^2}{\sigma_{e^*}^2 + \sigma_u^2}$$

where $\sigma_{e^*}^2 = 1$ for probit model and 3.29 for logit model

In voting intentions example, $\hat{\sigma}_u^2 = 0.125$, so VPC=0.037. Adjusting for income, 4% of the remaining variance in the propensity to vote Bush is attributable to between-state variation.

Marginal Model for Clustered y

When *y* are clustered, an alternative to a random effects model is a marginal model.

A marginal model has two components

- 1. Generalised linear model specifying relationship between π_{ij} and x_{ij}
- 2. Specification of structure of correlations between pairs of individuals in the same group
 - Exchangeable equal correlation between every pair (as in random intercept model)
 - Autocorrelation used for longitudinal data where correlation a function of time between measures
 - Unstructured all pairwise correlations estimated

Estimated using Generalised Estimating Equations (GEE)

Marginal vs Random Effects Approaches

Marginal

- Accounts for clustering and adjusts standard errors
- Clustering regarded as a nuisance
- No parameter representing between-group variance
- No distributional assumptions about group effects, but no estimates of group effects either

Random effects

- Accounts for clustering and adjusts standard errors
- Clustering of substantive interest
- Estimate between-group variance σ_u^2
- E Level 2 residuals \hat{u}_j interpreted as group effects
- $\ensuremath{\mathbf{z}}$ Can allow between-group variance to depend on x

Marginal and Random Effects Models

Marginal β have a population-averaged (PA) interpretation Random effects β have a cluster-specific (CS) interpretation

Random intercept logit model

$$\mathsf{logit}(\pi_{ij}) = \beta_0^{CS} + \beta_1^{CS} x_{ij} + u_j$$

where $u_j \sim N(0, \sigma_u^2)$

Marginal logit model

$$\operatorname{logit}(\pi_{ij}) = \beta_0^{PA} + \beta_1^{PA} x_{ij}$$

Plus specification of structure of within-cluster covariance matrix

Interpretation of CS and PA Effects

Cluster-specific

- β_1^{CS} is the effect of a 1-unit change in x on the log-odds that y = 1 for a given cluster, i.e. holding constant (or conditioning on) cluster-specific unobservables
- $\blacksquare\ \beta_1^{CS}$ contrasts two individuals in the same cluster with x-values 1 unit apart

Population-averaged

■ β_1^{PA} is the effect of a 1-unit change in x on the log-odds that y = 1 in the study population, i.e. averaging over cluster-specific unobservables

Example: PA vs. CS Interpretation (1)

Consider a longitudinal study designed to assess cancer patients' tolerance to different doses of chemotherapy.

 y_{ij} indicates whether patient *j* has an adverse reaction at occasion *i* to (time-varying) dose x_{ij} .

- β₁^{CS} is effect of 1-unit increase in dose, holding constant time-invariant unobserved individual characteristics represented by u_j. If patients are assigned to different doses at random, could be interpreted as a causal effect.
- β_1^{PA} compares individuals whose dosage x_{ij} differs by 1 unit, averaging over between-individual differences in tolerance.

Example: PA vs. CS Interpretation (2)

Suppose we add a level 2 variable, gender (x_{2j}) , with coefficient β_2 .

- Because x_{2j} is fixed over time, we cannot interpret β_2^{CS} as a within-person effect. Instead β_2^{CS} compares men and women with the same value of x_{ij} and u_j , i.e. the same dose and the same combination of unobserved time-invariant characteristics.
- β_2^{PA} compares men and women receiving the same dose x_{ij} , averaging over individual unobservables.

For a level 2 variable, β_2^{PA} may be of more interest.

Comparison of PA and CS Coefficients

 ${\scriptstyle \blacksquare}$ In general $|\hat{\beta}^{CS}|>|\hat{\beta}^{PA}|$

The relationship between the CS and PA logit coefficients for a variable x is approximately:

$$\beta^{CS} = \sqrt{\frac{\sigma_u^2 + 3.29}{3.29}} \beta^{PA}$$

- When there is no clustering, $\sigma_u^2 = 0$ and $\beta^{CS} = \beta^{PA}$. Coefficients move further apart as σ_u^2 increases
- Note that marginal models can also be specified for continuous y, but in that case CS and PA coefficients are equal

Response probability for individual i in group j calculated as

$$\pi_{ij} = \frac{\exp(\beta_0 + \beta_1 x_{ij} + u_j)}{1 + \exp(\beta_0 + \beta_1 x_{ij} + u_j)}$$

where we substitute estimates of β_0 , β_1 and u_j to get predicted probabilities.

Rather than calculating probabilities for each individual, however, we often want predictions for specific values of x. But what do we substitute for u_i ?

Predictions: Handling u_i

Suppose we want predictions for $x = x^*$. What do we do about *u*?

- 1. Substitute the mean $u_j = 0$. But predictions are not the mean response probabilities for $x = x^*$ because π is a nonlinear function of u_j . Value of π at mean of $u_j \neq$ mean of π .
- 2. Integrate out u_j to obtain an expression for mean π that does not involve u. Leads to probabilities that have a PA interpretation, but requires some approximation.
- 3. Average over simulated values of *u_j*. Also gives PA probabilities, but easier to implement. Now available in MLwiN.

Predictions via Simulation

- 1. Generate *M* values for random effect *u* from $N(0, \hat{\sigma}_u^2)$, and denote generated values by $u^{(1)}, u^{(2)}, \ldots, u^{(M)}$
- 2. For each simulated value (m = 1, ..., M) compute, for given x,

$$\pi^{(m)} = \frac{\exp(\hat{\beta}_0 + \hat{\beta}_1 x + u^{(m)})}{1 + \exp(\hat{\beta}_0 + \hat{\beta}_1 x + u^{(m)})}$$

3. Calculate the mean of $\pi^{(m)}$:

$$\pi = \frac{1}{M} \sum_{m=1}^{M} \pi^{(m)}$$

4. Repeat 1-3 for different value of x

Predicted Probabilities for Voting Bush

	Random intercept model				
	Method 1	Method 3	Marginal model		
Household income					
Low	0.374	0.378	0.377		
Medium	0.444	0.446	0.445		
High	0.564	0.564	0.562		
Sex					
Male	0.510	0.510	0.510		
Female	0.442	0.444	0.444		

- In this case, $\hat{\pi}$ from Methods 1 and 3 are very similar. This is because (i) predictions are all close to 0.5, and (ii) $\hat{\sigma}_u^2$ is small, so that β^{CS} is close to β^{PA}
- In longitudinal applications, where $\hat{\sigma}_u^2$ can be large, there will be bigger differences between Methods 1 and 3

Random Slope Logit Model

So far we have allowed π_{ij} to vary from group to group by including a group-level random component in the intercept: $\beta_{0j} = \beta_0 + u_{0j}$.

BUT we have assumed the effect of any predictor x is the same in each group. We now consider a random slope model in which the slope of x (β_1) is replaced by $\beta_{1j} = \beta_1 + u_{1j}$.

$$\log\left(\frac{\pi_{ij}}{1-\pi_{ij}}\right) = \beta_0 + \beta_1 x_{ij} + u_{0j} + u_{1j} x_{ij}$$

where (u_{0j}, u_{1j}) follow a bivariate normal distribution:

$$u_{0j} \sim N(0, \sigma_{u0}^2), \ \ u_{1j} \sim N(0, \sigma_{u1}^2), \ \ {
m cov}(u_{0j}, u_{1j}) = \sigma_{u01}$$

Example: Random Slope for Income

Extend random intercept logit model for relationship between probability of voting Bush and household income to allow income effect to vary across states.

	Random int.		Random slope		
Parameter	Est.	se	Est.	se	
β_0 (constant)	-0.099	0.056	-0.087	0.057	
eta_1 (Income, centred)	0.140	0.008	0.145	0.013	
State-level random part					
$\sigma_{\mu 0}^2$ (intercept variance)	0.125	0.031	0.132	0.032	
σ_{u1}^2 (slope variance)	-	-	0.003	0.001	
σ_{u01} (intercept-slope covariance)	-	-	0.018	0.006	

Testing for a Random Slope

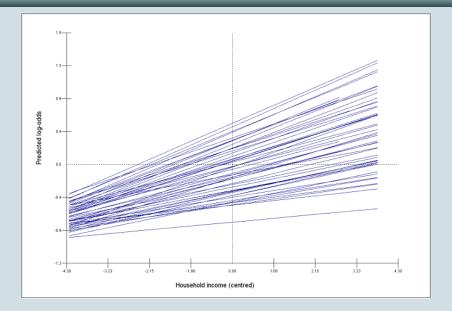
Allowing x to have a random slope introduces 2 new parameters: σ_{u1}^2 and σ_{u01} .

Test $H_0: \sigma_{u1}^2 = \sigma_{u01} = 0$ using a likelihood ratio test or (approximate) Wald test on 2 d.f.

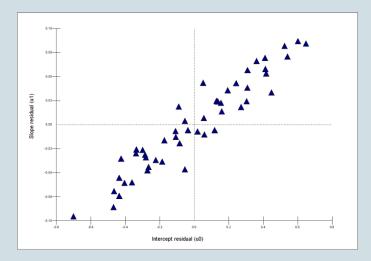
For the income example, Wald = 9.72. Comparing with χ^2_2 gives a two-sided p-value of 0.0008

 \implies income effect **does** vary across states.

Prediction Lines by State: Random Slopes



Intercept vs. Income Slope Residuals

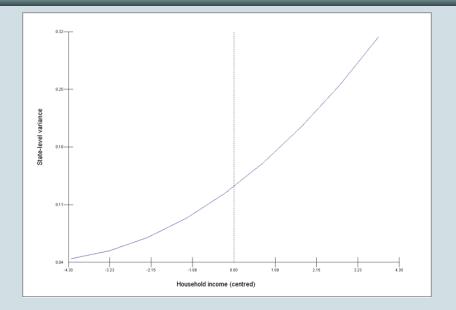


Bottom left: Washington DC Top right: Montana and Utah In a random slope model, the between-group variance is a function of the variable(s) with a random coefficient *x*:

$$var(u_{0j} + u_{1j}x_{ij}) = var(u_{0j}) + 2x_{ij}cov(u_{0j}, u_{1j}) + x_{ij}^2var(u_{1j})$$
$$= \sigma_{u0}^2 + 2\sigma_{u01}x_{ij} + \sigma_{u1}^2x_{ij}^2$$

Between-state variance in log-odds of voting Bush 0.132 + 0.036 **Income** + 0.003 **Income**²

Between-State Variance by Income



Adding a Level 2 x: Contextual Effects

A major advantage of the multilevel approach is the ability to explore effects of group-level (level 2) predictors, while accounting for the effects of **unobserved** group characteristics.

A random intercept logit model with a level 1 variable x_{1ij} and a level 2 variable x_{2ij} is:

$$\log\left(\frac{\pi_{ij}}{1-\pi_{ij}}\right) = \beta_0 + \beta_1 x_{1ij} + \beta_2 x_{2j} + u_j$$

 β_2 is the contextual effect of x_{2j} .

Especially important to use a multilevel model if interested in contextual effects as $se(\hat{\beta}_2)$ may be severely estimated if a single-level model is used.

Individual religiosity measured by dummy variable for frequency of attendance at religious services (1=weekly or more, 0=other)

State religiosity is proportion of respondents in state who attend a service weekly or more.

	No contextual effect		t Contextual effe	
Variable	Est.	se	Est.	se
Individual religiosity	0.556	0.037	0.543	0.037
State religiosity	-	-	2.151	0.350
Between-state variance	0.083	0.022	0.030	0.010

(Model also includes age, sex, income and marital status.)

Suppose we believe that the effect of an individual characteristic on π_{ij} depends on the value of a group characteristic.

We can extend the contextual effects model to allow the effect of x_{1ij} to depend on x_{2j} by including a cross-level interaction:

$$\log\left(\frac{\pi_{ij}}{1 - \pi_{ij}}\right) = \beta_0 + \beta_1 x_{1ij} + \beta_2 x_{2j} + \beta_3 x_{1ij} x_{2j} + u_j$$

The null hypothesis for a test of a cross-level interaction is $H_0: \beta_3 = 0.$

Suppose we believe that the effect of individual age on the probability of voting Bush might depend on the conservatism of their state of residence, which we measure by state religiosity.

Selected coefficients from interaction model		
Variable	Est.	se
Age	0.012	0.005
State prop. attending religious services weekly	4.206	0.716
Age $ imes$ State religiosity	-0.043	0.013

Z-ratio for interaction coefficient is 0.043/0.013 = 3.31 which is highly significant \implies effect of age depends on state religiosity.

Effect of Age by State Religiosity

Age effects on log-odds of voting Bush

Proportion attending	Age Effect
services weekly	
0.16	$0.012 - (0.043 \times 0.16) = 0.005$
0.30	$0.012 - (0.043 \times 0.30) = -0.0009$
0.64	$0.012 - (0.043 \times 0.64) = -0.016$

So age effect is weakly positive for the least religious states, and becomes less strongly positive and then more strongly negative as state-level religiosity increases.

 \implies Difference between young and old respondents in voting intentions is greatest in most religious states.

A Brief Overview of Estimation Procedures

- Multilevel models for continuous responses are usually estimated via maximum likelihood (ML)
- For binary (and other discrete) responses, there is a range of options:
 - Direct ML via numerical quadrature (software includes SAS, Stata, MIXOR, aML)
 - Quasi-likelihood (MLwiN, HLM)
 - Markov chain Monte Carlo (MCMC) methods (WinBUGS, MLwiN)
- In some situations, different procedures can lead to quite different results

Comparison of Quasi-Likelihood Methods

Rodríguez and Goldman (2001, *J. Roy. Stat. Soc.*) simulated a 3-level data structure with 2449 births (level 1) from 1558 mothers (level 2) in 161 communities (level 3), and one predictor at each level.

Results from 100 simula	tions			
Parameter	True value	MQL1	MQL2	PQL2
Child-level x	1	0.74	0.85	0.96
Family-level x	1	0.74	0.86	0.96
Community-level x	1	0.77	0.91	0.96
Random effect st. dev.				
Family	1	0.10	0.28	0.73
Community	1	0.73	0.76	0.93

Comparison of Estimation Procedures

Rodríguez and Goldman (2001) also analysed real data on child immunisation in Guatemala.

Random effect standard deviations					
PQL2 PQL1-B ML MCMC					
	Family	1.75	2.69	2.32	2.60
	Community	0.84	1.06	1.02	1.13

PQL-B is PQL with a bias correction; ML is maximum likelihood; MCMC is Markov chain Monte Carlo (Gibbs sampling)

Guidelines on Choice of Estimation Procedure

- ML via numerical quadrature preferred for simple models, but estimation times can be lengthy when there are several correlated random effects
- Quasi-likelihood methods quick and useful for model screening, but biased (especially for small cluster sizes)
- MCMC methods are flexible and becoming increasingly computationally feasible; the recommended method in MLwiN