
Modelling ethnic segregation using MLwiN

Rebecca Pillinger Centre for Multilevel Modelling

Note that this practical is accompanied by worksheets segregation.wsz and segrega-
tion2.wsz. These worksheets will only work with MLwiN version 2.10 (not version 2.02).
They will work with the free training version of MLwiN 2.10.

1 Examining the data

This practical session uses simulated data. Obviously it would be most interesting to use real data,
but there are several reasons why this is not practical. To use real data on school composition,
such as the Pupil Level Annual School Census (PLASC) produced by the DCSF, it is generally
necessary to complete a registration process and give details of the research that the data will be
used for, and to promise not to pass the data on to anyone else. Real datasets also tend to be very
large, which makes estimation slow (and it is not desirable to spend the whole practical session
waiting for the first model to run). Finally, the levels of segregation used to create the simulated
datasets have been chosen to be less extreme than the values estimated from real data. This also
improves the running of the models, for example because it is not necessary to run for so many
iterations.

� Open the worksheet segregation.wsz

The Names window appears showing a list of the variables in the worksheet. An MLwiN worksheet
consists of a number of columns, 1500 by default. In this worksheet, the first 6 columns are our
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variables and contain data, while the remaining 1494 columns are empty. Note that it is perfectly
acceptable to have columns of differing lengths in an MLwiN worksheet, and to have empty columns
in between columns containing data.

Our dataset has one row per cohort per school. The six variables consist of three unit identifiers,
Cohort, School and LEA, which specify which cohort, school and Local Education Authority
each row refers to, and three columns White, Black and Asian giving the number of students
belonging to each ethnic group in each cohort in each school. The Names window displays some
information about our variables: from left to right, the name of the variable, the column of the
worksheet that it occupies, the number of observations (the length of the variable), the number of
missing values, the minimum value, the maximum value, whether the variable is categorical (True)
or continuous (False), and in some cases some written information about the variable. We can
see that we have 6860 observations in each of our variables (6860 rows in our dataset) with no
missing values, and that all our variables are defined as continuous. Looking at the maximum and
minimum values, we can see that we have information for years (cohorts) between 2002 and 2008,
and some cohorts have no Black students, some have no Asian students, but there are no cohorts
without any White students.

We can have a look at the actual data:

� In the Names window, highlight the first six columns (LEA to Asian) by clicking and
dragging, using shift + click, or using ctrl + click

� Press the Data button at the top of the Names window

We can see that the first row of the dataset contains information for the cohort entering School
1 in LEA 1 in 2002. In this cohort there are 62 White students, 25 Black students and 42 Asian
students.

Exercise 1

How many White, Black and Asian students are there in the 2005 cohort in School 29 in LEA 2?
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2 Preparing the data

To specify our model correctly, we will need to use the proportions in each category in each cohort,
not the actual numbers. We will also need a variable which gives the total number of students in
each cohort, which we will call denominator. We will create these now.

� From the Data manipulation menu, select Command interface

� In the box at the bottom of the window that appears, type

� calc c7 = 'White'+'Black'+'Asian'

� name c7 'denominator'

� calc 'White' = 'White' / 'denominator'

� calc 'Black' = 'Black' / 'denominator'

� calc 'Asian' = 'Asian' / 'denominator'

If we look at the Names window again, we see that we now have a new variable, denominator.
We also see that our variables White, Black and Asian have changed. These variables now take
values between 0 and 1, since they are now the proportions in each category instead of the actual
numbers. We can see that the maximum value of White is 1, so there is at least one cohort that
has only White students, but the maximum values for Black and Asian are 0.59 and 0.94, so there
are no cohorts which have only Black or only Asian students.

Exercise 2

We saw in the previous section that there are no cohorts without any White students. What is the
smallest proportion of White students in a cohort that occurs in the dataset?

Our data is now in the correct format, but we will need three more variables to properly specify
the model. One variable which we will call cell will simply be a sequence from 1 to 6860 and will
give each row of the dataset a unique ID- we will use this as our level 1 ID instead of Cohort since
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Cohort does not have a different value for every row of the dataset1. The second variable takes
the value 1 for every row of the dataset. We need this variable to specify an intercept because
MLwiN requires every coefficient to have an associated variable. (Using a variable which always
has the value 1 is mathematically equivalent to including a coefficient with no associated variable.)
We will call this variable cons. Finally, because later we will be fitting a multinomial model to
proportions data, we are going to need a variable which will stand in for the response while we trick
MLwiN into expanding the dataset, and which we can then overwrite with our proportions. (We
will go into more detail as to why we need to do this in the section where we set up the multinomial
model). This variable needs to be a categorical variable with the same number of categories that
we have proportions for, and with category names that match those categories. We will call this
variable dummyresp

� From the Data manipulation menu select Generate vector

� Under Type of vector, select Sequence

� Next to Output column, select c8

� Next to Start number, type 1

� Next to End number, type 6860

� Next to Step value, type 1

� Click Generate

� Under Type of vector, select Constant vector

� Next to Output column, select c9

� Next to Number of copies, type 6860

� Next to Value, type 1

� Click Generate

1This is because we will be using a multinomial model later on– if we had a continuous response model it would
be fine to use Cohort as the level 1 ID
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� Under Type of vector, select Repeated Sequence

� Next to Output column, select c10

� Next to Maximum number, type 3

� Next to Number of repeats per block, type 1

� Next to Number of blocks, type 2286

� Click Generate

� In the Names window, name c8 cell, c9 cons and c10 dummyresp (highlight the variable
and click the Edit name button at the top of the window, or alternatively double click on
the variable)
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We have now created our variables cell and cons but we still have a little more to do on dum-
myresp. dummyresp is currently 1, 2, 3, 1, 2, 3, 1, 2, 3, . . ., which is what we wanted: it has 3
values and we have 3 ethnic categories making up our data, White, Black, and Asian. However,
looking in the names window we see that it is not a categorical variable, and it is only 6858 rows
long whereas our dataset is 6860 rows long. This is because we constructed it to be 2286 (= 6858/3)
lots of 1, 2, 3 (we couldn’t construct it to be 6860/3 lots of 1, 2, 3 because 6860 does not divide by
3)2. We can lengthen dummyresp to 6860 observations:

� In the Names window, highlight dummyresp

� Click the Data button

� In the Data window, type 6855 in the goto line box at the top

� Click on the box next to 6859, type 1 and press return

� Repeat for the box next to 6860

2dummyresp needs to have at least one 1, at least one 2 and at least one 3, and it must have no other numbers.
It doesn’t matter how many 1s, 2s and 3s or in what order, but this repeated sequence is the quickest way to generate
a variable satisfying these conditions.
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If we return to the Names window we see that dummyresp now has the correct number of
observations (you may need to press the refresh button at the top left of the Names window to
see this). We now need to declare it as categorical and assign it appropriate category names:

� With dummyresp highlighted, click the Toggle Categorical button

� Click the Categories button

� Using the Edit button at the top of the Set category names window or by clicking twice
on each category name, change the name of category 1 to be White, the name of category
2 to be Black, and the name of category 3 to be Asian

� Click OK

The Names window now shows that dummyresp is of the correct length, and categorical as
required.
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3 Fitting a binomial model

Note that the worksheet segregation2 has had all the operations described in Section 2 per-
formed, so you can carry out the analysis in this chapter by opening segregation2 if you have
not saved a copy of the work done in Section 2

Later on, we will fit a multinomial model which allows us to model Black segregation from White
and Asian segregation from White simultaneously. However, we will start by fitting a binomial
model for which the response is the proportion of non-White students in the cohort. First we
create this response:

� In the Command interface window, type

� calc c11 = 1 - 'White'

� name c11 'nonWhite'

We can find out what the average proportion of non-White students is:

� From the Basic Statistics menu, select Averages and Correlations

� In the window that appears, in the box at the right select nonWhite and click Calculate

We see that the average proportion of non-White students is 0.39: less than half.

Now we can set up the model. In MLwiN, we fit models by building up their equations in the
Equations window, and then pressing the Start button at the top of MLwiN to run the model
and obtain the estimates.
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� From the Model menu select Equations

� Click on either of the red ys

� In the window that appears, next to y: select nonWhite

� Next to N levels: select 3-ijk

� Next to level 3(k): select LEA

� Next to level 2(j): select School

� Next to level 1(i): select cell

� Click done

We have set our response variable to be nonWhite, and specified a model with 3 levels, LEA,
School and cell (which identifies the rows– recall we are using it instead of Cohort because it has
a different value for every row while Cohort takes the same value for example for the first cohort
of School 1 in LEA 1 and the first cohort of School 2 in LEA 1). Next we need to specify that the
model is binomial, instead of the default continuous response model:

� Click on the capital N in the first line of the Equations window

� Under Select distribution, tick Binomial

� Under Select link function, leave logit ticked

� Click Done
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We now need to specify the denominator. This is a variable which says how many observations the
proportions were based on. In our case, the proportions are the proportions of students in each
cohort who are not White. The proportions are thus based on the number of students in each
cohort. We have already created a variable denominator in the last section which consists of the
number of students in each cohort.

� Click on the red nijk in the first line of the Equations window

� Choose denominator from the drop-down box

� Click Done

(Note that when we specify the denominator, MLwiN creates a new variable based on our denom-
inator which it calls denom. Therefore the user should not use this name for the denominator
variable which they create themselves and specify in the Equations window as this will cause
problems when MLwiN tries to use the name again.)

The Equations window now tells us that our response is assumed to have a binomial distribution,
with the denominator (also known as ‘number of trials’) that we specified, and a probability that
varies from row to row of the dataset. The logit of the probability is modelled by the equation in
the second line of the window; so far we have not added any explanatory variables. We will do so
now:

� Click on the red β0x0 in the second line

� In the window that appears, choose cons from the drop-down box
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� Leave the Fixed Parameter box ticked and tick the k(LEA) and j(School) boxes as
well

� Click Done

� Press the Estimates button at the bottom of the Equations window

We have now set up a simple intercept-only model. Recall that cons takes a value of 1 for every
row in the dataset. Therefore we are modelling the logit of the proportion by β0jk × 1 = β0jk.
The equation for β0jk is given in the next line. It is made up of the intercept β0, which we will
estimate, and two random effects: an LEA level effect v0k and a school level effect u0jk. The next
two lines give the distributions of these random effects and we see that each is normally distributed
with a variance which we will estimate. These two variance parameters will be our measures of
segregation. Thus we estimate 3 parameters in all, the intercept and 2 variances, but our main
interest lies in just two of these, the variances.

If we press the Estimates button again, the parameters will be replaced by numbers. However
we have not yet run the model so these numbers are not our estimates. We will run the model
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now. First we will set the estimation method to the default for binomial models, 1st order MQL
(for more on the choice of estimation methods for binomial models see the User’s Guide to MLwiN
and the forthcoming modules of our online training materials on binomial models)

� Press the Nonlinear button at the bottom of the Equations window

� Click Use Defaults and Done

� Press the Start button at the top of MLwiN

We will now switch to estimation by MCMC. We do this because quasi-likelihood methods, such as
MQL which we have just used, can give biased estimates. (For more details, see the User’s Guide to
MLwiN and for more information about MCMC see MCMC estimation in MLwiN ). However it
is important that we have run the model with MQL: in MLwiN estimates from likelihood or quasi-
likelihood methods are used as the starting values in MCMC so MCMC cannot be used without
first having run using one of these methods.

� Click on the Estimation control button at the top of MLwiN

� Click on the MCMC tab and click Done
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� Press Start

When estimation has finished we get these results:

Before we interpret them, we should check that the parameter chains have converged and that the
burn-in has been long enough:

� From the Model menu, select Trajectories

� In the view last: box at the bottom of the Trajectories window, select 5000
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The Trajectories window shows a plot of the estimate of each parameter against the iteration
number. We can see five graphs, but we are not interested in the first or last of these at the
moment: the first is the deviance which is a measure for MCMC models used in a similar way to
the likelihood (for more details see MCMC estimation in MLwiN ) and the last is a parameter
involved in the variance at the cohort level which is constrained to be 1 because we are fitting a
binomial model. The graphs we need to look at are the middle three, for σ2

v0, β0 and σ2
u0.

The estimates that we see in the Equations window are arrived at by taking the mean of the
estimates across all the iterations. This is why the burn-in period is important: estimates during
the burn-in are discarded and so do not affect the estimate we see in the Equations window.
Often the starting values we supply are quite wrong and the estimates need to move away from
this wrong value over a number of iterations before settling down to vary around the correct value.
If we look at the graph for β0 we see that the estimates exhibit this behaviour: in early iterations
the estimates are quite high, around -0.4, but they gradually move down to around -0.55 or -0.6.
When we take the mean to arrive at our estimate for β0 we do not want to include the iterations
where the estimate varies around the higher value or where the estimate is moving from the higher
to the lower value: we only want to include the iterations where the estimate fluctuates round the
final value. So the graph tells us that we should have used a longer burn-in. Looking at the graph
it is also not certain whether the estimates for β0 have finished moving and will now continue to
stay between around -0.55 and -0.6, or whether they will drop still further (or indeed rise again).
We really need to run MCMC for a bit longer to be sure.

The graph for σ2
u0 looks much better: this is an example of what a good MCMC chain should look

like. However we should bear in mind that the estimates of all three of our parameters are related,
and if β0 has not in fact converged then we may find if we run for longer that as the value of β0

changes the estimates for σ2
u0 may suddenly jump to a different value. Thus it is important that

we run until all parameters have converged, not just the parameters that we are interested in.
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We can also get some information about whether we have run MCMC for long enough by clicking
on any of the graphs, for example the graph for β0, and clicking Yes to the question that appears.
This brings up a window with some diagnostic information on the chain for that parameter:

For details of what all this information means and how to use it, see MCMC estimation in MLwiN ,
but for now we will note that the effective sample size given at the bottom is only 4. We really want
an effective sample size of several hundred at least, and preferably several thousand. By contrast,
the effective sample size for σ2

u0 is 3215; if all parameters had an effective sample size this large we
would be quite happy.

We will run MCMC for another 5,000 iterations. You can leave the Trajectories window open if
you want, but the model will run more slowly if you do since this window will be updated every 50
iterations.

� Press the Estimation control button

� Change Monitoring Chain Length to 10000

� Click Done

� Press More (not Start) at the top of MLwiN

We have asked for a total of 10,000 iterations so MLwiN will perform another 5,000 to bring us up
to this.

� In the Trajectories window, select 10000 in the view last: box
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We can now be reasonably confident that estimates for all three of the parameters have converged,
but the burn in is still not long enough as we can see looking at the graph for β0. It looks as though
we need to include the first 2,000 iterations that we can see here in the burn-in period.

� Click on the graph for any of the parameters (e.g. β0)

� Click Yes to the question that appears

� Click the Diagnostic Settings button at the bottom of the MCMC diagnostics window

� In the MCMC Diagnostics Settings window that appears, under Burn-in settings at
the bottom, in the box next to Increase burn-in length by type 2000

� Click Apply and Done
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The MCMC diagnostics window for β0 has been updated and we can see that now the chain
we are basing our estimate of β0 on no longer includes the 2,000 iterations where the estimates
were moving away from the incorrect starting value. If we look in the section headed Summary
Statistics we see that the mean is now calculated to be -0.555 and the standard error of our
estimate is 0.024 – compare to the values of -0.538 and 0.047 before we increased the burn-in. We
also see that the effective sample size has increased, to 25 (it was 9 after we ran for the second
5,000 iterations but before we increased the burn-in).

Exercise 3

What are the effective sample sizes for σ2
v0 and σ2

u0 now?

We also need to find out what the estimates are for the other two parameters with the increased
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burn in (though we do not expect them to have changed much since these parameters appeared
to have converged even with the shorter burn in). We do this by clicking on their graphs in the
Trajectories window – the burn-in is still set to 2,000 so we do not need to specify this again.
(Note however that this burn-in is not applied to the estimates displayed in the Equations window
or above each graph in the Trajectories window – it only applies to the MCMC diagnostics
window.)

95% CI
Parameter Estimate Standard error Lower Upper
β0 −0.555 (0.006) −0.598 −0.510
σ2

v0 0.290 (0.064) 0.189 0.439
σ2

u0 0.370 (0.018) 0.337 0.406

Our estimates tell us that (as we expect from our earlier calculation of the average of nonWhite)
the average (or predicted) proportion of nonWhite students across cohorts, schools and LEAs is
less than 0.5 (since β0 is negative). We can calculate the exact median predicted probability by
taking the antilogit of β0: in the Command interface window type

� calc antilogit(-0.555)

We get:

(press the Output button on the Command interface window to get the Output window if it
is not already shown). The difference from the average value of nonWhite which we calculated
earlier is partly because we are now taking the median rather than the mean (the median value of
nonWhite is 0.372), and partly because our model allows for the dependency between cohorts in
the same school and schools in the same LEA (when we took the average of nonWhite we were
tacitly assuming each row of the dataset was an independent observation).

Our real interest, of course, is in the variance parameters since these are our measures of segregation.
Our estimate for the LEA level segregation is 0.290, and our estimate for the school level segregation
is 0.370. Both these estimates are significant as we can see by looking at the 95% confidence intervals
(we get these from the quantiles shown in the MCMC diagnostics window). Thus we have found
that, for our simulated dataset, there is significant variation between LEAs in their proportions
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of non-White students, i.e. there is significant segregation, and that even after these differences
between LEAs have been taken into account, there is still school segregation. We could if we
wanted calculate indexes such as D from our estimates.

We will also calculate the DIC. This will not tell us anything useful right now, but we will need it
later when we want to compare this model with the next model we go on to fit.

� From the model menu select MCMC → DIC diagnostic

The DIC is shown in the fourth column and we can see for this model its value is 45341.86.

We might wish to know how segregation is changing over time: is it rising, falling, or remaining
roughly the same? To address this question, we will need to include the year (i.e. Cohort) as
an explanatory variable in our model. To make changes to our model, we need to change the
estimation method back to IGLS, make the changes to the set-up, run the model again using MQL,
and then run again in MCMC.

� Press the Estimation control button

� Click the IGLS/RIGLS tab

� Click Done

� At the bottom of the Equations window, click the Add Term button

� In the Specify term window that appears, select Cohort from the variable drop-down
box

� Under centring, select around value and type 2005

� Click Done
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We have centred cohort around the middle of its possible values, 2005, which corresponds to
subtracting 2005 from every value- this will help with the estimation and interpretation. MLwiN
has automatically created the centred variable for us as we can see if we look in the Names window.

So far, we have allowed the overall proportion non-White to change linearly from year to year,
but we have not allowed the segregation to change. To do this, we need to add random effects on
Cohort. These will allow the school and LEA level variance to change with time.

� Click on the (cohort-2005) term in the Equations window

� In the X variable window which appears, leave Fixed Parameter ticked and tick
k(LEA) and j(School)

� Click Done

� In the Equations window, click the Estimates button twice
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We have 2 new parameters at the LEA level, σv01 and σ2
v1, and 2 new parameters at the school

level, σu01 and σ2
u1. σ2

v1 is the variance of the random effects on Cohort, and σv01 is the covariance
between the random intercepts and the random effects on Cohort; and similarly for the school
level random parameters. However as we will see when we have obtained our estimates, we will not
interpret each parameter separately but combine them to get a single function for the variance at
each level.

� Click the Estimates button again

� Click the Start button

� Change the estimation method to MCMC and keep the burn-in at 500 and the monitoring
chain length at 10,000

� Click the Start button again
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If we were actually using this analysis as part of our research, we should really check the convergence
and the adequacy of the burn-in again by looking at the Trajectories window and the MCMC
diagnostics window. However we will pretend that we are satisfied on both counts and use our
estimates as they are, leaving the question of whether this is reasonable as an exercise:

Exercise 4

Check whether the burn-in and/or the total number of iterations should be increased, and if so
whether this makes a difference to the estimates. (Note that the results displayed in the MCMC
diagnostics window still have the extra burn-in of 2,000 that we specified for the previous model
applied so you will need to change this back to 0 to see diagnostics for the estimates we use below).

Both our fixed part coefficients, β0 and β1, are negative (and significant), so the average proportion
non-White in 2005 is less than 0.5, and the proportion non-White is decreasing each year.

As we stated above, we will not interpret our variance parameters individually, but will calculate a
variance function for each level. This uses the random parameter estimates to calculate the total
variance at each level for each year, and we can then plot this against the year (Cohort) to see
how the segregation at each level changes with time.
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� From the Model menu, select Variance function

� Click the Name button at the bottom of the Variance function window

� Next to level select 2:School

� Next to variance output to: select c15

� Next to SE of variance output to: select c16

� Change the 1.0 in the box in front of SE of variance output to to 1.96 (so that we can
plot 95% confidence intervals)

� Click calc

� Name c15 ‘schoolvar’ and c16 ‘schoolvar SE’ (in the Names window or Command in-
terface window)

The top pane of the Variance function window shows the formula used to calculate the variance
function. Since cons is always 1, it simplifies to

σ2
u0 + 2σu01(Cohortijk − 2005) + σ2

u1(Cohortijk − 2005)2

So we are modelling the variance (the segregation) as a quadratic function of the year.

� Repeat changing level to 3:LEA and putting the variance into c17 (name this LEAvar)
and the standard error into c18 (name this LEAvar SE)

We can now plot the segregation as a graph

� From the Graphs menu select Customised Graph(s)
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� In the Customised graph window, next to y select LEAvar and next to x select cohort

� Next to plot type select line

� Select the error bars tab

� Next to y errors+ select schoolvar SE and next to y errors- again select schoolvar SE

� Next to y error type select lines

� Select the plot style tab

� Next to line thickness select 3

� Next to colour select 12 l. red
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� Click the plot what? tab

� In the grid at the left of the window, click on the second row

� Fill in the plot what?, error bars and plot style tabs to plot the school level variance
and confidence intervals in colour 9 l. blue

� Click Apply at the top left of the window
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We can rescale so that the y-axis runs from 0 to 0.5:

� Click on the graph

� In the Graph options window, select the Scale tab

� Under Y axis, select user defined scale

� Change y min to 0

� Click Apply
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We can see that both the school level segregation (in blue) and the LEA level segregation (in red)
are significant in all years (the confidence intervals do not cross 0).

The confidence intervals we have plotted here are derived from the standard errors of the variance
parameters. It would be better to use the stored chains of parameter estimates from MCMC to
calculate 95% CIs (since these would be nonparametric; the confidence intervals we are using now
are based on the assumption that the sampling distribution of the random parameters is Normal
which is probably not true). We would need to unstack the chains of parameter values as described
in MCMC estimation in MLwiN , then for each iteration calculate the variance function, then for
each year take the 2.5th and 97.5th percentiles. We will not do this now (but you may want to try
this in your own time).

Exercise 5

Were the confidence intervals for our measures of segregation in the simpler model (without co-
hort) obtained in this way?

Exercise 6

If you run MCMC for more iterations, do the standard errors of the estimates reduce and hence
the confidence intervals become narrower?
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In order to assess whether the change in segregation over time is significant we will compare this
model to our model without the time trend using the DIC (see MCMC estimation in MLwiN for
more information about the DIC). If we look back to page 15, we can see (in the top left of the
Trajectories window) that the deviance for the model without the time trend was 44380.262, and
if we look at the Equations window we can see that the deviance for the model with the time trend
is 42105.668. However we do not compare the deviances directly: we compare the DICs, which
combine the deviance with information about the number of parameters in the model so that more
complicated models are penalised. Recall that we have already calculated the DIC for the model
without the time trend (p19) and we found it was 45341.86. To obtain the DIC for the current
model, with the time trend, we do the same thing:

� From the model menu select MCMC → DIC diagnostic

A lower DIC implies a better model, and the difference in DIC in this case of around 1500 is
substantial, so we conclude that the model with the time trend is definitely better than the model
without and hence that (at least one of) the changes in segregation we observed is significant (we
would need to fit the model with just the LEA level time trend and the model with just the school
level time trend in order to establish whether just one or both are significant, but we will not do
this now for time reasons).

4 Fitting a multinomial model

4.1 Multinomial models in MLwiN

To explain how the setting up of multinomial models works in MLwiN, let’s first consider a simpler
example. Instead of the situation we have, with the proportion of students of each ethnicity in each
school cohort, suppose we have data on voting intentions, with one row of the dataset per person
and people grouped by area. There are 3 possible parties to choose from, and each person chooses
just one. So our response variable vote might look like this: 1, 1, 2, 1, 3, 3, 2, 1, . . .. We specify that
vote is our response, and that we have two levels, area (level 2) and individual (level 1). We
then specify that the model is multinomial and specify a reference category (let’s choose category
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1). When we do this, MLwiN creates some new expanded versions of vote, area and individual,
which it calls resp, area long and individual long. This is because in order to estimate the
multinomial model, MLwiN needs to create an extra level corresponding to the response category.
In the new dataset, there is one row per response category per person. The reference category does
not have a row, so in our example where we start with 3 response categories, we end up with 2 rows
per person corresponding to categories 2 and 3. Another new variable, resp indicator, is created
to provide the ID codes for this new level.

In the expanded dataset, the response resp no longer consists of 1s, 2s and 3s. It now takes values
0 or 1. It takes the value 1 when in our original response vote, the person’s value was the category
which the current row corresponds to, and 0 when the person’s value was a different category. So
with 3 categories, each person’s 2 rows can be 1, 0 (if the person’s value of vote was 2), 0, 1 (if the
person’s value of vote was 3), or 0, 0 (if the person’s value of vote was 1). In our example, where
the first 3 people had values of vote 1, 1, 2, resp will have 0, 0, 0, 0, 1, 0 for its first 6 values.

We next need to specify a denominator. This is a variable which says how many observations
each row of our original dataset was based on. In this example we had one row per person, so
each row referred to just one person and the denominator will have a value of 1 for every row. In
the case of our segregation data, by contrast, every row corresponds to a school cohort, and the
proportions are proportions of the total number of students in the cohort, so the denominator will
consist of the total number of students in each school cohort. (In fact we have already created this
variable and called it denominator). Note that as we continue to set up our model, specifying
the denominator and adding explanatory variables, we specify variables from our original dataset,
and MLwiN expands them properly for us in the background– we do not have to create expanded
versions ourself to pass to MLwiN.

We can now add our explanatory variables. MLwiN displays a different equation for each response
category, so explanatory variables can have different coefficients for different response categories.
We can add variables to some equations and not others, and we can specify that an explanatory
variable should have the same coefficient for all response categories if we want. We will say more
about this later.

Returning to our segregation data, we now have data on the proportion in each response category,
instead of having a particular category as the response for each row as in the voting example. The
initial form of our dataset is thus quite different: instead of one categorical response variable we
have three variables taking any value between 0 and 1. However if we consider the voting example
after it was expanded by MLwiN, we see that one is just the generalisation of the other. We can
think of the voting example as being proportions each based on just 1 person. Since there is only
1 person, the proportion will be 1 for the party they intend to vote for and 0 for the other parties.
This is what we see in the new response variable that MLwiN created, resp. In our segregation
example, we will need MLwiN to create an expanded dataset just as it did in the voting example,
but this time instead of a response variable consisting of 0s and 1s, we want the response variable
to contain our proportions (with the proportions for the reference category missed out). So (if we
choose White as the reference) row 1 of the expanded dataset corresponds to response category
Black in the first cohort of School 1 in LEA 1, and the response will be 0.194 since this is the
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proportion of Black students in the first cohort of School 1 in LEA 1. Row 2 of the expanded
dataset corresponds to response category Asian in the first cohort of School 1 in LEA 1, and the
response will be 0.326 since this is the proportion of Asian students in the first cohort of School 1
in LEA 1. There is no row which has response 0.481, the proportion of White students in the first
cohort of School 1 in LEA 1: we have omitted White because it is the reference category. But the
information is not missing because the first row of the denominator we specify (which becomes the
first and second rows of the expanded denominator created by MLwiN) is 129, the total number of
students in the first cohort of School 1 in LEA 1.

So we know what the expanded dataset should look like. Creating it however is a little complicated.
Since the multinomial facility in MLwiN was originally designed with individual rather than pro-
portion data in mind (i.e. intended for data like the voting example rather than like our segregation
data), MLwiN will not allow a multinomial model to be specified unless the response is a categorical
variable (so we cannot specify a multinomial model if our response instead takes any value between
0 and 1). MLwiN then expands the dataset and creates a new variable consisting of 0s and 1s to
be the response as described above. What we need to do therefore is to use the variable we created
in the last section, dummyresp, to get MLwiN to allow us to specify a multinomial model and to
expand the dataset properly. We will then overwrite the new response variable created by MLwiN
with our proportions data, arranged in the form we described in the previous paragraph (proportion
Black in first cohort in School 1 in LEA 1, proportion Asian in first cohort in School 1 in LEA
1, proportion Black in second cohort in School 1 in LEA 1, proportion Asian in second cohort in
School 1 in LEA 1,. . . ). In order for this to work properly, dummyresp needs to be the same
length as our original dataset (6860), and it needs to be a categorical variable with 3 categories, and
category names corresponding to the categories of our proportions data (because MLwiN will use
the category names of dummyresp to refer to the response categories of the multinomial model).
The variable dummyresp which we created in the last section meets these conditions so we are
ready to set up the model.

Exercise 7

What is the mean proportion of Black students across school cohorts? What is the mean proportion
of Asian students across school cohorts? What is the mean proportion of White students across
school cohorts?

4.2 Setting up the multinomial model

Note that you can use the worksheet segregation2 for the following analysis, if you have not
still got the worksheet you were using in the previous sections

� Set the estimation method back to IGLS/RIGLS

� Click the Clear button at the bottom of the Equations window
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� Click on either of the red ys

� Next to y: select dummyresp

� Next to N levels: select 3 - ijk

� Next to level 3(k): select LEA

� Next to level 2(j): select School

� Next to level 1(i): select cell

� Click done

� Click on the capital N in the Equations window

� Under Select distribution tick Multinomial

� Under Multinomial options, make sure Unordered is ticked and next to ref category:
make sure White is selected

� Click Done

MLwiN has now created a properly expanded dataset for us. We can see this if we got to the Names
window. We have six new variables: resp, resp indicator, bcons.1, cell long, School long,

31



and LEA long. If we highlight these variables and click the Data button, we will see the following:

resp does not yet have the right values as it was created from dummyresp, but the other columns
are as they should be. We can see from the values of resp indicator that the first row refers to
Black, the second row to Asian, the third row to Black, the fourth row to Asian, and so on.
cell, our cohort identifier, has been expanded to cell long, and where cell had values 1, 2, 3, . . .
cell long has values 1, 1, 2, 2, 3, 3, . . .. School long and LEA long consist of similarly duplicated
values. Thus the first and second rows both refer to the 2002 cohort in School 1 in LEA 1; when
we put the correct values in the resp column, the first row will have the proportion Black in the
2002 cohort in School 1 and the second row will have the proportion Asian in the 2002 cohort in
School 1. bcons.1 is like an expanded version of our variable cons, which just takes the value 1
for every row. We will not see it appear in the Equations window, but MLwiN will use it when
we add more explanatory variables so that it can expand them properly.

We will continue to set up the model by overwriting the current response variable resp with our
proportions data:

� From the Data manipulation menu, select Split Records

� In the window that appears, increase the Number of occasions to 2

� In the Stack data area, next to Occasion 1 select Black, next to Occasion 2 select
Asian and next to Stacked into select resp

� Click the Split button

� Click No on the message that appears asking whether you want to save the worksheet
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(For more details on what this window is doing see the User’s Guide chapter 13).

If we now look at the Data window again, we can see that the values in the resp column have
changed:

It now contains the proportions that we required: for example its first value, 0.194, is the proportion
of Black students in the 2002 cohort in School 1 in LEA 1.

Exercise 8

a. Look at the columns containing the original data to verify that this proportion is indeed 0.194

b. What is the value of resp on row 200? What does this value refer to (what is its interpreta-
tion)?
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We now need to specify the denominator for the multinomial model (recall that this is the number
which each proportion is based on, in our case the total number of students in each cohort in each
school) and add some explanatory variables

� In the Equations window, click on the red njkl

� Select denominator from the drop-down box

� Click Done

� Click the Add Term button at the bottom of the Equations window

� From the variable, select cons and click add Separate coefficients

� Click the Add Term button again and select Cohort from the variable

� Under centring select around value and type 2005 in the box to the right

� Click add Separate coefficients

� Click on each of the four explanatory variables (cons.Black, cons.Asian, (cohort-
2005).Black and (cohort-2005).Asian) in turn, and in the window that appears, leave
Fixed Parameter ticked and tick l(LEA long) and k(School long) as well, then click
Done

� Click the Estimates button

In the model we have set up, the log of the proportion Black versus the proportion White and
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the log of the proportion Asian versus the proportion White are each modelled by a different
equation. Both these equations have an intercept (the terms with cons in) and a time trend (the
terms with (cohort-2005) in), but because we have a different equation for each category, we can
have different coefficients for these terms for each category. For example, in the year 2005 (when
cohort − 2005 = 0), there could be on average across schools a greater proportion of Asian than
of Black students, which would mean a higher intercept for Asian than for Black students, i.e. we
would estimate β1 as larger than β0. It could be that on average the proportion of Black students is
increasing each year, which would give us a positive estimate for β2, while the proportion of Asian
students is decreasing, which would give us a negative estimate for β3.

We have put LEA and school level random effects on all four of our explanatory variables. So in
2005, each LEA is allowed to have a different proportion of Black students (the LEA proportions
vary around the overall mean), and within the LEAs, each school is allowed to have a different
proportion of Black students (the school proportions vary around the LEA means); and the same is
true for the proportions of Asian students. Each LEA is also allowed to have a different time trend
in the proportion of Black students (the LEA time trends vary around the overall time trend), and
each school is allowed a different time trend in the proportion of Black students too (the school
trends vary around the LEA trends); again, the same is true for the proportions of Asian students.
This has led to four variance terms at each level (on the diagonals of the two variance matrices),
and six covariance terms. Once again when we have obtained our estimates we will plot a graph
to examine the segregation instead of trying to interpret all the parameters separately (although
we will have a look at some of them). In addition to these school and LEA level random effects,
the last line of the Equations window specifies the cohort level variation– this allows each cohort’s
proportions to vary around the school trends. Its structure and the size of the variances and
covariances at this level are fixed because we are estimating a multinomial model.

Note that when we added the explanatory variables, and when we specified the denominator, we
used variables from our original dataset (cons, Cohort and denominator). MLwiN has created
expanded versions of these as we can see if we look in the Names window.

Exercise 9

Identify these expanded variables in the Names window and view them in the Data window. De-
scribe how the original variables have been altered to produce these new variables

We will now run the model:

� Click the Nonlinear button at the bottom of the Equations window

� Click Use defaults and Done

� Click the Start button

� Change the estimation method to MCMC and make sure the burn-in is set to 500 and the
monitoring chain length to 5000
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� Click Start again

� Click the Estimates button

Exercise 10

Are the overall proportions of Black and of Asian students relative to the overall proportion of White
students increasing or decreasing over time?

Once again, our segregation is not a single number but a function of cohort (in fact, two functions
of cohort: one for Black and one for Asian)

� From the Model menu select Variance function

� From the level drop-down box select 3:School long

� From the variance output to: drop-down box select c30

� From the SE of variance output to: drop-down box select c31 and make sure the box
to the left says 1.96

� Click calc
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Exercise 11

Write down the simplified equation for the variance for the Black rows of the dataset and the equa-
tion for the variance for the Asian rows of the dataset. (Recall how cons.Black and the other
explanatory variables are constructed: when they take on values of 0 and what values they take
on when they are not 0). Are there any variance or covariance terms which do not feature in the
equation for the Black rows or the equation for the Asian rows?

� Repeat for the LEA level, putting the variance in c32 and the standard errors of the variance
in c33

We’ll plot these functions against cohort, but first we need to create two new variables Black filter
and Asian filter. This is because we need to plot separate lines for Black and Asian, but the output
of our variance function at each level is stored in one column, not one column for Black and one
column for Asian. Black filter takes the value 1 for Black rows and 0 for Asian rows, and we will
use it to ask for only the Black values to be plotted. Asian filter takes the value 1 for Asian rows
and 0 for Black rows, and we will use it to ask for only the Asian values to be plotted.

� In the Command interface window type the following:

� calc c27 = 'resp indicator' == 2

� calc c28 = 'resp indicator' == 3

� name c27 'Black filter'

� name c28 'Asian filter'

� From the Graphs menu select Customised Graph(s)

� From the drop-down box in the top left corner select D2
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� Fill out the plot what? tab with the following selections: y: c30, x: (cohort-2005).Black,
filter: Black filter, plot type: line

� Fill out the plot style tab with the following selections: colour: 1 blue, line thickness:
3

� Fill out the error bars tab with the following selections: y errors+: c31, y errors-: c31,
y error type: lines

� In the grid in the left hand part of the window, click on the second row

� Fill out the tabs in the same way except using (cohort-2005).Asian in place of (cohort-
2005).Black, Asian filter in place of Black filter, and 2 green in place of 1 blue

� Click on the third and fourth rows in the grid and fill out the tabs in the same way as for
the first two rows, but using c32 instead of c30, c33 instead of c31, 9 l. blue instead of
1 blue and 10 l.green instead of 2 green

� Click Apply

� Rescale the y-axis to start at 0

The blue lines show Black segregation from White and the green lines show Asian segregation from
White (the dotted lines give the 95% confidence intervals; note that just as in the binomial case we
could obtain better, nonparametric, confidence intervals using the MCMC parameter chains but
for time reasons we won’t do this now). The lighter lines are the LEA level segregation and the
darker lines are the school level segregation.

For both ethnicities, segregation from White is significant at both the LEA and the school level
across the whole time period of our data. We can see this because none of the confidence intervals
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overlap 0. The school level segregation of Black from White and the LEA level segregation of Black
from White seem to be roughly equal. There is a bigger gap between the school and LEA level
segregation for Asians but this may not be significant (to test the significance we would have to
compare to a model constraining the random effects at school and LEA level to be equal for Asians,
but it’s not possible to fit this using MCMC in MLwiN). Black segregation from White is lower
than Asian segregation from White at the school level, across the whole time period.

Some of the lines seem to show an upward trend while others seem roughly horizontal; the steepest
trend appearst to be in Black LEA level segregation. We will test this in a moment by comparing
the DIC for this model to the DIC for a model without the time trend, but before we do this we
will finish looking at this model (because to calculate the DIC for the model without the time trend
we will need to get rid of this model).

Let’s now return to the Equations window and think a bit more about some of the random
parameters. At each level, three random parameters went into the variance function for Black,
and three random parameters went into the variance function for Asians (e.g. for Black LEA level
segregation it was variance of Black intercepts, varaince of Black slopes and covariance between
Black intercepts and Black slopes: σ2

v0, σ2
v1 and σv01). None of the covariances between Black terms

and Asian terms were included in the variance functions. This is because in the variance functions
the covariance terms are multiplied by both associated explanatory variables. For the Black rows of
the expanded dataset the Asian explanatory variables are 0 and for the Asian rows of the expanded
dataset the Black explanatory variables are 0. So for every row of the dataset, the covariances
between Black and Asian terms were multiplied by 0 when calculating the variance functions.

These covariances therefore do not enter into our measure of Black segregation from White or of
Asian segregation from White. This seems substantively reasonable. However these covariances
are of interest– they tell us something about Black segregation from Asian (equivalently Asian
segregation from Black).

For example, let’s consider the second term in the LEA level covariance matrix, −0.116. This is the
covariance between Black intercepts and Asian intercepts. Because it is negative, this covariance
implies that LEAs with a greater proportion of Black students are likely to have a smaller proportion
of Asian students, and LEAs with a greater proportion of Asian students are likely to have a smaller
proportion of Black students. This covariance is not in fact significant; if it were it would suggest
that as well as Blacks being segregated from Whites and Asians being segregated from Whites,
Blacks are segregated from Asians. This would imply that many LEAs fall into one of these three
patterns: comparatively many White students but comparatively few Black or Asian, comparatively
many Black students but comparatively few White or Asian, or comparatively many Asian students
but comparatively few Black or White students.

By constrast, the covariance between the Black and Asian intercepts at the school level is positive
(and significant) with a value of 0.235. This means that schools which have a greater proportion of
Black students also have a greater proportion of Asian students and vice versa. So Black students
are segregated from White and Asian students are segregated from White, but Black students are
not segregated from Asian. This suggests that schools vary quite a bit in their proportion nonWhite
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but given this proportion there is not much variation in the ratio of Black to Asian students.

Finally, we will test whether the trends in segregation that we observed in our graph are significant.
We will first calculate the DIC for the current model

Exercise 12

Calculate the DIC for the model

Exercise 13

Run the model without the time trend and calculate the DIC. What can you say about the changes
in segregation over time that we observe?
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Answers to exercises

1. The 2005 cohort of School 29 in LEA 2 can be found on row 200 of the dataset. In this cohort
there are 66 White students, 23 Black students and 7 Asian students.

2. In the Names window, the minimum value of White is listed as 5.263158E-02. This means
5.263158 × 10−2, which (rounded) is 0.053. So the smallest proportion of White students in
a cohort is 0.053, or around 1 in 20.

3. Effective sample size for σ2
v0 is 877; effective sample size for σ2

u0 is 4485 (to get the effective
sample size, click on the graph for the parameter in the Trajectories window to bring up
the MCMC diagnostics window for that parameter- the effective sample size is given at
the bottom of the window). These are both reasonable sizes so we can have confidence in the
estimates for these parameters.

4. Looking in the Trajectories window, the estimates for all the parameters appear to have
converged by 1,000 iterations (σ2

u0 and σ2
v0 for example look as though they may possibly

not have converged within the burn-in period). However the effective sample size for β0 for
example is only 7 which suggests it might be beneficial to run for more iterations. If we run
for a total of 50,000 iterations and increase the burn-in by 1,000 iterations, the value of β0

decreases (to -0.531) and its standard error increases (to 0.107), but the other estimates do
not change much. Looking at the trajectory for β0 after 50,000 iterations we still might want
to run for longer to be sure that it has converged and that we have enough iterations for a
good estimate.

5. Yes, when we ran the model without cohort, we did indeed use confidence intervals obtained
in this way. For that model our measure of segregation at each level was much simpler, since
it consisted only of the variance of the random intercepts at that level, and so we did not
need to calculate a variance function for each iteration but could take our confidence intervals
directly as the 2.5th and 97.5th percentiles of the estimates for the variance parameter, which
we obtained from the MCMC diagnostics window. We did not need to calculate percentiles
separately for each value of cohort because the segregation measure was constant across
cohorts.

6. No, if we run for example for 50,000 iterations the standard errors of the random parameters
are about the same. This is as we expect: if we have not run MCMC for long enough we
may find that the standard error increases when we run for longer (as we saw for β0 in the
previous question), but we do not expect that the standard error will decrease. (On the other
hand if we have not used a long enough burn-in and then we increase the burn-in we may
well find the standard error decreases).

7. Mean proportion of Black students: 0.10; mean proportion of Asian students: 0.29; mean
proportion of White students: 0.61. To obtain these values, select Averages and Correla-
tions from the Basic Statistics menu, check that Averages is selected under Operation,
select White, Black and Asian in the box to the right and click Calculate.

8. (a) To do this, in the Names window highlight LEA, School, Cohort and Black and
click Data. In the Data window, the 2002 cohort in School 1 in LEA 1 should be in
the first row, and the value of Black in the first row souldd be 0.194.
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(b) The value of resp in row 200 is 0.346. The value of resp indicator is Asian, the value
of School long is 15, the value of LEA long is 1 and the value of cell long is 100.
So 0.346 is the proportion of Asian students in School 15 in LEA 1 in the cohort where
cell = 100. To find out which cohort this is, bring up the data for cell and cohort,
and scroll down till you find cell = 100 (because of the way this variable was created,
this should be on row 100). The value of cohort on this row is 2003. So 0.346 is the
proportion of Asian students in the 2003 cohort of School 15 in LEA 1.

9. The expanded variables are denom, cons.Black, cons.Asian, (Cohort-2005).Black and
(Cohort-2005).Asian. denom has been created from denominator by simply duplicating
every value. This makes sense: denominator referred to the original dataset with one row
per cohort, whereas denom refers to the expanded dataset with two rows per cohort, so each
cohort size needs to appear twice. cons.Black has been created by first duplicating cons,
in the same way that denominator was duplicated to become denom, and then setting the
value to 0 on every Asian row. cons.Asian was created in the same way but instead setting
the value to 0 on every Black row. (Cohort-2005).Black was created by subtracting 2005
from Cohort, then duplicating the values, and then setting the value to 0 on every Asian
row. (Cohort-2005).Asian was created in the same way but instead setting the value to
0 on every Black row. Multiplying these four explanatory variables by their coefficients and
adding them up will now result in the two separate equations we see in the Equations window:
for Black rows the values of cons.Asian and (Cohort-2005).Asian are always 0 so we get
β0klcons.Black + β2kl(Cohort-2005).Black, ans similarly for the Asian rows.

10. To answer this question we need to look at the fixed part coefficients of time, which is
(cohort-2005). So we need to look at the estimates of β2 and β3, which are −0.014 and
−0.025 respectively. We are modelling the log of each proportion divided by the proportion
in the reference category, so we would need to do some transformations to these values to
provide an exact interpretation; however we can note that they are both negative (though
β2 is not significant) and so both the overall proportion of Black students compared to the
overall proportion of White students and the overall proportion of Asians students compared
to the overall proportion of White students are decreasing over time.

11. Equation for Black rows: variance = σ2
v0+2σv02(Cohortjkl−2005)+σ2

v2(Cohortjkl−2005)2.
Equation for Asian rows: variance = σ2

v1+2σv13(Cohortjkl−2005)+σ2
v3(Cohortjkl−2005)2.

To arrive at these equations, remember that in the Black rows, cons.Asian and (Cohort-
2005).Asian are 0, so any terms containing these will be 0 for the Black rows and thus drop
out. Similarly for the Asian rows any terms including cons.Black or (Cohort-2005).Black
drop out. For the Black rows, cons.Black is just 1 and (Cohort-2005).Black is just
Cohort− 2005; for the Asian rows cons.Asian is just 1 and (Cohort-2005).Asian is just
Cohort−2005. Covariance terms which don’t appear in either equation are those multiplying
a term involving Black and a term involving Asian (since this product will be 0 on all rows):
σv01, σv12, σv03 and σv23

12. You should get:
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13. For the model without the time trend, the output when we calculate the DIC is

Thus the model without the time trends shows a decrease of around 2000 compared to the
model with the time trends, indicating that at least one of the trends is significant. To es-
tablish which trends are significant and which are not (or whether they are all significant) we
would need to compare the DICs for models including different combinations of time trend.
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