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An ejicient and straigh@orward procedure is described for speczfying and 
estimating parameters of general mixed models which contain both hierar- 
chical and crossed random factors. This is done using a model formulated 
for purely hierarchically structured data and generalizes the results of 
Raudenbush (1993). The exposition is for the continuous response linear 
model with natural extensions to generalized linear; nonlinear, and multivari- 
ate models. 

A considerable literature exists on random coefficient models where popu- 
lation units are hierarchically clustered. There have been applications in many 
areas such as data on students nested within schools (Aitkin & Longford, 
1986) and repeated measures grouped within individual subjects (Laird & 
Ware, 1982). Bock (1989) contains a range of applications, and the books 
by Goldstein (1987b), Bryk and Raudenbush (1992), and Longford (1993) 
give detailed expositions of estimation theory and applications. 

There are many cases, however, where units at the same level of a hierarchy 
are simultaneously classified by more than one factor. There are many 
instances of such structures, especially in the biological and social sciences. 
For example, school pupils may be classified by the school they attend as 
well as the neighborhood they live in, where both classifications are regarded 
as random. This is a two-level structure, with students at Level 1 nested 
within the cells of the Level 2 cross-classification. If the students were 
repeatedly measured then the measurement occasions would constitute the 
lowest Level 1, the students Level 2, and the crossing of schools and neighbor- 
hoods Level 3. In the present article we show how quite general models 
of this kind can be analyzed efficiently in a straightforward manner using 

We are most grateful to the referees, to Michael Healy and Steve Raudenbush for 
their helpful comments, and to Lindsay Paterson for use of the data. This work was 
supported by a research grant from the Economic and Social Research Council (U.K.), 
in part from its initiative on the Analysis of Large and Complex Datasets (ALCD). 
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procedures designed for purely hierarchical or multilevel structures. A flexible 
algorithm for obtaining estimates is the iterative generalized least squares 
procedure (Goldstein, 1986), which allows complete generality in specifying 
random structures. It leads to maximum likelihood or restricted maximum 
likelihood estimates in the normal case. 

Hartley and Rao (1967) and Patterson and Thompson (1971) discuss maxi- 
mum likelihood estimation for cross-classified variance component structures, 
and Goldstein (1987a) describes a general procedure for modeling data con- 
taining random classifications for general random coefficient models which 
can be hierarchical or cross-classified, but does not discuss estimation prob- 
lems. Raudenbush (1993) considers the two-level, two-way additive cross- 
classification and describes an EM algorithm to carry out the estimation 
together with worked examples. This is extended by Kang (1993), who 
introduces interaction terms into the model. The present article generalizes 
these results to p-way cross-classifications at any number of levels and 
provides an efficient computational procedure. 

We now review briefly the basic two-level variance components model 
and then show how this can be generalized to more complex structures 
involving further hierarchical levels and random cross-classifications. 

The Basic Hierarchical Model 

A simple two-level hierarchical variance components model can be writ- 
ten as 

for the ith Level 1 unit within the jth Level 2 unit. The e ,  are mutually 
independent, all the other covariances are zero, X,, is the ijth p element row 
vector of the total design matrix X, and P is a ( p  X 1) vector of coefficients 
for the fixed part of the model. Additionally, some of these coefficients may 
be modeled as random variables at any of the levels (Goldstein, 1986) giving 
a general random coefficients model. 

Writing Y for the vector of responses and P = Y - XP for the vector 
containing the random variables, we have 
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which is an (n X n) matrix where n is the sample size (that is, the number 
of Level 1 units), and V2has the following block-diagonal structure: 

where @ is the direct sum operator and V,,,,,is the level m contribution to 
V for a t-level model. More generally, we will write Vm,.m2..,,p,for the sum 
of the contributions to V from levels m,, m2 . . . m, for a t-level model. 

The design matrix for the Level 1 random coefficients is Z,"), and for the 
Level 2 random coefficients 5'".This formulation is general in allowing also 
for random coefficient models. For the simple variance components model 
without random coefficients, Zlj1),Z,")are vectors with elements all equal to 
unity, so that 

where J , , ,  is an (nl X nl) matrix of ones. The matrices Rl and Q2are scalars 
in the variance components model but, in general, will be of order equal to 
the number of random coefficients at each level. 

The V matrices for higher levels are constructed in a similar recursive 
fashion; for example, for a three-level model we have 

with inverse defined recursively as 

where Z3'is the design matrix for the Level 3 random coefficients. Computa- 
tional details are given by Goldstein and Rasbash (1992). 

A Cross-Classified Model 

Consider now the two-level additive variance components model with 
crossing at Level 2 and simple random variation at Level 1. We refer to the 

http:Vm,.m2.
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two types of Level 2 unit as (a) Type 1 with subscript j , ,  j, = 1, . . . , q, and 
(b) Type 2 with subscript j,, j2= 1, . . . , q2. Parentheses group classifications 
at the same level. The subscript i refers to the Level 1 unit, with each Level 
1 unit having a unique identification. Thus, in terms of the above example, 
the data are structured as individual students (Level 1 units) nested within the 
cells of the School X Neighborhood classification (the Level 2 units). Write 

The Level 1 random structure is defined by the independently distributed 
variables with variance a:, and we obtain the following Level 2 covari-
ance structure: 

This can be written as 

ZiZ1 and Zi2) are ( n  X q,), (n  X q2) design matrices with component vectors 

z~ , , ,~ ,=1 for the j,th Type 1 Level 2 unit 

= 0 otherwise 

iz,,, = 1 for the j2th Type 2 Level 2 unit 
m =  1, . . . , q 2  

= 0 otherwise 

For example, Figure 1 shows a hypothetical structure for (6) with two schools 
and two neighborhoods, with one or two students within each cell. 

Thus, (7) is a special case of (4) with a single Level 2 unit nested within 
a single Level 3 unit. The ql columns of Z,") define q, variables (indexed by 
m) with coefficients random at Level 2, each with an associated variance 
parameter, zero covariances, and variances constrained to be equal to a:. The 
q, columns of Z,"' define q2coefficients random at Level 3 with associated 
variance parameters, zero covariances, and variances constrained to be equal 
to a;. 
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FIGURE 1 .  A random design matrix for Model 6 

School Neighborhood ZII 212 22 I Zx 

We also note that (7) can be written alternatively as 

which is a special case of (3), with a single Level 2 unit with corresponding 
q, + q, variables having coefficients random at Level 2 and with associated 
variance parameters, where the first set is constrained to be equal to a: and 
the second set to a:. In this case, we will need to invert a matrix of order 
(q, + q2), whereas in the three-level formulation, the size of the largest matrix 
to be inverted is max (q,, q,) (Goldstein and Rasbash, 1992). 

The generalization to further ways of classification is straightforward, and 
the general p-way cross-classification can be specified as a ( p  + 1)-level 
hierarchical model with a single unit at each of Levels 2, . . . , p + 1. From 
(5) we see that the order of the largest matrix to be inverted is max (qi) where 
q, is the number of categories of the ith classification. 

Model 6 is the basic cross-classification model without interactions (see, 
for example, Searle, Casella, & McCulloch, 1992). In the present formulation, 
unbalanced data are handled automatically and, in addition, heterogeneous 
Level 1 structures, where the Level 1 variance depends on further explanatory 
variables, can be specified as in the standard hierarchical model (Goldstein, 
1987b). Level 3 and higher level structures can also be added above the 
levels already specified with crossing within any of these further levels. As 
in the purely hierarchical case, we can introduce further explanatory variables 
with random coefficients so that a,,,,and a,,,,become general covariance 
matrices. 

We now show how the hierarchical model formulation allows a more 
efficient estimation procedure requiring the inversion of matrices of order 
no larger than the number of categories in the second largest classification. 
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This corresponds to a generalization of Raudenbush's (1993) procedure for 
the two-way classification. 

An Efficient Three-Level Specification for the Level 2 Crossed Design 

Write the following three-level model, which is equivalent to Example 1 
of Raudenbush (1993): 

where the third term defines the Type 2 coefficients random at Level 3 as 
before. The notation ulol, refers to the jlth category for the intercept random 
variable for the Type 1 classification. The notation u ~ ~ ~ ~~ refers to the j2th , 
category for the mth intercept random variable for the Type 2 classification. 

The Type 1 units are now regarded as constituting a simple Level 2 
classification, and if we order the data on these Type 1 units as in a two- 
level hierarchical model, we see that we may write 

where Zlj,'2J is (n X r,), and r l  is the number of random coefficients associated 
with the Type 1 units. Thus, (8) leads to the form (4) and the model now 
becomes a three-level model with q l  Level 2 units within a single Level 3 
unit and q2 variables defining the Type 2 classification with coefficients 
random at Level 3 as before. 

For the p-way classification, therefore, an efficient procedure is to choose 
that classification with the greatest number of units and model this as random 
at Level 2 of the hierarchy, with the remaining ways of classification modeled 
at Levels 3, . . . ,p + 1. This is also the approach for the two-level model 
adopted by Raudenbush (1993). 

Random Coefficients, Interactions, and Classifications Across 
Higher Level Units 

We can extend the basic variance components model by introducing further 
explanatory variables with coefficients random across units. Consider the 
Level 2 cross-classification with the intercept as before plus a further explana- 
tory variable with a random coefficient, say x* .  The above procedure can be 
extended as follows. We choose the Type 1 units as random at Level 2 as 
before, with a random intercept and coefficient of x*. We define sets of 
dummy variables, one set for each Type 2 unit defining both the intercept 
and the coefficient of x* ,  and we make these intercepts and coefficients 
random at Level 3. Thus, the largest matrix to be inverted is now of order 
r,,q,,where r represents the number of random coefficients associated with a 
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classification and where h refers to the classification where this product is 
the second largest. For each intercept-coefficient pair, we fit two variances 
and a covariance. For each type, the variances are constrained to equality, 
as are the covariances. Thus, we would fit the following extension of (8): 

where the random coefficients of x* have the second subscript taking the 
value 1. 

Until now we have considered models which are additive in the random 
effects. Consider the following two-level model extension of (6): 

The usual specification for the random interaction term u(,,,?, is that it has a 
simple variance across the Level 2 cells (Searle et al., 1992). To fit such 
a model, we would define each cell of the cross-classification as a Level 2 
unit with the simple variance term utI2)and a single Level 3 unit with Level 
3 random coefficients for dummy variables for the Type 1 classifications, 
and a single Level 4 unit for the Type 2 classification. We can test the 
adequacy of such a model against an additive model using a likelihood ratio 
test criterion. 

Other specifications for the random interaction in (10) are possible. For 
example, it may be structured by further explanatory variables. Consider a 
two-level model with students at Level 1 and their primary school attended 
crossed with their secondary school attended at Level 2. In addition to 
modeling the simple additive variances across the two types of school, we 
may suppose that teacher experience ( t ) ,  suitably measured, affects the 
between-school variation. We would add this to the model with an extra 
random coefficient at Level 2 as follows: 

This extends (10) by adding a random coefficient as part of the interaction 
and, correspondingly, an extra variance and covariance parameter. 

In general, we could define a full interaction model by fitting a separate 
variance term for each cell u(~,,,,;that is, the model 

This would be fitted as a two-level model with a single Level 2 unit and a 
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dummy variable for each cell of the classification with coefficients random 
at Level 2 leading to m,mzvariances. The adequacy of the additive or other 
reduced parameter model can again be tested using a suitable likelihood ratio 
test criterion. 

A special case occurs with a Level 1 cross-classification. By definition, 
we have a design with only one unit per cell. We note also that this design 
is formally equivalent to a two-level classification with exactly one Level 1 
unit per cell. If an additive model does not fully describe the between-unit 
variation, we have several possibilities for elaborating the model, analogous 
to the two-level case. We can seek explanatory variables with coefficients 
random at Level 1, or, for example, attempt to fit the full interaction model 
as above. Another approach is to regard the interaction as within-individual 
variation. The model then formally becomes the two-level model 

with just one Level 1 unit per Level 2 cell. It would seem, in general, 
that (13) is a satisfactory formulation for such a Level 1 randomly cross- 
classified model. 

It is possible to have cross-classifications which extend across more than 
one level. For example, in the Level 1 case we may have individual students 
in different schools who are assessed by the same random sample of raters. 
Consider the two-level model where within each school, which is a Level 2 
unit, we have a Level 1 cross-classification of students by raters. Since it is 
the same set of raters, the contributions to V from the raters extends across 
all the Level 2 units. The model is therefore specified as having students 
random at Level 1, schools at Level 2, and raters with dummy explanatory 
variables and coefficients random at Level 3. 

This model will also be appropriate for so-called generalizability theory 
models. In a simple case, instead of raters we have test items or groups of 
test items belonging to a test which is administered to samples of students 
in different schools. In this case, and with appropriate assumptions about 
response independence, we can use the above procedures. Where the response 
is discrete-for example, binary-we can fit a loglinear model. This is dis- 
cussed further below. All generalizability models can be analyzed within the 
framework of this article. 

Cross-Unit Membership Models 
An interesting special case of a random cross-classification arises when 

units can be members of more than one higher level unit simultaneously. 
Thus, for example, students may attend more than one school, or children 
may belong to more than one extended family, where such a family is defined 
in terms of aunts and uncles. We suppose that, for each lower level unit, we 
have a weight associated with each higher level unit. In the case of students 
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and schools, this could be the proportion of time spent in each school. Another 
application might arise in a case where knowledge about unit membership 
is imprecise, so that for each lower level unit we have a known or estimated 
probability of belonging to each higher level unit, with the probabilities used 
as weights. The weights will sum to one, and generally there will be individu- 
als, often the majority, with a single weight of unity and other weights zero. 

To illustrate this, we consider again the simple two-level variance compo- 
nents model given by (1) with each Level 1 unit belonging to, at most, two 
Level 2 units. We write 

so that the overall contribution at Level 2 is the weighted sum over the Level 
2 units to which the Level 1 unit belongs. This leads to the following 
covariance structure: 

This has just the structure described by (7) with the additional constraint 

and with Z,,,Z,?replaced by the sets of weights W,,,W,,. The cross-classification 
at Level 2 is formally the set of Level 2 units crossed by themselves. 

As before, this cross-unit model can be extended to incorporate random 
coefficients and general p-unit membership. 

Relationship With Other Approaches 

Engel (1990) discusses various approaches to the estimation of general 
variance component models, without random coefficients. He considers the 
method of absorption for avoiding the problem of handling matrices based 
upon a single factor with a very large number of categories. This is analogous 
to our procedure and that of Raudenbush (1993) for treating such a factor 
as the primary hierarchical one. He also deals with the situation where the 
data set can be partitioned into independent blocks according to a higher 
level unit (see below). 

The software package SAS (1993) has a procedure "MIXED" which allows 
a two-level hierarchical model to be combined with further random factors 
or coefficients. This can deal, therefore, with a single factor having a large 
number of categories by treating it as the primary factor at either of the two 
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levels. Where there are three or more cross-classifications, those beyond the 
first have to be specified in full, using dummy variables equal in number to 
the total number of categories. This can result in having to handle very large 
matrices. Likewise, Engel (1990) deals only with the procedure for absorbing 
one factor. 

Computing Considerations 

All these computations can be carried out within ML3 (Prosser, Rasbash, & 
Goldstein, 1991), which is a general statistical package for fitting multilevel or 
hierarchical models. Its successor due in 1995, MLn, will allow an effectively 
unlimited number of levels and so be able to fit general p-way classifications. 
This software has flexible procedures for specifying random structures, 
including linear constraints, which allows the models of this article to be 
fitted. In some cases, the highest level units can be separated into disjoint 
sets with no cross-unit memebership. For example, we may have a cross- 
classification of schools by neighborhoods in a number of separate cities. 
We may then form a further level of the hierarchy in which each city is a 
Level 3 unit, and then fit a three-level model, possibly incorporating variation 
among cities. In such a case, the software is able to search for such sets and 
construct the necessary higher level units. The calculation of the log likelihood 
values in ML3 is slow and inefficient, but is rapid in MLn. 

Care needs lo be taken in choosing which classifications are assigned 
dummy explanatory variable vectors. In general, it is most efficient to choose 
the classification with the largest number of units as that which is treated as 
random at the level for which it is defined, taking into account the total 
number of random coefficients for each classification. 

Example 

This example uses examination scores for 16-year-old students. The sec- 
ondary school a child attends is cross-classified by the primary school the 
child attended. The model is of the form given in Equation 6, where u,,, 
refers to the secondary school and uzI2refers to the primary school. The data 
are on 3,435 children who attended 148 primary schools and 19 secondary 
schools in Fife, Scotland. Table 1 shows the extent of the crossing by listing 
the distribution of primary school sizes for each secondary school. 

A two-level variance components model with primary school as the Level 
2 unit is specified, with a single Level 3 unit spanning the entire data set. 
Dummy variables, one for each secondary school, are created with coefficients 
random at Level 3 and variances constrained to be equal. We fit two models; 
the first (Model A) contains only the overall mean for the fixed part, and 
the second (Model B) adds a verbal reasoning (VR) test score, obtained by 
the students just prior to transfer to secondary school, to the fixed part. 

The model takes four iterations to converge; on a 33-MHz 486 PC each 
iteration takes 8 1 seconds. Table 2 gives the results. 
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TABLE 1 
Number of primary schools with different student numbers for each secondary 
school 

Number of students in each primary school 
Secondary 
school 1 2 3-5 6-10 l l f  

1 8 0 3 2 5 
2 4 0 2 1 6 
3 6 2 0 0 6 
4 6 1 2 1 4 
5 9 2 1 0 5 
6 6 0 3 0 6 
7 1 1 0 1 4 
8 8 0 1 0 3 
9 5 0 0 1 4 

10 10 2 1 0 4 
1 1  14 0 8 3 7 
12 5 4 3 4 7 
13 4 1 2 0 7 
14 8 4 2 4 8 
15 5 3 0 2 4 
16 2 1 1 1 5 
17 6 2 2 1 5 
18 6 1 2 1 8 
19 7 0 0 1 5 

This analysis shows that the variation in achievement at age 16 attributable 
to primary school is 3 times greater than the variation attributable to secondary 
school. After fitting VR, the between-secondary-school variance becomes 
very small. We may interpret the analysis that fits VR as concerned with 
progress through secondary school, and the predominant influence of the 
primary school on attainment raises some important interpretational issues, 
which we shall not pursue here. 

In this analysis, there are 120cells of the cross-classification which contain 

TABLE 2 
Analysis of secondary by primary school examination attainment 

Estimates ( S E )  

Parameter Model A Model B 

aZ I (primary) 1.12 (0.20) 0.27 (0.06) 
aZ2(secondary) 0.35 (0.16) 0.01 1 (0.021) 
a: (between students) 8.1 (0.2) 4.25 (0.10) 
Po(intercept) 5.50 (0.18) 5.98 (0.07) 
PI (VR) 0.16 (0.003) 
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only one student each. If we eliminate these from the analysis, we obtain 
two disjoint subsets containing 14 and 5 secondary schools. There are a 
further 23 cells containing two students each, and if these are removed, we 
obtain six disjoint subsets with the largest containing 8 secondary schools. 
Table 3 shows the results of fitting the models for these two reduced data 
sets. The first analysis took 32 seconds and the second took 13 seconds 
per iteration. 

The only substantial difference is in the values of the between-secondary- 
school variance, but this is no greater than its standard error and imprecisely 
estimated. Thus, even where there are no proper disjoint subsets, it may be 
acceptable to reduce the computational time, and the storage overheads, by 
eliminating cells with small sample sizes from the analysis. 

Discussion 

We have shown how quite general designs involving crossing and nesting 
of random classifications can be handled efficiently within the general frame- 
work of a purely hierarchical model. In principle, it appears that designs of 
quite general complexity can be specified in a relatively straightforward 
manner. The estimation procedure, for Normally distributed data, can be 
either full or restricted maximum likelihood as shown by Goldstein (1989). 

These procedures can be extended to all the other kinds of models which 
have been developed as extensions of the basic hierarchical or multilevel 
model. These include nonlinear models (Goldstein, 1991; Breslow & Clayton, 
1993) with the special cases of binary, Poisson, and multinomial response 
models. Time series data (Goldstein, Healy, & Rasbash, 1994) where there 
is an autocorrelation structure at Level 1 can also be embedded within higher 
crossed and nested structures. An important extension is to multivariate data. 
Goldstein (1986, 1987b, 1991) showed how the general multivariate linear 
(and nonlinear) model could be formulated as a multilevel model with an 
extra lowest level which specified the multivariate structure. Such models can 
therefore be accommodated within the present framework so that multivariate 
general crossed and nested random designs are readily specified. 

TABLE 3 
Secondary by primary school examination attainment omitting small cells 

Estimates (SE) 

Omitting cells Omitting cells 
Parameter with <2 students with <3 students 

dl (primary) 0.27 (0.06) 0.25 (0.06) 
a:? (secondary) 0.004 (0.02 1) 0.028 (0.030) 
a: (between students) 
PO(intercept) 

4.28 (0.1 1) 
6.00 (0.06) 

4.29 (0.1 1) 
6.00 (0.07) 

PI (VR) 0.16 (0.003) 0.16 (0.003) 
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