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New Features

New features for version 2.1 include:

1. Improved model specification functionality

2. A new Customised predictions window for constructing and
graphing model predictions

3. Basic surface plotting with rotation
4. Creation and export of model comparison tables

5. A new method for estimating autocorrelated errors in continuous
time

6. Saving and retrieving of Minitab, Stata and SPSS work files

7. Saving and retrieving of MLwiN worksheets in a compressed
(zipped) format

8. New data manipulation commands
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Note

When working through this manual, you may notice some minor discrepan-
cies between the results you get and the screenshots presented here. This is
due to two changes that have been made to the software between the Beta
version used to create the screenshots in the manual and the current version.
The first affects the —2 x log(likelihood) values. The version used to create
the screenshots gives a slightly different value to the current version and to
MLwiN version 2.02 in some cases. The second is that an improvement to the
estimation procedure in the current version may lead to small improvements
in some parameter estimates when using (R)IGLS. The version used to create
the screenshots gives identical parameter estimates to MLwiN version 2.02.

The differences in both the —2 x log(likelihood) values and the parameter
estimates shown in the screenshots in this manual compared to the values
produced by the current version of the software are extremely small. All
—2 X log(likelihood) values for multilevel models agree to 7 significant digits
and all —2 x log(likelihood) values for single level models agree to at least
5 significant digits. All differences between parameter estimates are within
the specified tolerance for the iterative procedure. We therefore decided
not to replace the screenshots with screenshots generated by the current
version of MLwiN. If you are using the current version of MLwiN, you should
expect to see some extremely small differences in the parameter estimates and
—2 x log(likelihood) values compared to those shown in the screenshots in
this manual; however since the differences are so small there will be no change
in their interpretation.

For more details about these changes and the reasons behind them, see http:
//www.cmm.bristol.ac.uk/MLwiN/bugs/likelihood.shtml
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1 Improved model specification functionality

When variables and interactions were created in previous versions, recoding
main effects (centring, changing reference categories) did not result in auto-
matic recoding of the same variables wherever they appeared in interactions.
Interactions and main effects had to be removed, main effects recoded and
then main effects and interactions re-entered. This can be a time consum-
ing and error prone process. In the latest version, polynomials are created
by specifying an optional order. If the polynomial order, reference category
(for a categorical variable) or the type of centring used for a main effect are
changed then all interactions involving that variable are updated.

1.1 Recoding: reference categories, centring, and poly-
nomials

For example, the model below, which uses the tutorial dataset used in chap-
ters 1-6 of the MLwiN User’s Guide, contains main effects for the continuous
variable standlrt and the categorical variable schgend (consisting of dummy
variables mixedsch, boysch, and girlsch) and the interaction of standlrt
and schgend.
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In previous versions, to change the reference category for schgend from
mixedsch to boysch required:

Click on term standlrt.boysch

In the window that appears, click the delete Term button
When asked if the term is to be deleted, select Yes

Click on term schgend

In the window that appears, click the delete Term button



In version 2.1 the same operation is achieved by:

Which produces:

=fEquations

normexam, ~ N(XB, )
normexany, = gy cons + g;standlrt, + g mixedsch, + g.girlsch,
Bastandlrt mixedsch, + gostandlit.girlsch,
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The new form of the Specify term window for a continuous term can be
seen if you:




This produces the Specify term window:

. Specify term x|

order Im 'I [~ polynomial
warnable
Istandlrt hd I

cehtring

f+ uncentred by groups defined by I vI

~ grand mean (= around value |

Done | Cancel |

If polynomial is ticked then a drop-down list appears for the degree of the
polynomial. Continuous variables can be uncentred, centred around means
of groups defined by codes contained in a specified column, centred around
the grand mean (i.e. the overall mean) or centred around value. Thus,

e Click on the polynomial check box

e A drop-down list labelled poly degree will appear; select 3

e Click the Done button in the Specify term window

produces:

s | Equations

normexam, ~ N(AE, Q)

normexany; = f§y.cons + gimixedsch, + g,girlsch, +
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Note that changing standlrt to be a cubic polynomial also updates the
interaction of standlrt and schgend to be cubic with respect to standlrt.
If you want a cubic main effect for standlrt but interaction terms with
schgend to be linear with respect to standlrt then click on any of the
interaction terms and set the degree of polynomial for standlrt to be 1.



1.2 Orthogonal Polynomials
1.2.1 Orthogonal Polynomials

Orthogonal polynomials are useful when fitting variables measured on an
ordinal scale as predictors in models. An example would be Age with cat-
egories 21-30, 31-40, 41-50 and on. Instead of fitting the ordinal variable
as a constant and a contrasted set of dummies (with one left out), we fit
it as an orthogonal polynomial of degree at most one less than the number
of categories. We thus have at most the same number of variables making
up the orthogonal polynomial as we would have dummies if we fitted the
ordinal variable using that specification. Unlike the dummies, the variables
comprising the terms of the orthogonal polynomial are not (0,1) variables.
They contain values between —1 and 1. For each term, there is a different
value for each category of the ordinal variable. These values depend only
on the number of categories the ordinal variable has. The values for ordinal
variables with 3, 4 and 6 categories are shown below. The values give the
terms of the polynomial certain properties when the data are balanced:

e They are orthogonal. In mathematical terms this means that if you pick
any two terms of the polynomial, and for each category multiply the
value for that category for the first term by the value for that category
for the second term, then add these products together, the result will be
0: for example, picking the two terms of the polynomial for a 3 category
variable, —0.707 x 0.408 +0 x —0.816 4 0.707 x 0.408 = 0. In statistical
terms, this means that each pair of terms is uncorrelated, which turns
out to be useful in modelling as we will see later: in particular estimates
associated with these orthogonal variables are likely to be numerically
stable.

e They each have the same mean and variance. The mean is always 0
but the variance depends on the number of categories in the ordinal
variable. Again this will turn out to be useful in modelling

e Each term is a function of the appropriate power of some value. In
other words, the linear term is always a linear function of some value,
the quadratic term is a quadratic function of some value, the cubic
term is a cubic function of some value and so on. Consequently, when
an intercept and the full set of terms are included in the model, they
can completely capture the effects of all the categories of the ordinal
variable on the response, no matter what those effects are. Another
consequence of this property is that in many cases we can achieve a
more parsimonious model by using a subset of the terms, as we will
see. The linear term captures the linear effect across categories of the
ordinal variable, the quadratic term captures the quadratic effect, and
so on. We cannot of course achieve this if we use an intercept plus a set



of contrasted dummies: to leave a dummy out means conflating that
category with the reference category.

Note that the current implementation in MLwiN assumes that the categories
of the ordinal variable are equally spaced.

Below are three examples of coding when 3, 4 and 6 categories of an ordered
variable are included (it is presumed that the model contains a constant).

Categorical Variables Codings for 3 categories

Parameter coding
Linear | Quadratic

3 groups | 1| -.707 | .408
.000 -.816
3| .707 408

Categorical Variables Codings for 4 categories

Parameter coding
Linear | Quadratic | Cubic

4 groups | 1 || -.671 .500 -.224
2 -.224 | -.500 671
3 .224 -.500 -.671
41 .671 .500 224

Categorical Variables Codings for 6 categories

Parameter coding
Linear | Quadratic | Cubic [ 4™ order | 5" order
6 groups | 1 | -.598 | .546 -.373 | .189 -.063
21 -.359 |-.109 522 | -.567 315
3| -120 |-.436 208 | .378 -.630
4 || .120 -.436 -.298 | .378 .630
51 .359 -.109 -.522 | -.567 -.315
6 || .598 .546 373|189 .063

As an example we will work with the tutorial dataset and turn standlrt
into 4 ordered categories: this requires 3 cut points; we use the nested means
procedure explained in Section 2.1.4 to get our values. Note that we are
making standlrt into an ordinal variable purely to show the operation of
the orthogonal polynomial feature; if we were really performing some analysis
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using a continuous variable like standlrt this would not be a recommended
procedure. The nested means when rounded are —0.81, 0.00, and 0.76 and
we use these values to recode the data into 4 groups via the recode — by
range option from the Data manipulation menu:

w#Recode variables =] =]
— Recode Specification —etion list [ = action executed] ————————
Walues in range I ta I 0ld Range I 0ld Column I MHew Yalue I Mew
ta hew value I_ 00081 standit 1 cll
0.81.0 standirt 2 c
Input columnz r— Output columns — 0.076 standlrt 3 o1l
4 cll

cons i’ 0.76.100  standit

Free Columis

Same as Input

4 | B

Help Add to action list | [emove| remove Al | gne:utcl Undo |

For purposes of comparison we begin with the 4 groups included in the model
in the usual way for categorical variables i.e. as a constant and three con-
trasted dummies. We will then go on to see whether we can fit a more
parsimonious model using orthogonal polynomials.

Start by setting up the model as follows:

normexam, ~ N(XB, Q) =

normexany, = lL}’DJ-J!:ECIHS
By =-0.013(0.054) +up, + ey,

[0g] ~NO Q) Q= [0169(0.032)]

0] ~NO Q)2 Q= [0.848(0.019)]
| [ »

- |A|:||:| Ierm|§sl.in1ltes| Honlinear| Clear | Hotation |I1.esponses| Store |
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| Hame | +
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normexam,; ~ N(¥B, Q) =

normexamy; = fy,cons +0.519(0.036)LRTgrps_2,, +
0.946(0.036)I.RTgrps_3!}. +
1.548(0.039)I.RTg1ps_4!}.

Boy =-0.771(0.049) +u, + ey,

[uuj] ~N@©, Q) : Q,= [0.105(0.020)]
[e0,] ~NO Q)+ Q= [0.596(0.013)]

-2¥oglikelihood(IGLE Deviance) = 9571.227(4059 of 4059 cas'y,
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We now fit a model with LRTgrps entered as an orthogonal polynomial
instead of as three dummies. We start by including all three terms of the
orthogonal polynomial. First, though, we need to change the tolerance used
by MLwiN. The tolerance is set by default to a value which is most appro-
priate for the most commonly used kinds of estimation. However, using this
value of the tolerance when working with orthogonal polynomials can lead to
the wrong values being calculated for the terms of the polynomial, which in
turn leads to incorrect estimates for the coefficients. This is particularly true
when the categorical variable has a larger number of categories. To change
the tolerance,

The tolerance is now set to a value of 10'°. This should be sufficient in most
cases. The default tolerance that MLwiN normally uses is 10° and the tol-
erance can be set back to this value by typing CTOL 6 in the Command
interface window. This should be done after working with orthogonal poly-
nomials as using a tolerance of 10*° can cause problems in other areas.

We can now proceed to set up the model




¥ Equations i =] 4

normexam, ~ N(XB, Q)

normexany; = Gy cons + 1.134(0.027)orthog LRTgrps"1,, +
0.041(0.025)01‘th0g_LRTgrps"‘2U. +
0.060(0.023)orthog LRTgrps"3,

;
Suy =-0.017(0.043) + 10, +

[.a,,: D}.] ~N@©. Q) : Q.= [0.105(0.020)]
[e0;] MO Q)+ Q= [0.596(0.013)]

-2 ¥oglikelihood(TGLE Deviance) = 9571.227(4059 of 4059 cases
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Three new variables containing the appropriate values are automatically gen-
erated as appropriately named columns in the worksheet and added to the
model:

goto line |1 view | Help | Font. | ¥ Show value labels
standirtt | LRTars( 4l arthon_LRTarps*|arthog_LRTarps"2| othog_L RTgmsa]
1/0.619  LRToms_3 0.224 -0.500 -0.671
20206 LRToms_3 0.224 -0.500 -0.671
3[-1.365 LRTgrps_1 -0.671 0.500 -0.224
40206 LRToms_3 0.224 -0.500 -0.671
5(0.371  LRTomps_3 0.224 -0.500 -0.671
G2.189 LRTorps_4 0.671 0.500 0.224
7-1.117  LRTgrps_1 -0.671 0.500 -0.224 <

At this point the model is equivalent to our first model with LRTgrps en-
tered as dummies: it has the same deviance and the estimates for the random
part are identical, although the coefficients are different because the terms
of the polynomial are measured on a different scale to the dummies and the
intercept now has a different value because it is the average value of the re-
sponse when all three terms of the polynomial are 0, not the average value



of the response for the reference category of LRTgrps. We can see in the
graphs below that these two models give us the same results.

The important difference is that the four group model is not readily reducible
whereas the orthogonal polynomial one is. The three terms all have the same
mean and variance so their coefficients are directly comparable and so it is
clear from the estimates that the linear effect is markedly bigger than the
quadratic and cubic, thereby suggesting that the model be simplified to have
just a linear trend across all four ordered categories. We fit a model using
just a linear effect:

e Click on any of the terms of the orthogonal polynomial
e Click Modify Term

e Select 1 from the orthog poly degree drop-down list
e Click Done

The graphs show that the linear trend model well captures the underlying
trend in a parsimonious way. We have thus succeeded in simplifying our
model without losing much information.
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1.2.2 Using orthogonal polynomials with repeated measures data

Orthogonal polynomials are especially useful with repeated measures data
and fitting a more parsimonious model is not the only reason to use them.
Hedeker and Gibbons (2006)(3) give the following reasons to use orthogonal
polynomials in their discussion of growth curves for longitudinal data where
the predictor representing time is not a continuous variable but 1, 2, 3 etc



representing the first, second and third occasion on which the person has
been measured:

e for balanced data, and compound symmetry structure (that is a vari-
ance components model), estimates of polynomial fixed effects (e.g.
constant and linear) do not change when higher-order polynomial terms
(e.g. quadratic and cubic) are added to the model

e using the original scale, it gets increasingly difficult to estimate higher-
degree non-orthogonal polynomial terms

e using orthogonal polynomials avoids high correlation between estimates
(which can cause estimation problems)

e using orthogonal polynomials provides comparison of the ‘importance’
of different polynomials, as the new terms are put on the same stan-
dardized (unit) scale. This holds exactly when the number of observa-
tions at each timepoint are equal, and approximately so when they are
unequal.

e the intercept (and intercept-related parameters) represents the grand
mean of the response, that is, the model intercept represents the mean
of the response at the midpoint of time.

Another reason for using them is the orthogonality property: since each pair
of terms in the polynomial are orthogonal, i.e. uncorrelated, the coefficients
of the terms do not change according to which other terms are included.
This means that if we decide that the linear and quadratic effects are the
most important based on the model using all terms and go on to fit a model
including just the linear and quadratic terms, we will not find for example
that now the higher order terms have been removed, the quadratic effect is
no longer important.

As an example of using orthogonal polynomials with repeated measures data,
we will use the readingl dataset which forms the basis for analysis in Chap-
ter 13 of the User’s Guide. We begin with the variance components model
of page 184 (you will need to follow the instructions on pages 179 to 184 to
get the data in the correct form to set this model up):
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1‘eadi11gU.~ N(XB, Q)
reading; = f3q,cons

Boy =7-115(0.053) +1u e,
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We are going to pretend that we do not know the age at which the reading
score was evaluated but only know that the reading was taken on 1st, 2nd,

3rd etc occasion. We can fit a linear trend by putting ‘occasion’ into the
fixed part of the model:

e In the Names window, highlight occasion and click Toggle cate-
gorical

e Add occasion to the model

1‘eadi11g!.j~ N(¥E, Q)
reading, = g, cons +1.190(0.012)occasion,
By =3-235(0.055) +u T,

=10]

[1] ~NO Q)+ Q= [0552(0.049) ]

0] N Q) 2 Q= [05390.021)]

-2¥oglikelihood(IGLS Deviance) = 4563.926(1758 of 2442 cases
<

| Hame | + | - |Rdd Ierm|§s1.imates| Hunlinear| Clear | Hotation |Responses| Store

3

The estimate 3.235 gives the mean Reading score at occasion 0 (that is the
occasion before the first measurement!) and the mean reading score improves

by 1.19 for each subsequent occasion. We can now fit a similar model but
replacing occasion by the linear orthogonal variable.

Note: The code for the rest of this section is not fully functional in the
latest release of MLwiN. As such, you may not be able to replicate the
results shown here. This is a known issue and will be fixed soon.
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reading, ~ N(YB, Q) =
reading; = Bq,cons +4.972(0.049)orthog_occasion"1,
By =7-399(0.042) +u, +e

[0g] ~NO Q) Q= [0552(0.049) ]

[e0,] "N Q)2 Q.= [05390.021)]

J

-2 ¥oglikelihood(TGLS Deviance) = 4564.974(1758 of 2442 ca:s;
| »
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The deviance and the random part are the same (as is the Wald test for the
growth term), but now the estimate of the intercept gives the grand mean
at the mid-point of the occasions and the slope gives the improvement in
reading with a unit change in the linear orthogonal polynomial. We now
add the quadratic orthogonal polynomial into the model using the Modify
Term option and should find that the linear term does not change (in fact it
does a bit due to imbalance in the data). It is clear that the quadratic term
is of much less ‘importance’ than the linear term.
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1‘eadi11g!}. ~ N(XB, Q)

reading, = g cons +5.045(0.043)orthog_occasion™1, + 0.863(0.040)orthog_occasion”2
Boy = TA47(0.042) +1 ey,
1] ~NO Q) Q= [0.578(0.048) ]

[eq,] "N Q)2 Q.= [0.40500.016)]

-2¥aglikelihood(TGLS Deviance) =4171.000(1758 of 2442 cases in use)
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Using the Predictions and Customised graphs windows we can see the
quadratic growth curve which is characterized by a strong linear trend, with
some slight curvature. We can now add in all the other polynomials (there
is then a term for each occasion) and it is clear that there are ‘diminishing
returns’ as each additional order is included

o]
1‘eadi11gq ~ N(XE, Q)

reading; = fy,cons +5.135(0.038)orthog_occasion"1; +0.951(0.036)orthog_occasion”2, +
0.653(U.034)01't110g_0(:casiou"‘S!J1 + 0.322(0.032)01't110g_0(:casiou"‘zl!J1 + 0.095(0.031)orthog_oc(:a.'sionf‘S!J1
Boy =7441(0.041) +2 ey,

[g] N Q) Q= [05940.08)]
[, ~NO Q) Q™ [03070.012)]

-2¥aglikelihood(TGLS Deviance) = 3786.824(1758 of 2442 cases in use)

| Hame | + | - |Add Ierm|7 il | i | Clear | i | ‘ Store | Help |Znnm|1l]l] j |

but all terms have some effect: with even the 5th order term having a p value
of 0.002

=10 x|
#1 #2 #3 #d #5
fixed : cons 0.000| 0000] 0.000| 0.000( 0.000
fixed | arthog_occasion™ q.000( 0000 0.000( 0.000( 0000
fized : orthog_occasion®2 0.000( 1.000( 0.000( 0.000( 0000
fixed : arthog_occasion™3 0000 0000 1.000) 0.000) 0000
fixed : orthog_occasion”4 0000 0000 0.000( 1.000( 0000
fized | arthog_occazion”s 0.000( 0000 0000 0000 1.000
constant(k) 0.000| 0000 0.000| 0000 O.000
function result(f) 5135 0851| 0633| 0322 0.093
f-k 5.135| 0851| 0653| 0322 0095
chi =g, (f-k)=0. (1df) 18741391 [16.167 | 72.633|00.425| 9264
+/- 95% sep. 0.073| 0070 0.066| 0063 0061
+/- 95% joirt 0425| 0418| 0412| 0107 0104
ioirt chi sq testiSdf) = 191200141
" random (% fixed #of functions IS_ il
tel |
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As in the example using the tutorial dataset, this model which fits an inter-
cept and 5 growth terms is equivalent to fitting a separate parameter for each
occasion; the graphs below make this clear. However we can readily leave
out one or more terms of the orthogonal polynomial to achieve a more par-
simonious model; the same is not true of the intercept and dummy variables
specification.

Growth trend with Sth order Growth trend with a term for
polynomials each occasion

M54 M5

Mean Reading Score
T
I

Mean Reading Score
T
I

B4 e (¥ S

Occasion Occasion

(Note that the way the response has been constructed will have a great effect
on these results; see page 178 of the User’s Guide)

The tolerance should now be set back to the default value before working
further in MLwiN

e In the Command interface window, type CTOL 6

1.3 Commands

The ADDT command has been extended to allow specification of polynomial
terms:

ADDT C <mode N> C <mode N>

Create a main effect or interaction term from a series of one or more variables.
Each variable can be categorical or continuous. Categorical variables can
have a reference category specified, by setting the corresponding mode value
to the number of the reference category. If no reference category is specified,
then the lowest category number is taken as the reference category. If —1
is given as the reference category then no reference category is assumed and
a full set of dummies are produced. Variables of appropriate names and
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data patterns are created and added as explanatory variables. If N > 1000,
then N — 1000 is taken to be the polynomial degree that is required for the
corresponding variable. If the corresponding variable is categorical then an
orthogonal polynomial of degree N — 1000 is fitted.

Examples:

» ADDT 'standlrt' 1003 'schgend'

adds an interaction between a cubic in standlrt and 2 dummies for schgend
with reference category mixedsch.

» ADDT 'standlrt' 'schgend' 1002

adds an interaction term between ‘standlrt’ and an orthogonal polynomial of
degree 2 for schgend.

The SWAP command edits a main effect and updates all affected interactions

SWAP main effect C with C mode N

Mode N has the same meaning as in the ADDT command.

Examples:

» SWAP 'standlrt' 'standlrt' 1003

removes standlrt as a main effect and all interactions involving standlrt
from the model and replaces them with a cubic polynomial in standlrt;
note all interactions involving standlrt are also replaced.

Note that the SWAP command will not do anything if the variable you ask
to swap is only present in an interaction term.

The CENT command controls centring for continuous explanatory variables

CENT mode 0: uncentred

CENT mode 1: around grand mean

CENT mode 2: around means of groups defined by codes in C
CENT mode 3: around value N

15



Examples:

adds the variable standlrt to the model centered around the group mean of
standlrt, where groups are defined by the codes in the column ‘school’

adds standlrt to the model with no centring.

The default for CENT is no centring: if ADDT is used without CENT having
been previously used, then the term is added with no centring. The kind of
centring set up by use of the CENT command remains in place until the
CENT command is used again to change it: it is not necessary to use the
CENT command before every ADDT if the same kind of centring is required
in each case.



2 Out of Sample predictions

2.1 Continuous responses

The current Predictions window generates a predicted value of the response
for each level 1 unit in the dataset, using their values of the explanatory
variables. Thus, predictions are only generated for the combinations of values
of the explanatory variables occurring in the dataset. Often, however, we
want to generate predictions for a specific set of explanatory variable values
to best explore a multidimensional model predictions space.

We have added a Customised Predictions window, with an associated
plot window, to aid this task by allowing predictions to be generated for any
desired combinations of explanatory variable values, whether or not these
combinations occur in the dataset. Given the model on the tutorial data

-loix]

normexamy, ~ N(XB. Q) =

normexamy = fy.cons + gy standlrt, +0.374(0.109)avslrt, +
0.162(0.057)standlrt. Ewslrtij.

Boy =-0.007(0.037) +uy, +eg,

Bi; =0.558(0.019) +a

ty| ~N(O0, Q) : Q= |0-074(0.015)
1y 0.011(0.006) 0.011(0.004)

20, ~N(@O, Q) : Q.= [0.554(0.012)]

0 -
4| | 3

+ - |ndd Ierm|§stimates| Hunlinear| Clear | Hotation |Responses| Store |

where avslrt is the school mean for standlrt, we can use the old Predic-
tions window to explore this relationship

o
nolﬁlexam)}. = f}ucons + Zﬁ’lstandh'tl}. + fi’zavslrtj + Zﬁgstandh't.avslrtg
variable cons standlrtl.j. a\rsh‘tj ) standlrt.avs lrtl.j.
fixed B Ji3 Jip B
level2 u o Uy

level1 e,

| | 3

Zoomlﬂll] j Hame | Calc | Help utput from predictiontolcu j
[1.0 " sEof = output to | vl

This window applies the specified prediction function to every point in the

17



dataset and produces a predicted value for each point. If we plot these
predictions, grouped by school, we get

ok Graph display -0 x|

23

1.7

1.14

D5+

pred val

-1 i i } } i i |
=34 26 -7 08 00 D& 17 256 34

standirt

This plot has one line for each school; the line for the jth school is given
by the prediction equation (fy + Bravslrt,) + (B, + fsavslrt;)standlrt;;.
However, it might be more revealing to plot lines for a small number of
different values of avslrt, say {-0.5, 0, 0.5}

The Customised predictions window will now do this and other such
prediction tasks automatically for us.

e Seclect Customised Predictions from the Model menu.

The following screen appears:
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=k Customised predictions - |D|l|

Setup T Predictions

Change Range I Summary # predicted cases:
;onsdm # drawes from IQDDD
a0 coviBeta)

avslt

# simulations:

Confidence Interval IEIS

[~ Differences

Predictions to

Mean IC1E ﬂ Lowlm-"r j Upperlc18 ﬂ

Coversye

[~ Level 2 (school) Ccoverage inter\tal:lgs Lowl 22 ﬂ Upper|023 j |
Fill Gricd | Predict | Plot Grid |

Main effects are listed in the setup pane. We can click on them and specify
a set of values we want to make a prediction dataset for.

e Highlight standlrt
e Click Change Range

We see:

. Yalues to include {min: -2.934953, max: 3.015952) — |E||i|

Values T Range T Percentile= TNested heans

Acldd

1.810238E-03

Remove |

COutput Column I c14 j | Done I

Currently the value is set to the mean of standlrt. We can specify a set
of values for the predictor variables for which we want to make predictions.
We can do this for continuous variables as a set of Values, as a Range, as
Percentiles, or Nested Means Here we use a range, postponing discussion
of the other options until later.

Note that, whether we specify values as a set of values, as a range, as per-
centiles, or as nested means, we are setting values for the original predictor
variable. If for example we have centred the variable using one of the op-
tions in the Specify Term window, or via the CENT and ADDT commands,
then we specify values for the uncentred variable, not for the centred variable.
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The same applies for other transformations such as polynomials, as long as
the transformation was carried out as part of entering the variable into the
model, via the Specify Term window or the ADDT command. MLwiN will
display the name of the original, untransformed variable in the Customised
predictions and will apply the necessary transformation to produce trans-
formed values to use in calculating the prediction. This behaviour makes
it easier for the user to specify a range of values and also enables plotting
predictions against the original rather than the transformed variable.

2.1.1 Setting values as a range

The output column is set by default to the next free column (c13 in this case)

Click the Range tab and specify Upper Bound: 3, Lower: —3,
Increment: 1

Click the Done button to close the Values to include window

Using the same procedure, set the range for avslrt to be Upper
Bound: 0.5, Lower: —0.5, Increment: 0.5

Click Fill Grid and Predict
Select the Predictions tab

The Fill Grid button creates a mini dataset with all combinations of the
explanatory variable values you have specified. The Predict button takes
the estimates for the parameters of the current model and applies them to
the mini dataset to create predicted values with confidence intervals.

=8 Customised predictions oy ] |
Setup | Predictions ]
cons.pred standirt.pred (avsiit.pred  |meanpred | meanlosw . pre| mesn.high.pr ;I
1 -3 -5 -1 622 -1.82 -1.432 _I

1 -2 -3 -1.145 -1.299 -.996

1 -1 -5 - BE9 -.789 -.551

1 0 -5 -182 - 316 -07

1 1 -5 284 126 442

1 2 -5 i 531 965

1 3 -5 1.237 A78 1.492
1 -3 0 -1 651 -1.795 -1.567 ﬂ

Fill Grid | Predict | Plot Gricd |

The columns in this prediction grid have all been created as columns in the
worksheet. The columns at the left (cons.pred, standlrt.pred, avslrt.pred)
contain the values of the explanatory variables that we specified and re-
quested predictions for; mean.pred contains the predicted value of the re-
sponse for each combination of explanatory variable values, and mean.low.pred
and mean.high.pred contain the lower and upper bounds respectively of the
confidence intervals for the predictions.
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We can plot these results :

x# Customised prediction plot

o] v e
e

W] =t=nciirt pred

This screen has been designed to help construct plots from a multidimensional
grid. Here we want

that is,

w# Customised prediction plot X|

o] v e
e
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=# Graph display = m|

— avslrt prad=

— avslrf prads

— avsire pred

mean.pred

.
.

22 —+—1 ——1—

30 23 -5 905 00 0F 15 23 30

standirt.pred

The settings for this plot are held in Display 1 of Customised graphs.

We can look at the differences (and the confidence intervals of the differences)
from any reference group. For example if we wanted to look at the above
plot as differences from avslrt.pred = —0.5, then we would

The graph will update automatically to look like this:
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=#- Graph display =10

— avalripred=

08 — avalripred=

— avalri pred
074
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mean.pred

DD/
:
:

02— —

30 23 15 08 00 0B 15 23 30

standirt.pred

If we want to put confidence intervals around these differences then, in the
Customised prediction plot window:

Options appear allowing the confidence intervals to be drawn as bars or lines,
with lines as the default.

to produce:
=& Graph display =10] x|
— avalri pred
& — avslrtpred=
ol — avalripred
E i}:
L.
o
o
1]
m 1
E w
a7 :
D T A R T
=30 23 -15 08 00 08 15 23 30
standirt.pred
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We now discuss the other possibilities for specifying the values of the ex-
planatory variables for which you want predictions.

2.1.2 Specification using the Values tab

Clicking Fill Grid and Predict in the Customised Predictions window
will now produce predictions as before but this time taking {—2, 0, 3} as the
set of values for standlrt instead of {—3,—2,—1, 0, 1, 2, 3}. Notice that
using the Values tab automatically cleared the values previously specified
using the Range tab.

Note also that the software will automatically check whether the values you

specify are within the range of the variable and an error message will appear
if you try to specify a value outside of this range.

2.1.3 Specification using the Percentiles tab

The set of values for standlrt that will be used if Fill Grid and Predict
are pressed is now (to 2 d.p.) {—1.28, 0.04, 1.28}. These are the 10th, the
50th and the 90th percentile of standlrt respectively. Again, notice that the
previously specified values have been automatically removed.

Percentiles are a useful way of specifying values when we would like, for
example, a prediction for those with a ‘low’ value of standlrt, those with a
‘mid’ value of standlrt, and those with a ‘high’ value of standlrt because
they provide a convenient way of deciding what counts as ‘low’, ‘mid’ and
‘high’, although there is still some subjectivity involved: in this case we
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could equally well have decided to use, for example, the 25th, 50th and 75th
percentiles, which would give less extreme values for ‘low” and ‘high’.

We need not necessarily use three percentiles; we can specify as many as we
like, though generally a small number of percentiles will be quite sufficient
for what we want here.

2.1.4 Specification using the Nested Means tab

Nested means are another way of dividing a numerical variable into groups;
again they provide a convenient means of choosing, for example, a ‘low’, a
‘mid’ and a ‘high’ value (if you use 4 groups). Simply put, a set of nested
means which divides the values into 4 groups is doing the same thing as
quartiles (i.e. the 25th, 50th and 75th percentiles) but using the mean instead
of the median. For quartiles, the 2nd quartile (or 50th percentile) is the
median of the variable. The 1st quartile (or 25th percentile) is the median of
the values between the minimum and the 2nd quartile, and the 3rd quartile
(or 75th percentile) is the median of the values between the 2nd quartile and
the maximum. In the same way, to get four groups using nested means we
first calculate the mean of the variable and call this MidMean, then calculate
the mean of the values between the minimum and MidMean and call this
LowMean, and calculate the mean of the values between MidMean and the
maximum and call this HighMean; LowMean, MidMean and HighMean are
then the divisions between our four groups.

More generally, a frequency distribution is balanced about its mean, and this
forms an obvious point of division to give two groups; each of these classes
may be subdivided at its own mean; and so on, giving 2, 4, 8, 16, ..., classes.

Evans (1977)(1) claims this approach has desirable ‘adaptive’ properties

“Since means minimize second moments (sums of squared deviations), they
are the balancing points of the part of the scale which they subdivide, with
respect to both magnitude and frequency. Class intervals thus defined are
narrow in the modal parts of a frequency distribution and broad in the tails.
Extreme values are not allowed to dominate, but they do influence the posi-
tions of means of various orders so that the less closely spaced the values in a
given magnitude range, the broader the classes. For a rectangular frequency
distribution, nested means approximate the equal-interval or percentile solu-
tions; for a normal one, they approximate a standard deviation basis; and for
a J-shaped, a geometric progression. Hence nested means provide the most
robust, generally applicable, replicable yet inflexible class interval system.”

To specify values using the Nested Means tab,
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The three values that will be used for standlrt in predictions are now the cut
points of the four groups: the overall mean, the mean of values between the
minimum and the overall mean, and the mean of values between the overall
mean and the maximum.

We could also have obtained 7 values (the cut points of 8 groups) by specify-
ing 2 levels of nesting, or 15 values (the cut points of 16 groups) by specifying
3 levels of nesting, and so on.

2.1.5 Specifying values for categorical variables

Let’s set up a model with categorical predictors. This can be done in the
Equations window or via commands in the Command Interface window. First
let us recode the variable girl:

We will use as our predictors gender and vrband, which is a categorised
prior ability measure on pupils (vbl = high, vb2 = mid, vb3 = low). Type
the commands in the left hand column of the table below in the Command
interface window

STAR 1 estimate model updating GUI
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Note that the command STAR 1 has the same effect as pressing the Start
button at the top left of the screen. This will produce the following results
in the Equations window

% Equations =10l x]

normexam, ~ N(XE. Q)

normexamy = Gy cons + 0.147(0.053)girl, +-0.831(0.046)vb2, +
-1.701(0.063)vb3,, +0.026(0.058)girl vb2, +
0.177(0.083)girl.vb3,

Bog = 0-607(0.056) + 12, +e g

[g] ~NO QD Q= [0.09500.019)]
[eq,] "N Q)2 Q= [0.602(0.013)]

-2 ¥laslikelihood(TGLS Devianes) =9610.299(4059 of 4059 cases
<

+

3
- |ﬂ:|:| 1err|1| gstimntes| Honlinear, | Clear | Hotation |R.es|:or|se:| 5‘I.ore1J

A message appears at the top of the window:
“Prediction is out of date, specification disabled until it is cleared”

This is because the current prediction grid refers to a previous model. Indeed
looking at the list of explanatory variables in the Customised predictions
window, you will see the variables standlrt and avslrt listed. When the
main effects in a model are altered the prediction grid is flagged as being out
of date. To proceed with a prediction for the new model we must clear the
current prediction grid specification

This will clear any columns or graphs referred to by the prediction grid and
set the prediction grid to refer to the current model. You will now see that
the list of explanatory variables in the Customised predictions window is
up to date. In the Customised predictions window:

[\)
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This shows us the predicted values and confidence intervals for the 6 combi-
nations of gender and vrband

~& Customised predictions

Note that, because simulation is used to calculate these values, these numbers
may be slightly different every time.

Plotting this out using the Customised prediction plot window filled in
as follows:

w# Customised prediction plok x|

ol v e <
=

gender pred

[C]wrband pres [wrband pred
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gives this:

=# Graph display - |EI|E|

B boy

Mmean I:lrEd
d o
tld o

! 1 1 |
T T T 1
i w2 M3

wrizand.pred

This shows girls doing uniformly better than boys across all 3 levels of vr-
band. Recall that vrband is a categorised prior ability measure on pupils
(vbl = high, vb2 = mid, vb3 = low). The default choice for displaying data
against a categorical x variable is to plot the data as bars. We can change
this or other characteristics of the plots produced by the Customised pre-
diction plot window by editing the Customised graph window for the
appropriate graph display. For example, suppose we wanted to draw the
above relationship using line + point instead of bars. Then

e Sclect Customised Graph(s) from the Graphs menu
e Select line 4+ point from the drop-down list labelled plot type

e Click Apply

This produces:
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uk Graph display =|0] =]

-4 hop

4 vl

mean.pred

T T 1
i [ R

vrhand.pred

Both these graphs show girls outperforming boys at all three levels of vr-
band. Looking at the graphs (and noting in which cases the error bars
overlap) it might appear that this gender difference is significant for vb3
children, but not for children in vb2 and vbl. However, care is needed
here. The graphs are showing 95% confidence intervals around the predicted
means for each of the 6 groups. If we are interested in making inferences
about how the gender difference changes as a function of vrband, we must
request confidence intervals for these differences:

The graph will update
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which shows that the 95% confidence intervals for the gender differences do
not overlap zero for vb1l, vb2 or vb3, and thus there is a significant gender
difference for each of the three categories of vrband.

2.1.6 Commands for building customised predictions for Normal
response models

PGDE | : clears the current prediction grid — it should be used before con-
structing a new prediction grid

PGRI constructs a prediction grid:

PGRI {Continuous C contmode = N, contmode values N..N}
{categorical C catmode N, catmode N..N} Outputcols C..C

contmode N
= 0 list of values: N..IN
= 1 range: upper bound N, lower N, increment N
= 2 centiles: N..IN

= 3 nested means: level of nesting N

catmode N
= 1 category numbers N ... N
= 2 all categories

Example:
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PREG calculates predictions for the prediction grid currently set up.

For Normal response models:

PREG confidence interval N mean C lower C upper C, differences N
(differences for column C, differences from category N), multivariate N
(respcol C), coverages {level N coverage range N low C up C} ...

Examples:

(1)

Given PGRID established as above, predicted mean + /- 95 percentile output
to ¢100 ¢101 ¢102, no differences selected

Given PGRID established for a multivariate response model, performs same
task as example (1) above; predictions are for the response ‘normexam’.
(Note that we describe later how to make predictions for multivariate models
using the customised predictions window).

—~
w
~—

As (2) above but predictions are differenced from schgend category 1

(4)



» PREG 95 mean c100 lower c101 upper c102, difference 1
'schgend' 1, multivariate 1 'normexam' 2 99 c103 c104

As (3) above but also calculate 99% coverage for predictions based on level
2 variance; lower and upper coverage values to c103 and c104

2.1.7 Commands for plotting customised predictions

The PLTPrediction command is used for displaying predictions and performs
the same task as the Customised prediction plot window; though it can
also be used more generally to plot data other than predictions since it just
plots one column against another, with confidence intervals if supplied, with
the options to plot the data by groups and to split the plot into two separate
graphs (horizontally or vertically), with data plotted on one graph or the
other according to values of a supplied variable:

PLTPrediction in graph display IN, dataset (X,Y),

0 (do nothing) or grouped by values in C,

0 (do nothing) or split into separate graphs across rows of a trellis ac-
cording to values in C,

0 (do nothing) or split into separate graphs across columns of a trellis
according to values in C,

{confidence intervals: lower in C, upper in C, plot style 10=bar, 11=line}

Note that if you do not already have the graph display window open then
you will need to go to the Customised graph window and click Apply
after entering the command.

Examples:

(1)

» PIPT 2 c1 c2 0 0 O c3 c4 11

Sets up graph display 2: x = ¢l y = ¢2, lower and upper confidence intervals
are in ¢3 and c4, plot confidence intervals as lines

(2)

» PLPT 2 cl1 c2 ‘social_class' 0 O
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Sets up graph display 2: © = ¢l y = ¢2, one line for each social class, don’t
display confidence intervals

(3)

» PLPT 2 cl c2 'social_class.pred' 'gender.pred' 0 c3 c4 11

Sets up graph display 2: x = ¢l y = ¢2, one line for each social class, repeat
plot in a 2 x 1 graph trellis for gender = 0 in first pane and gender = 1
in second pane (i.e. split into two plots arranged vertically, with the upper
plot including data points for which gender = 0 and the lower plot including
data points for which gender = 1), lower and upper confidence intervals are
in ¢3 and c4, plot confidence intervals as lines

2.2 Binomial models

2.2.1 Predicting mean and median

To give ourselves a binary response variable so we can demonstrate prediction
for binomial models, let’s create a dichotomised variable from the Normalised
response in the tutorial dataset. Responses with a value of greater than or
equal to 1.5 we will set to 1 otherwise we will set the dichotomised variable
to 0. To do this, type in the Command interface window

» calc cll = 'mormexam' >= 1.5

» name cll 'pass'

Now set up the following multilevel binomial model and estimate the model
with the non-linear options set to 2nd order PQL estimation :

L=

-

pass; ~ BlllOll]lEll(COllS!}, ?i':;) =

logit(z,) = Bqcons
By =-3.183(0.189) +,,

[10g] ~NO Q) Q= [1596(0.387) |

Var(pass!.}] ;;!}.) = ;;J.J.(l - ;;J.j.)f cons,, (

-

| Hame | + | - |ndd Ierm| Es‘timﬂtes| Honlinear| Clear | Hotation |Responses| Store
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The Customised predictions window now looks like this:

2k Customised predictions - |D|ﬂ
Setup 1 Predictions
EhangelRange Summaty # predicted cases:

consg

# drawys from IQDDD
coviBeta)

# simulations:

P Igs (¢ Probakilties ¢ logit

[~ Differences
—Predictions ta:
[~ Medians
Mediarl &135 j LDWI c18 j Upper I c17 j

I~ Means

Mean IC18 H Lowlc19 H Upperl020 2

—Coverage
[~ Level 2 (school) COverage inter\tal:lgs L°W|021 j Upperlcgg j
Fill Gried | Predict | Plat Gric |

The Customised predictions window for binomial response models looks
similar to that for Normal response models. However there are a few changes.
You can choose whether predictions should be made on the logit or proba-
bility scales and also you can ask for these predictions to be for the mean or
median value of the prediction distribution.

What does prediction distribution mean? This data is based on 65 schools.
The level 2 variance of 1.596 on the logit scale is the between school variance,
in the population from which our schools are sampled, of the school means
(on the logit scale). Suppose we now ask the question of what the mean
and median pass rates are on the probabilty scale, for pupils attending three
schools (of identical size) with values of ug; = {—2,0,2}. This is a school
from either end and the middle of the distribution of schools. We obtain
i, the pass rate on the probability scale, for each school k by taking the
antilogit of the model equation —3.18 +ug (putting in the appropriate value
for ugy)

pr = {antilogit(—3.18 — 2), antilogit(—3.18), antilogit(—3.18 + 2)}
= {0.006, 0.040, 0.234}
mean(py) = 0.093
median(pg) = 0.040

The thing to note is that if we take the antilogit of the mean of our three
logit values, that is antilogit(—3.18) = 0.040, this is equal to the median of
our three probabilities but not the mean of the three probabilities (0.0918).
This is because in this case before we take antilogits the mean of our three
values equals the median, and the median of the antilogits of a set of values
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is always equal to the antilogit of the median of the set of values. The mean
of the antilogits of a set of values on the other hand will in general not be
equal to the antilogit of the mean of the set of values.

This comes about because of the non-linearity of the logit transformation as
we can see from the graph below, which graphs logit(p) and places our three
schools as the red points on the line.

1.0+

0.8+

0.6+

0.4+

-10 -5 0 5 10

logit(p)

When we fit a multilevel model and take the antilogit of a fixed part predictor
(i.e. a sum of fixed part coefficients multiplied by particular values of their
associated explanatory variables), this gives us the median (not the mean)
probability for the prediction case consisting of those values of the explana-
tory variables. Again, this is because before we take antilogits, median =
mean (since we are dealing with a normal distribution), and antilogit(median)
= median(antilogits). From the above multilevel model we get a prediction
of —3.18 on the logit scale which corresponds to a median probability of
passing of 0.040. We may however want to know what the mean probability
is of passing, not taking account of only three schools, but allowing for the
whole distribution of schools. The mean cannot be directly calculated from
the model in the same way that the median can; but we can estimate it using
simulation. We know that the distribution of all schools on the logit scale is
N(—3.183,1.596"7). Thus the following will give us an estimate of the mean
pass rate

1. Simulate the value on the logit scale for a large number of schools, say
1000, from the distribution N(—3.183,1.596°?). That is:

Z; = N(-3.183,1.596°%), j=1,...,1000

2. Calculate the predicted probability for each of our 1000 schools and
calculate their mean. That is, antilogit(Z;).
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We can do this in MLwiN using the following commands (click the Output
button on the Command interface window before typing them in order to
properly see the output at the end)

This produces an estimate of the mean pass rate as 0.072. In this example
our prediction case is very simple, it is simply the unconditional mean pass
rate (i.e. the mean pass rate taking no explanatory variables into account);
if we calculate that directly (by taking the mean of the variable pass) we get
a value of 0.070, so we can see our estimate is very good. In more complex
conditional predictions, for example the mean pass rate for girls with intake
scores of 1 in girls’ schools, we may have very few (or in fact no) individuals
exactly fitting our prediction case and a reasonable empirical estimate of the
mean for that prediction group is not available. However, the model based
estimate is available.

All the predictions and confidence intervals calculated with the out of sam-
ple predictions window are derived by simulation, in a similar fashion to the
example we just typed in the commands for. The detailed simulation algo-
rithms for a range of model types are given in Appendix 1 of this document.

These median and mean predictions are often referred to as cluster specific
and population average predictions respectively. Instead of typing in the
above commands, we can obtain these simply using the Customised pre-
dictions window:
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=k Customised predictions — ||:||5|

Setup T Predictions ]

cons. pred median pred |median lovy g median.highf| mean.pred [ mean.losw pre| mean.high.pe
1 04 028 056 072 052 095

Fill Grid | Predlict |PIDt Gridl

We see that the median (‘median.pred’) and mean (‘mean.pred’) predictions
are as expected. Note that these results are from simulation algorithms where
we have drawn a particular number of simulated values.

If you click on the Setup panel in the Customised predictions window
you will see

# predicted cases: 1

# draws from cov(Beta) 2000

# nested draws from cov(u) 1000
# simulations 2000000

The number of predicted cases is 1 because we are predicting for the un-
conditional mean only. When we typed in commands to estimate the mean
probability and generated 1000 draws from N(—3.183,1.596%%), we always
used the same value for By of -3.183. In fact, s.e.(fy) = 0.189 and the full
simulation procedure as implemented by the Customised predictions window
is as follows

1. Simulate K= 2000 values of

Bor ~ N(—3.183,0.189%%), k=1:K

2. For each value of Sy simulate j = 1000 values of
Boks ~ N(Box, 0.189°%),  j=1:J

3. Then let py; = antilogit(Sox;) and for each value of k calculate p, =

J
L5
j=1

K
4. Finally we calculate the mean probability as p = % > ok
k=1

This actually involves K x J = 2000000 simulation draws and the results in
this case are identical to the simplified procedure where we typed in com-
mands and assumed a fixed value for f.

2.2.2 Predictions for more complex Binomial response models

Let’s fit a model where the probability of passing is a function of pupil
intake score (standlrt), peer group ability (avslrt) and an interaction of
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pupil intake score and peer group ability. Note the interaction effect between
avslrt and standlrt is not significant; we leave it in the model for the purposes
of demonstrating the graphing of interactions, particularly for log odds ratios
in the next section.

=% Equations = 10| x|
pass, ~ Binomial(cons,, )
logit( ;) = Bycons + 1.556(0.114)standlrt, +

1.863(0.617)&%1{1}. + 0.351(0.365)avslt‘t.standlrtg
By =-4.014(0.192) +,

[144] ~N©O, Q) : Q,= [0.8980.256)]

Var(passf_;'bﬁj) = 5’5}(1 - ﬂ;‘j)"‘r cons,,

In the Customised predictions window, set

In the Customised prediction plot window

Which produces:
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The graph shows how the probability of passing increases as pupil intake
ability increases, with the increase being stronger for those in high ability
peer groups. We now explore the differences between low and high ability
peer groups as functions of standlrt and assess if and where those differences
are significant. In the Customised predictions window

In the Customised prediction plots window
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il Graph display

=10l x|

median.pred

0.8

0.6

04|

0.2

ik}

standirt.pred

— —avslripred=-0.3

— —avslrtprad=03

We can see that after standlrt scores become greater than around —0.5, the
probability of passing for those in the high ability group becomes significantly

different from the low ability group.

2.2.3 Log Odds ratios

Return to the Customised predictions window

il Graph display

median.pred

0o

-2.3

-5

I I
-08 0o

standirt.pred

=10l x|

— —avslripred=-0.3

— —avslrtprad=03
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The variable standlrt.pred contains the requested values range {—3, 3,
0.25}. The graph plots

| odds passing|avslrt.pred = 0.5, standlrt.pred,;
odds passing|avslrt.pred = —0.5, standlrt.pred, / ’

standlrt.pred, = {—3,—2.75,...,3}

that is, the log odds ratio of passing for high versus low peer groups as a
function of pupil intake score. We may want to view the graph as odds
ratios, rather than log odds ratios. Looking at the Names window we see
that the log odds ratio and its upper and lower bounds are in the columns
named median.pred, median.low.pred and median.high.pred, that is
c18-c20. To create a graph of odds ratios type the command

» expo c18-c20 c18-c20

4 Graph display =1olx|

— —avsiripred=-03

120 ‘ — —avsiripred=0.J

median.pred

f i i i i i i 1
30 -23 415 -08 0.0 08 15 23 30

standirt.pred

2.2.4 Customised prediction commands for discrete response mod-
els

PREG confidence interval N,

predict mean values N (mean values output set C lower C upper C),
predict median values N (median C lower C upper C)

prediction scale N,

differences N (diffcol C, diff reference C)

multivariate N (respcol C)

coverages {level N coverage range N low C up C} ..
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This is an extension of the PREG command for Normal responses. The
differences are

predict mean values N=

0: no mean value output set to follow

1: mean value output set required

(mean value output set: mean to C, lower confidence interval for mean
to C, upper confidence interval for mean to C)

predict median values N =

0: no median value output set to follow

1: median value output set required

(median value output set: median to C, lower confidence intervals for
median, upper confidence intervals for median)

Prediction scale N =

0: for raw response scale

2: for link function attached to model

Note raw response scale is probability (binomial, multinomial models) or
counts (negative binomial, Poisson models)

Examples

(1)

» PREG 95 0 1 c100 c101 c102 0 0 O

If we have a binary response model set up, then the above command evaluates
the current PGRID, calculating median (i.e. cluster specific) predictions on
the probability scale, and writes the predicted medians and their lower and
upper 95% confidence intervals to ¢100, ¢101, ¢102

(2)

» PREG 95 0 1 c100 c101 c102 1 'schgend' 1 0 O

As (1) above but predictions are differenced from schgend category 1
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2.3 Multinomial models

2.3.1 Unordered Multinomial Models

We will take the contraception dataset used in Chapter 10 of the User’s
Guide:

Set the 4 categories to be :

ui. et category names l_l_ l_

Let’s use the Command interface window to set up a multinomial model,
where the log odds of using different types of contraception compared with
no contraception are allowed to vary as a function of age.

Running this model gives:
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= Equations

resp,; ~ Multinomial(cons,, 7)

log(mﬁc / J'raﬁc) = fuscons.stery; + 0.058(0.007)age.ster1}.k
Lo =-2.045(0.119) + v,

log( 74y, / 7r4n) = Prycons.mod,, +-0.023(0.006)age.mod,
B =-1.378(0.099) +v

10873, / 7a50) = Bracons.trady, +0.029(0.007)age.trad,,
B =-1.914(0.101) + v,

Vo 0.470(0.141)
| "N Q) Q= [6281(0.093) 0.374(0.103)

cov(ysj.k, yg.k) =- ;;sj.kﬁg.kfconsjk TR ;.-;g.k(l - ﬂg‘k)lconsjjc 8=

In the Customised predictions window :

Vo 0.200(0.090) 0.123(0.075) 0.298(0.105)

=101 x|

100 =]

In the Customised prediction plot window

which produces



|
=8.Graph display

=10/x|
— —sfer
— —mod
0T ;
— —frad
051

o

o

a

c

R P

=1

o

£

age.pred
or with error lines
=8 Graph display =10 x| |
— — sfar
— —mod
0T :

— —frad

— —nome

04—

median.pred

age.pred

Let’s elaborate the model adding number of children (lc) and an lc*age
interaction:

Running this model produces:
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=i Equations

resp,; ~ Multinomial(consﬁc, 75;&)

log(7 14 / map) = Boxcons.stery, +0.077(0.034 )age.ster,; +2.083(0.366)lcl.stery, +
2.297(0.359)le2.ster,, +2.559(0.352)le3plus.ster,, +0.025(0.040)Ic].age.ster,,
-0.022(0.039)1c2.age.steru.k + -0.105(0.036)1(:3plus.a,ge.sterz.j.jc

Lo =-3.811(0.348) + vy

log(;‘rzﬂ,c / ;;4j.k) = plkcons.modﬂk + -0.035(0.019)21,ge.mor;1!.j.jc + 1.072(0.243)1c1.m0d1}.k +
1.041(0.233)lc2.mod,;, +1.163(0.226)le3plus.mod,; +
0.033(0.027)lcl.age.mody; +-0.027(0.028)lc2.age.mod,; +
-0.053(0.023)lc3plus.a,ge.modwc

B =-2.066(0.221) +v ,

108( 73 / 7r4) = Baxcons.trady, +0.008(0.024)age.trady, +0.751(0.318)lc1.trady, +
1.087(0.287)le2.trad,,, + 1.227(0.278)le3plus.trad, +
0.005(0.037)lcL.age.trad,,, + 0.004(0.033)lc2.age trad,, +
-0.021(0.028)le3plus.age.trad,;,

Lo =-2.669(0.257) +v,,

Vo 0.578(0.163)
v | "NO Q) = [0357(0.107) 0.430(0.114)
v 0.253(0.101) 0.165(0.083) 0.332(0.112)

Let’s now set up a prediction to explore the interactions between age (old and
young mothers), number of children and the probabilities of using different
methods of contraception. In the Customised predictions window make
the following specifications:

and then set plot up as follows
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e Click Apply

This produces:

i
sfar
0.4 mod
E ard frad
= o] nome
C 0at
g
o
o 0.2+
oo T ; ; t
[La1] 61 o2 le3plus
lc.pred

age.pred=10
median.pred

Iz le3plus

1 il

lc.pred

This graph shows that across ages (top graph panel = young, bottom graph
panel = old) and parities (that is, number of children) the most prevelent
contraceptive behaviour is to use no contraception at all. However, some
interesting trends can be observed — for example, the probability of using
no contaception is highest for women with no children. For both young and
old women once they have had one child the probability of using some form of
active contraception increases. For young women the pattern is more striking
and the preferred method of active contraception for young women is modern
contraception. Active contraceptive use is strongest for young women with
3 or more children.

We may wish to explore whether differences from a particular reference group

are statistically significant. For example, we may wish to choose women with
no children as a reference group and evaluate:

p(usage = ster|lc = lc1, age = —10) — p(usage = ster|lc = 1c0, age = —10)

p(usage = ster|lc = 1c3, age = —10) — p(usage = ster|lc = 1c0, age = —10)
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That is, see how the difference from women with no children changes as a
function of age, usage type and number of children. In the Customised
predictions window:

e Select Differences; from variable: Ic; Reference value: 1c0
e (lick the Predict button

The graph display will update to:

=% Graph display 1Ol x|
ﬂ sher
04T mod
0.2+ a
= frad
@@ 01+
= E. ] mnome
= T T p— -- N SN S
i =
B LR
S =]
o L p2t
o £
= 044
-0.5 + + + + |
1] ([ le2 le3plus
Ic.pred
0.4
0.2+
=)
@ 01T
—
2 L ppfem - - el
I [l
ol 8 o1t
AR
it} -0.2
& £
0.4+
-0.48 + + + +
1] [ o2 le3plus
lc.pred

Remember each bar represents the difference of a probability of usage for a
specified method, age and number of children from the same method and
age with number of children = 0. So all the bars corresponding to number
of children = 0 disappear since we are subtracting a probability of usage for
a particular combination of explanatory values from itself.

Let’s look at the 4 bars for the 4 usage types at number of kids = 1, age
= —10. That is, young women with one child. This is the leftmost cluster of
bars in the top graph panel which corresponds to prediction cases 5-8 in the
Predictions tab of the Customised predictions window.
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=k Customised predictions i ] 5
Setup Il Predictions
uzed pred Iz pred age . pred cong.pred median.pred |median.ow. | median high =
ster (=1} -10 1 0 o] 0 =
miocd 0 -10 1 a 0 a
trac =0 -10 1 0 o] 0
none (=} -10 1 0 o] 0
ster i1 -10 1 033 ma 037
mod It -10 1 097 04 165
trad 11 -10 1 032 -003 073
none I=1 =10 1 -162 -219 =11 ﬂ
Fill Gricd | Preclict | Pliot Gridl |

We see from row 8 of the above table (under median.pred) that

p(method = nonellc = Icl, age = —10)
—p(method = nonellc = 1c0, age = —10) = —0.162

That is, the probability that young women with one child used no contracep-
tion is 0.162 less than young women with no children. Once young women
have had a child they are more likely to use some active form of contracep-
tion. We can see which form of contraception these young women switch
to by looking at rows 5-7 of the prediction table. We thus discover that
0.162 = 0.034(ster) + 0.097(mod) + 0.033(trad). Note that there is a tiny
discrepancy in this equality due to rounding error.

We can carry out the same prediction on the logit scale and get log odds
ratios. In the Customised predictions window

e Select logit
e Click Predict
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4. Graph display — Ol x|

%

ster

mod

7

frad

noneg

age pred=-10
median.pred
i
|
|
|
|
%

age pred=10
median.pred
|

Ien Ie1 2 le3plus

Ic.pred

Now the leftmost blue bar in the upper graph panel represents the log odds
ratio

p(usage = ster|age = —10,1c = 1c1)/p(usage = nonelage = —10,lc = lc1)

1
0 p(usage = ster|age = —10, 1c = 1c0)/p(usage = none|age = —10, 1Ic = 1c0)

We get a log odds ratio (as opposed to a logit) because in our prediction we
asked for logits to be differenced from lc = 1c0.

2.3.2 Ordered Multinomial
We will take the A-level dataset used in Chapter 11 of the User’s Guide:

e Retrieve alevchem.ws

Let’s set up a basic model using the following commands:
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=N Equations

resp,, ~ Ordered Multinomial(consj.k, ﬂfﬁc)

Pk = Ty Yok = Ay T o Pae = Aye T Tae T T
Vage = Fige ¥ T T Fae T Aaged

Ve = g T Ty T g T T T At Y =V
logit(y) =-1.375(0.102)cons.(<=F),; + Ay
logit(hﬁ) = -0.492(0.09'?!’)(:0ns.(‘i=E)U.jc + }zﬁc
logit(ygjk) = 0-ZTS(O-OQT)COHS-(‘:zD);;k + &j.k
logit( ) = 1.152(0.099)cons.(<=C),; + Ay
logit(yjjk) = 2.370(0.109)c0ns.(€=B)J.j.k + ﬁzj.k
&}.k =v,.cons.12345

[v5] “NO Q)7 [12810017)]

cov(ysﬁc, yq.k) =;;@j.k(1 - %.k)f cons; §<=r

[owme | [ ot tom | otrton ke || e | s [morpones] i |

In the Customised predictions window:




This prediction gives the cumulative probabilities of passing across the grade
categories

w# Customised predictions

The Differences from functionality, in the Customised predictions win-
dow, is not currently implemented for ordered multinomial models.

2.4 Poisson models

We will work with the skin cancer dataset used in Chapter 12 of the User’s
Guide.

Let’s model malignant melanoma county level death rates as a function of
UVBI exposure, allowing for between region and country variation:
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%.Equations =10l x
obsm,'E ~ POiSSOH(jIUk) =
log( ) =expy; + Byreons +-0.028(0.011)uvbiy,

Bage =-0.081(0.133) +v, +1y,

[7e] ~NO Q) 5 2= [0136(0.072)]
[gu] ~NO Q)5 = [0.048(0.011)]

Var(obsij.k| ?G;';c) = Ty

| Hame | + | - |A:I:I lerrn| gstirnltes| Honlinenr| Clear | Hotation |Ilesponses Store

-

In the Customised predictions window

uk Graph display =0] =]

1.3
— mean
1 7. — madian
1.04
.85
0.6
-8

We see that the mean is uniformly higher than the median. This is due
to the shape of the link function. This difference that we see emphasises
the need to consider the shape of the distribution when reporting results
or making inferences: for example, just as we saw for binomial models, the
mean probability cannot be obtained by taking the exponential of the mean
XB; and confidence intervals must be found before, not after, transforming

o4



to probabilities via the exponential. This also explains why we won’t expect
the predicted value of, for example, the unconditional mean to exactly match
our observed value.

2.5 Multivariate models

The Customised predictions window can deal with only one response at
a time when a multivariate model is set up. To demonstrate this, let’s create
a binary variable from the exam scores in the tutorial data. We then fit a
multilevel bivariate response model with the original continuous score as the
first response and the dichotomised variable as the second response. Open
the tutorial worksheet and type the following commands
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xi-Equations

resp ., ~ N(XB, Q)

resp g ~ Binomial(cons 2> ?Tzﬁc)

resp ;. = poﬁccons.nor‘me;!{amij.jc +
0.563(0.012)standlr‘t.nonnexamljk

Bog =0.002(0.040) +v 5 + 2 gy

logit(gzﬁc) = Pixcons.pass,;, + 1.587’(0.091)stant;ilr‘t.pass!.ﬂ,c

B =-3-932(0.171) + v,

Vae| ~N(O, @) : @,= |0090(0.018)
0.298(0.061) 1.009(0.241)

Vg

cov |%um _ | 0.570(0.013)
1esp o | 755 0.280(0.011) 5,42 (74,)"” &(735:)

gm=al-nn

In the Customised prediction window notice in the top right hand corner
the name of the response we are working with, normexam. This means
that any prediction we specify will be applied to the continuous response
normexam only.

Now let’s make a prediction for the binomial response. In the Customised
predictions window
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57




3 3D Graphics

We have implemented some preliminary 3D graphics in the software. These
are currently implemented as 3 commands:

SURF 3d graph number N, X, Y, Z

SCATt 3d graph number N, X, Y, Z, [group column|]

SHOW 3d graph number N

Let’s start by constructing a surface with the Customised predictions window
and then plotting it.

Return to the model

w¥ Equations !E
normexam, ~ N(XE, Q)

normexamy = fGy.cons + g, standlrt, +0.374(0.109)avslrt, +
0.162(0.057)standlrt. avslrtij.

By =-0.007(0.037) +up +eg,

By =0.558(0.019) + 1y,

| ~N@, Q) ¢ q,=|0074(0.015)
My 0.011(0.006) 0.011(0.004)

[eq,] N Q) 2 Q7 [o5500.012)]

-2¥aglikelihood(IGLE Deviance) = 9302.910(4059 of 4059 casze:
«| | »

| Hame

+

- |ﬂ:||:| 1ern1| gsl.imlltes| Honlinear | Clear | Hotation |Responses| Store

In the Customised Predictions window
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Set up the plot using

=% Customised prediction plot
] v et ]
Clavsirt pred Graph Display: IAI jv

ﬂ [~ 95% confidence irterval

Trellis X: Trellis v

Grouped by
[ standirt pred

red

Apaply |

O O
[ avslrt pred [avsirt pred

x|

which produces:

28 Graph display

avslri pred=-0J

13—

0.6——

N

-0.6—

mean.pred

-30 -2.3 -1.5 -0.8 0.0 [N 1.5 23 a0

standirt.pred

avslrt prad=-014
avslri pred=-03
avslrtprad=-02
avslrt prad=-2 299992E- 02

avsirt pred=7 450551 E-08

avslrt pred=02
avslripred=i3

avslrt pred=04

To plot this as a surface, in the Command interface window type

» surf 1 'standlrt.pred' 'avslrt.pred'

» show 1

'mean.pred’

which produces (after rotating the view using the horizontal slider to 80.0 —

see top left of window for current view angle):
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=% 3d graph #0

an.n

pard-puels

2]

Right clicking on the graph and selecting

<Plotting Method><Surface with Contouring> produces

=N 3d graph #0

Main Title 4l
2010-1.5 ME-15to-10 EE-10to-0.5 EE-05to00 BEO00to0s EE0Sto10 EM10to15 EH1Sto
&0.0
w
e
=
=
2
=
=
®
=
25

The SURF plot requires a rectangular data grid of X, Y values with a Z value
in each cell of the grid. So to plot the function z = 223 + 3y for z = {1, 2,3},
y =1{4,5,6,7} we need to first construct
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el e e
| S| U x|

then create z from these two columns. This can be done by typing the
following commands into the Command interface window (close the 3d
graph display window first)

which produces (after right clicking on the graph and selecting <Plotting
Method><Wire Frame>):

=% 3d graph #0

1600

< [ |

Going back to the model we have just fitted:
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=k Equations I =] 4

normexam, ~ N(XB. Q)

normexam,; = Gy.cons + g standlrt; +0.374(0.109)avsltt; +
0.162(0.057)standlrt.avslrtij.

Loy =-0-007(0.037) +2ey, +e4,

By =0.558(0.019) + e y;

| ~N@, Q) : Q= |0-074(0.015)
uy 0.011(0.006) 0.011(0.004)

[e0,] ~NO Q) 5 Q= [05540.012)]

-2 ¥laclikelihood{TGLS Devianos) = 9302.910(4059 of 4059 case

the intercept and slopes are distributed

0 = [UOj}NN(O,Qu), Qu:[

ulj

0.074
0.011 0.011

The probability density function for this bivariate Normal model where the
means of the two variables are 0 is

— L 2 e (= LT
P(0) = Gy ™2 exp(—5(670510)

To calculate and plot this bivariate distribution, close the graph then type:
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Selecting <plotting method><surface with contouring> on the graph that
appears produces

=% Jd graph #0

00to0s EE0Sto10 WE10to1s WEN1S5toz0 EEZ0to25 EEIZS5to30 EE30tass
2750

50

2.5

L]

— o

The SCATter command can produce 3D scatters. For example,
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=¥ 3d praph #0

2700

seheel

25

23

e 5

We can group the plot by vrband:
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4 Model Comparison Tables

MLwiN now has a mechanism for storing the results of a series of models and
displaying them in a single table. This has two main uses. Firstly, it is useful
when conducting an analysis as it enables the user to easily see the results of
a series of models. Secondly, often when writing papers, results from a series
of models are presented in a single table; constructing these tables manually
can be a time consuming and error prone process. To a large extent MLwiN
now automates this process.

Let’s set up a variance components model on the tutorial dataset

Running the model gives:

=¥ Equations =10 x|
normexam, ~ N(XB, Q)

normexamy; = fy,cons
By =-0.013(0.054) +up, t ey,

0] ~NO- Q)2 Q= [0.169(0.032)]
[0y MO Q) ¢ Q= [0.848(0.019)]

-2 ¥oglikelihood(TGLE Deviance) = 11010.648(4059 of 4059 case
4| [ 3

- |l|:||:| 1erm| Esl.imlh:s| Honlinear | Clear | HNotation |Iles|:|onses| Store

+

We can add this model to the stored sequence of models under the name
‘Model 17 by clicking on the Store button at the bottom of the Equations
window and typing a name for the model in the window which appears, in
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this case Model 1. We can view the sequence of stored models (so far only
one model) by selecting Compare stored models from the Model menu.
This produces:

2% Results Table - |EI|E|

Copy |

Model Maodel 1| Standard Error

Response | normexam
Fixed Part
COong 0013 0.054
Fandom Pai
Level schoo
congdeong 0,163 0.032
Level stude
consfcons 0.848 0.0ma
-2loglikelihc 11010.648
DIC:
Units: schoc ES
Urits: stude 4053

Storing and retrieving of model results can also be done using commands.
The formats of the model table commands are

MSTO <S> |: store model results as S

for example, entering the command

» MSTOre 'modela’

appends the current model to the table of models and names the model
‘modela’

MPRI | : print stored model results to Output window

\MCOM <S> ... <S>\ : compare the listed models; compare all if no pa-
rameters

for example, entering the command

» MCOM 'Model 1' 'modela' 'Model 4'

would create a model table comparing Model 1, modela and Model 4

MERA <S> |: erase stored model results for listed models

for example:
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erases modela

MWIPe | : erase all stored models

Let’s create a macro to run a sequence of models and store each one in a
model comparison table

Note the START and NEXT commands when called from a macro with
parameter 1 will cause the Equations window to be updated after each
modelling iteration. Sometimes this can result in the software spending too
much time updating the screen and not enough time doing sums. In this
case you may prefer to use the START and NEXT commands with no
added parameter, in which case screens are not updated during macro file
execution. You can however place a PAUSE 1 command at any point in a
macro script which will cause all displayed windows to update themselves.




You should now see the sequence of requested models being executed in the
Equations window. To view the model comparison table, type

in the Command interface window or select Compare stored models
from the Model menu. This produces:

=k Results Table =10 x|
Copy |

Model Model 1| Standard Emor | Model Model 2| Standard Erron| Model Model 3| Standard Er
Response haImEXam hormesann hOIMEXam
Fixed Part
CONg 0.013 0.054 0.002 0.040 -0.m2 0.040
gtandit 0.563 0oz 0.557 0.020
Fandom Part
Level school
consdcons 0,163 0.032 0.032 0.018 0.030 0.018
standit/cong 0.0 0.007
standit/standirt 0.015 0.004
Lewvel student
congdcons 0.848 0.019 0.566 003 0.554 0.mz
-2*loglikelihood: 11010.648 9367.242 9316.869
DIC:
Units: schaol E5 Eh Eh
Units: student 4059 4059 4059

Clicking the Copy button will paste a tab-delimited text file into the clip-
board.

In Microsoft Word:

This produces:
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Iodel 1 Standard Iodel 2 Standard Tladel 3 Standard

Error Error Error
Response ORI HATT O HAYTL TOTINE HAr
Fred Part
cong -0.01% 0.054 0.002 0.040 -0.012 0.040
standlrt 0.563 0012 0.557 0.020
Ratdom Part
Lervel: school
consioons 0.169 0.032 0.092 0.01% 0.020 0.01%
standlrticons 001g 0007
standlrtistandlrt 0015 0.004
Level: student
consioons 0548 0.019 0.566 0.013 0.554 0.012
-Mloghkelihood: | 110106458 0357242 D316 569
DIC:
Tnits: school [ [ [
T nits student 4059 4059 4059

Suppose we decided to recode a variable, e.g., turning standlrt into a binary
variable. We can recode the variable and reanalyse and the model comparison
table will get reformed.

e In the Command interface window, type

» calc 'standlrt' = 'standlrt' > O

e Rerun the analysis macro file

e In the Command interface window, type

» mcomp

which then produces the updated results table:

=k Results Table o ] 5
LCapy |
Model Model 1| Standard Error] Maodel Model 2| Standard Error | Model Model 3| Standard Enr
Response normesan normexam normesxanm
Fized Part
Cong 0.013 0.054 -0.453 0.047 -0.462 0.043
standirt 0.875 0.027 0.578 0.044

Random Part

Level: school

COns/oons 0169 0.032 0.120 0.023 0.095 0.021
standirt/cong 0.002 0.015
standirt/standit 0.073 0.021
Level: student

cong/cons 0.548 0.019 0.670 0.015 0.655 0.015
-2"loglikelihood: 11010.648 10050.764 10007836

DIC:

Unitz: school E5 Eh ES

Units: student 4055 4059 4055

To delete models or view selected models only using the GUI, there is a
Stored Model Results window:
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The following window appears:

ut Stored Model Results

This window provides another way of displaying all the stored models:

=¥ Results Table =10] x|
Copy |

Model Model 1| Standard Ermor | Model Model 2| Standard Eroi| Model Model 3| Standard Er
Response NIMEXEM hoImesan NOIMEXaN
Fired Part
cong 0.013 0.054 0.002 0.040 0.2 0.040
standit 0.563 nmz 0.557 0.020
Random Part
Level school
congdcons 0.169 0.032 0.032 0.018 0.030 0.08
standit/cons 0.8 0.007
standit/standit 0.015 0.004
Lewvel student
congdoong 0.848 0.019 0.566 003 0.554 0.mz
-2loglikelihood: 11010.648 9357242 9316.869
DIC:
Units: school B5 £5 £5
Units: student 4059 4089 4089

We could instead display just the results of the variance components model
(Model 1) and the random slope model (Model 3):
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=% Results Table =] E3

Copy |

Model 1 Standard En| Model 3 Standard En

Responge  fnomesam NOMMExam
Fiwed Part
CohE -0.013 0.054 -0.012 0,040
standlrt 0.557 0.020
Fandom Pal
Level schot
cohs/cons 0163 0032 0.090 0018
standlit/con 0018 0.007
standlit/star 0.5 0.004
Level: stude
cohsdcong 0.848 0013 0.564 0.012
-2loglikelibe| 11010.648 9316.870
DIC:
Units: schoc E5 E5
Units: stude 4059 4059

We can delete some of the models only:

e In the Stored Model Results window highlight just Model 1 in
the list of models and click Delete

e Click Compare

=% Results Table O] =]

Copy |

fdodel 2 Standard En| Model 3 Standard En

Responze | normexam NOIMEXEM
Fixed Part
Cong 0,002 0.040 0012 0.040
shandiit 563 n.0mz2 0,557 0,020
Fiandom FPai
Level: schoc
cons/cons 0.052 0.018 0.050 0013
standlit/con 0.0ma 0.007
standlit/star 0.ms 0.004
Level: stude
cohs/cons 0566 0.013 0,554 0oz
-Floglikelihc] 9357 242 3316.870
DIC:
Units: schoc [=34] E5
Units: studel 4059 4053

Or we can delete all stored models:

e In the Stored Model Results click Clear All
e Click Compare
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=% Results Table _ O] =]
Copy |

(Note that the Results Table appears like this because it was already open
before we deleted the models and clicked Compare. If we had closed it first,
nothing would have happened: the Results Table would not have appeared).
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5 A new method for estimating autocorre-
lated errors in continuous time

Previous versions of MLwiN implemented in a set of macro files the algo-
rithms in Goldstein et al. (1994) to estimate models with autocorrelated
errors at level 1. The macros were rather unstable and we removed them in
version 2.02 of MLwiN. We introduce here a simpler method of estimating
these models.

A common use of these models is where we have repeated measures data and
the measurement occasions are close together in time.

v

Time

The above graph shows a linear time trend fitted to repeated measurements
on one individual. We can see that the residuals around the graph are not
independent. Residuals close together in time show positive correlations; this
correlation decreases as the time distance between measurements increases.
In a multilevel analysis we will have many such lines, one for each individual
in the dataset. In the multilevel case too, the residuals around each person’s
line may show a pattern of non-independence which is a violation of our model
assumptions and could potentially lead to incorrect estimates of parameters.
The covariance between two measurements taken at occasions i; and 79 on
individual 7 cannot be assumed to be 0. That is

COV(eilj, 67;2]‘) 7é 0

We expect this covariance to decrease as the time interval between the mea-
surements increases. Let t;; denote the time of the ith measurement on the
jth individual. A natural model for the covariance is

1
cov(€iy ;s €ins) =ar———
’ 1j 123’
The autocorrelation is then
1
a—
_ ‘tilj_tin‘ 1
Cor(eiljv ei2j> - o2 ( )

e

We will use the Oxford boys dataset to illustrate how to fit multilevel time
series models with autocorrelated errors modelled as (1). The Oxford boys
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dataset contains height measurements on 26 boys each measured on nine
occasions between the ages of 11 and 13.

First we set up a repeated measures model on the oxboys data with no
autocorrelation structure. The data is in the worksheet oxboys.wsz. The
following model should already be set up in the Equations window:

=01 x]

HEIGHT, ~ N(XB, Q)

HEIGHT, = §y,cons + Bt + f,AGE2, +0.454(0.161)AGE3,; +
-0.377(0.298)AGEA,

Boy =149.023(1.540) +u +e

By = 6.174(0.350) +u

By =1.128(0.348) +u ,

iy 61.567(17.068)
wy | "NO Q) QT 17.092(3.016)  2.752(0.779)
iy 1.360(1.414)  0.879(0.343) 0.644(0.228)

(20 ~N(@©, Q) : Q.= [0.215(0.024)]

-2 ¥oglikelihood(TGLS Deviance) = 625.349(234 of 234 cases in use)

| Hame | + | - |ndd Ierm|§stimates| Honlinear| Clear | Notation |Responses| Store | Help |200I11|1|1|1 ;’|

To add the term (1) to the model we first construct

5(i1,i2)j - |ti1j - ti2j|

In this dataset we have 26 individuals each with 9 measurements so ¢ is a
list of 26 symmetric matrices of dimension 9x9. That is

tip—ti
to1 —t11 0

tog1 —ti1 to1—ta1 -+ Tlg1 — 191
t1.26 — 11,26
l2.26 — 11,26 0

tgos — t126 to26 —T226 -+ t926 — l9,26

The SUBS command  can set up such difference matrices (see ‘command
SUBS’ in MLwiN Help for details on how to use this command). In the
Command interface window type
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In this format the command calculates the required 26 symmetric matrices
and stacks them in c¢10. These matrices can be viewed with the MVIEw

command:

which produces, after clicking the Output button in the Command interface

window:

BLOCK ID : 1 ]
1 2 3 4 5 =
1 0
2 0.25205 0
3 0.53699 0.28494 0
4 0.83562 0.58357 0.29863 0
5 0.99726 0.74521 0.46027 0.16164 0
6 1.2466 0.99455 0.70961 0.41098 0.24934
7 1.5562 1.3041 1.0192 0.72058 0.55894
8 1.7781 1.526 1.2411 0.94248 0.78084
9 1.9945 1.7424 1.4575 1.1589 0.99724
6 7 8 9
6 0
7 0.3096 o
8 0.5315 0.2219 0
9 0.7479 0.4383 0.2164 0 =
Include output from system
Zuornl 100 'I Copy as table r generated II;'|:|n1n1am:|I:-:“ﬂ

wh- Dutput =]

BLOCK ID :

WO =] h oo R

TN

L= == I - ]

0

200""""“" vl Copy as table r

Now we form |

0.
LU

26
1
0

0.25205
0.53699
0.83562
0.99726

. 2466
. 5a62
L7781
.0055

6

1]
3096
5315
7589

t

iystingl

(=3 — ]

2 3
o
. 28494 1]
.58357 0.29863
. 74521 0.46027
.99455 0.70961
1.3041 1.0192
1.526 1.2411
1.7535 1._4685
7 ]
o
0.2219 1]
0.4493 0.2274
Include output from system

generated commands

4

1}
0.16164
0.41093
0.72053
0.94248

1.1699

9

5

0
0.24934
0.55894
0.78084

1.0082

-




C10 now contains the required structure to be added to the covariance matrix
automatically specified by the multilevel model

1

COV(eilj, eizj) =« |tz'1j — tizjl

where are known and stored in c11, and « is to be estimated. The

[tiystins]
command

adds the design matrix held in C11 to the model at level 2. It may seem odd
that this design matrix is applied at level 2 even though we are modelling
autocorrelation between level 1 errors. This is because MLwiN thinks of any
design matrices modelling non-independence between level 1 units as a higher
level phenomenon.

At the moment the Equations window does not show the matrices specified
via SETD and their associated parameter estimates. We have to revert to
the Command interface to see them. In the Command interface window

type

which updates the text Output window:



o RI=EY
[
PARAMETER ESTIMATE 5. ERROR(U) PREY. ESTIMATE
COns 149 1.539 149
t 6.185 0.3525 6.186
AGE2 1.238 0.3752 1.238
AGE3 0.4339 0.174 0.4338
AGE4 -0.4789 0.3167 -0.4792
—rrandom
LEY. PARAMETER {HCOHY) ESTIMATE 5. ERROR{U} PREV. ESTIM CORR.
2 Ccons foons { 3) 61.45 17.07 61.45 1
2 t focons { 2) 7.929 2.99 7.93 0.62
2 t it { 2) 2.66 0.7642 2.66 1
2 AGE2 foons { 1) 1.489 1.404 1.488 0.255
2 AGE2 it { 2) 0.8543 0.3361 0.8546 0.703
2 AGE2 fAGE?2 { 2) 0.5558 0.229 0.5557 1
2 c11 * { 1) 0.01625 0.01129 0.0163
1 CONns fcons { 2} 0.2748 0.05413 0D.275
-rlike
4994188 spaces left on worksheet
-2%1og{lh) is 623.306 j
-
Include output from system
Zoom|100 ~| Copyas table r generated commands

The estimate of « is 0.01625. The range of ¢;,; — ;,; is from 0.16 to 2 years.
So we can generate the autocorrelation function by

Command Explanation

gene 0.16 2 0.01 c100 generate t; ; — t;,;

calc c101 = calculate ov——
|t11] t12J|

0.01625%(1/c100)

calc c101 = c101/0.275

Then plotting c¢101 against ¢100 gives:

=k Graph display =10] x|

0.4+

0.3

0.2+
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The drop in the likelihood from adding the autocorrelation parameter to this
model is only 2. So in this case the extra term is not required.
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6 Saving and retrieving of Minitab, Stata and
SPSS work files

MLwiN now provides the following additional data file types on the Save /
Open worksheet dialogue boxes:

Stata (*.dta files, versions 5 - 10)
SPSS (*.sav files, up to version 14)

Minitab (*.mtw, versions 12 and 13)

Data, missing data values, variable names and category names are trans-
ferred.

Commands:

Command Function

RSTAta filename | -open a Stata file
SSTAta filename | -save as a Stata file
RSPSs filename | -open an SPSS file
SSPSs filename -save as an SPSS file
RMTW filename | -open a Minitab file
SMTW filename | -save as a Minitab file
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7 Zipped MLwiN worksheets

MLwiN can now save and open zipped versions of MLwiN worksheets (*.wsz).
This format can reduce disc space usage by between 95% and 99%. Saving
as a zipped version is the default option when selecting Save from the File
menu; there are also commands which will save and open zipped versions of
worksheets.

Commands:

Command Function
ZRETr filename | -open a zipped worksheet
ZSAVe filename | -save worksheet in zipped form
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8 Other new features

8.1 Window tabs

There is now a series of tabs shown at the bottom of MLwiN, with one for
each window open. Clicking on these provides an easy way to bring up the
required window.

. .
7 plottype point 'I
3

9 row codes [[none] vI col codes I[none] -
10

1 =

2l I _’I—I

Actual update 5000 of 5000 [FNNNNENERE] Stored update 5000 of 5000

o 0000 100000 150000 000w J

| Apply

INames Equatiunsl Customised araph : display 1. dataset 1| Graph display | Graph options

When there are too many windows open for all the tabs to be able to be
shown at once, a pair of arrow buttons are shown which allow the user to
scroll through the tabs:

Custarmized prediction plat | Command interface ” Mames ﬂ_}l

8.2 The Names window

The new Names window has some extra features for ease of usage. The new
Names window looks like this:

=
il Edit name | Data | Toggle Categorical |gateguries| Description |Cumr| Paste | Delete | Help | [~ Used columns
Name | Cn | n | missing | min | max | categorical | description il
school 1 4059 0 1 65 True

student 2 4059 0 1 198 False

normexam 3 4059 0 -3.666072 3.666091 False

cons 4 4059 0 1 1 False

standirt 5 4059 0 -2.934953 3.015952 False

girl 6 4059 0 0 1 False

schgend T 4059 0 1 3 True

avsirt 8 4059 0 -0.7559605 0.6376559 False

schav 9 4059 0 1 3 True

vrhand 10 4059 0 1 3 True hd
| | v

8.2.1 Viewing data

You can now highlight variables in the Names window and view the corre-
sponding data directly by pressing the Data button. For example (using the
tutorial dataset),
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This produces:

=8 Data
goto line |1— view | Help I Font | | Show value labels
avsl{ 4068)  |schav(4059)  |whand(4059) | =
1]n.188 id wh
2| 0188 it wh2
3|n.188 mid vh3
4| 0168 mid wh2
AlN1RR Frin wh 2 T

8.2.2 Categorical variables

There is now a column in the Names window that indicates whether a vari-
able is categorical or not. The Toggle Categorical button will toggle the
categorical status of a variable. The Categories button will display the
current set of categories for a categorical variable for viewing or editing.

Beware unexpected behaviour for categorical variables. When the underlying
data in a column defined as categorical changes MLwiN does not update the
list of category names associated with that column. To illustrate this:

This shows schav is a 3 category variable

% Set category namessae =] (¥

Edt | ok | cancel |

[atme | Corlg |
1
| micl 2
| high 3

Let’s now overwrite the data in this column with a set of uniform random
numbers:



This shows the following odd mixture of numbers and category names for
column 9

goto line |1— view | Help | Font I [ Show value labels
schavi 4059) | =
1| low
2[0.31
30,393
4] 1wy
4[0.500
B[ 0.056
7| 1w
alnnac al

What has happened is that the category information for column 9 has per-
sisted and where any numbers in column 9, rounded to the nearest integer,
correspond to a category number the name for that category is displayed.
You can verify this by deselecting the Show value labels tick box in the
Data window.

Whenever the underlying data for a categorical variable changes, you need
to manually make any alterations to the category information. This could be
toggling the categorical status variable off, if the variable has become contin-
uous. If a categorical variable is recoded by adding or collapsing categories
you need to manually Toggle categorical off, Toggle categorical on and
then, if non-default category names are required, re-enter the Categories
names.

8.2.3 Column descriptions

You can now add descriptions for each variable in the worksheet by selecting
a column in the Names window and pressing the Description button.

A new command, DESC, exists for this function also. Example:
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8.2.4 Copy, Paste and Delete

Selecting a series of columns and clicking Copy or Delete will cause those
columns along with the column names to be copied into the clipboard or
deleted from the worksheet.

If the clipboard contains column data (with or without column headings)
then the Paste button will cause the data to be pasted into the worksheet,
starting by overwriting the currently highlighted column(s) in the Names
window.

Commands

COPY Mode N C..C
N = 0/1 exclude/include column headings

copies listed variables into the clipboard with tab delimited format

pastes clipboard data into listed columns. If there are fewer columns provided
in the command than columns of data on the clipboard then writing of data
continues from the last column number supplied (note that in this case, the
data is not only pasted into free columns: the writing of data continues into
consecutive columns whether or not they already contain data).

8.3 New data manipulation windows and commands
8.3.1 Combining categorical columns

The COMBine command combines 2 or more columns containing categorical
data. The categories of the output column will consist of a category for each
possible different combination of the input codes with the names of these
categories formed from the concatenation of the input category names. For
example, given we have variables schav (1 = low, 2 = mid, 3 = high) and
vrband (1 = vbl, 2 = vb2, 3 = vb3)

e If you carried out the demonstration in 8.1.2 showing how category
names persist after changing the data in the schav column, then
close the worksheet without saving and re-open it so you will have
the correct data for schav
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This will produce:

. Set category namesse = B

gt | [Coes]  cancel |

eme  fcowe
loavvkrd
mickvhl
highvh1
lomaenbn2
mickhz
highvb2
I3
midvh3
highvh3

[V = Y RN VIR I e

8.3.2 Finding unique codes

The UNIQue command will find each different value that occurs in the input
column and place it just once in the output column (regardless of how many
times it appears in the input column). For example, typing the command

and then looking at the Names window shows that c12 contains 71 unique
values in the range (—3.66, 3.66). This will have come about because our
“continuous” variable Normexam was originally formed by applying a normal
score transformation to a discrete scale with data on 71 points.

8.3.3 Creating numeric grids

It is sometimes useful to create a set of output columns containing all combi-

nations of values occurring in a set of input columns. The UCOM command
does this. For example,




» UCOM c100 c101 c102 c103

would create

]
goto line |1— view | Help | Font | [¥ Show value labels
©100( 3 [e101¢3 [c102¢9) [c103( 9 | |
1]1.000 4.000 1.000 4.000 —
z|z.000 5.000 2.000 4.000
3| 3.000 £.000 3.000 4.000
4]- - 1.000 5.000
5|- - 2.000 5.000
B|- - 3.000 5.000
7 1.000 £.000
g 2.000 §.000
q|- 3.000 £.000
10[- - - =

8.3.4 Recoding variables with short sequences of codes

The existing Recode window is convenient for discretising continuous vari-
ables according to a set of ranges. When we have variables with a small
number of values an interface which lists each unique value and allows a new
value to be specified is more helpful for recoding or merging short sequences
of codes. Both these options are now available on the Recode sub-menu of
the Data Manipulation menu.

Note that when you recode a categorical variable the category code informa-
tion is not updated. So if you recode a variable so as to collapse 4 categories
into 3, the variable will still be considered to have 4 categories (though one
will have zero observations); or if you recode all observations in category 3
to have the value 10 and you do not already have a category with code 10,
then category 3 will still have code 3 (and will have no observations) and
observations with code 10 will not be considered to belong to any category.
In order to update the category information after recoding you will need to
highlight the variate in the Names window and press Toggle Categorical
twice. This switches the variable to continuous and back to categorical, and
when it is switched back to categorical the category names are re-created
(if you have specific names you want to give the categories you will need to
re-enter these by clicking on Categories).

8.3.5 Unvectorising data

For repeated measures analyis MLwiN requires the data to be structured one
row per occasion, and for multivariate response modelling MLwiN automat-
ically structures the data with one row per response variable. Sometimes it
useful to take MLwiN data with one row per multivariate response or one
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row per occasion and unwvectorise it, that is, turn it back so that it has one
row per individual. This can be done with the UNVEctorise command:

UNVEctorise N stacked variables, stacked variable indicators in C, re-
peated individual codes in C, stacked data values in C, unique individual
codes to C, unstacked data to C..C

Which is a bit of a mouthful. An example will help. Given the stacked data

Individual ID | Indicator | Value
C1 C2 C3

1 1 11

1 2 12

1 3 14

2 1 16

2 3 18

will produce

C4]1C5|C6 c7
1 11 |12 14
2 |16 | MISSING | 18

The Unsplit Records menu item on the Data Manipulation menu pro-
vides a window to help specify the UNVEct command. It also makes it
possible to unstack several variables at once, which cannot be done with
the UNVEct command (to unstack multiple variables you have to use the
command repeatedly). To demonstrate how to use the window:
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=& Unsplit records
ER =
occasion 7
student 7

Variable 1

cl-c13 will now contain the data as it was when you opened the worksheet.

8.4 Macro Programming
8.4.1 Executing models from macros

You can run models from macros using the STARt and NEXT commands.
By default the Equations window is not updated. Let’s set up and run
a couple of basic binary response models on the Bangladeshi fertility data
from a macro. Open the worksheet bang.ws, then type or copy and paste the
sequence of commands in the left column of the table below into an MLwiN
macro
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If you execute this macro, the screen will not be updated until macro execu-
tion has been completed. You will then see the final model in the Equations
window and both models in the model comparison table (click the Esti-
mates button on the Equations window to see the results). (Note that the
estimates in the Equations window always appear in blue when you run mod-
els from a macro, rather than in green, but this does not mean they have not
converged).

=¥ Equations I =] 3| &% Results Table =10 x|

use, ~ Binomial(cons,, 7.) 2l o |

Model made| Standard En| Model mode | Standard En

logit(z;) = Brcons +0.014(0.004)age el use use
Bo; =-0.509(0.081) + 1, —
cong 0510 0.081 -0.509 0.051
N(0 age 0.014 0.004
[M u;] 0. Q) : Q. [0.267(0.070)] I
Lewvel: distric
CongAoong 0.265 0.070 0.267 0.070
= _ Level: womns
var(use,|z,) = (1 - z,)/cons, = ||[Boons.i/be] 7000 wooo]  T.000] 000
| Hame | + | - |Ar.||:| 1errr||§:tirr|nle:| Horllirlenr| Clear | Hotation
-2 oglikelihc
DIC:
Unitg: distric &0 &0
Units: woma 2867 2867
[« | |

You may want to see the results after each model has been completed. In
which case we place a PAUSe 1 command after the first STARt command
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in the macro. Even finer grained updating of the Equations (and other
windows) is possible when running models from a macro. If you use the
commands STARt and NEXT commands with the optional parameter 1,
then windows are updated after each model estimation iteration.

It is sometimes useful to control the Equations window display from a macro.
The following commands are useful for this

NOTAtion N: 0; 1 = Simple; General

EXPAnd N: 0; 1; 2; 3 = Show s only; show s and u;s; show (s, u;s and
Q,; show Bs, u;s, Q, and priors (if MCMC)

NMVA N: 0; 1 = display observed variables as symbols; display observed
variables as names

INDExing N: 0; 1 = multiple subscript; single subscript

ESTMates N: 0; 1; 2 = symbols all black; symbols + convergence indica-
tion (blue, green); numbers + convergence indication

Other useful commands for specifying discrete response models in macros:

RDISTribution for response N, distribution type M
N is in range 1 to Number of responses, M = 0 binomial, 1 Poisson, 2
negative binomial, 3 Normal, 4 multinomial, 5 ordered multinomial

LFUN N: 0, 1, 2 = logit, probit, cloglog, log
If response distribution is Normal LFUN setting is ignored and identity
link is used.

LINEarise N M: N is 0, 1 = MQL, PQL; M is 1, 2 = order 1, order 2
Taylor expansion
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DOFFs for response N is in C: set denominator or offset column to C

N is in range 1 to Number of responses. If the response variable has a
binomial or multinomial distribution the column is taken to contain de-
nominators. If the response variable has a Poisson or Negative Binomial
distribution, the column is taken to be the natural log of the required
offset value.

8.4.2 Other New Commands

The following commands have been added / extended, which may be useful
when programming in macros.

|SJDIn S ‘text’ B N... S| : string concatenation. For example:

produces (in the Output window): There are 7 deadly sins

NMSTr C S|: create a string consisting of the name of a column

for example:

The following commands have been updated to work with string variables:

All worksheet save and retrieve commands
PREf

POSTE

DESCription

SAY

WMSG

LOGOn
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MSTOre
MPRInt
MDELete

For example,

is equivalent to

8.5 Invoking MLwiN from a command line (or other
packages)

MLwiN can be invoked from a command line with a number of potentially
useful switches. Probably the main purpose of this is if MLwiN is to be called
from an external scripting engine.

mlwin <switches> <worksheet name>

Switches:

/help show list of switch options

/run an mlwin macro file

/load an mlwin macro into mlwin’s macro file editor
/sheetsize worksheet size in k cells

/levels number of levels to allow in analysis
/columns number of worksheet columns
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A Algorithm used for producing predicted
means and intervals

Simulation techniques, for predicting means, intervals and coverage (from
higher level variances), are used for all models even when there is an analyt-
ical solution (eg for Normal response models and cluster specific predictions
from discrete repsonse models). This is not always computationally most
efficient, but allows the same code for all model types.

A.1 Normal response models

Yij = (XB)ij + Zijuj + ey
Uy ~ N(O, Qu)
eij ~ N(0,07)

Suppose the user wants to make predictions for a user specified set of values
of explanatory variables. We have (%, the set of user specified explanatory
variable values for the cth prediction case and z(®), the set of user defined
explanatory variables with random coefficients at level 2 (note that the code
generalises to any number of hierarchical levels).

For case ¢ we pick
By, ~ N(B,cov(B)), k=1,....K

and form
gck = *chk

Thus for case ¢ we have K predictions from which we derive required statistics
eg mean, upper and lower confidence intervals eg

1 K
gc: ?chk

k=1

If coverage intervals, from higher level variances, are required we pick M
values of u from N(0,€2,). We then construct

:gcm - ch + Zcugq

from which we can derive coverage statistics for case ¢
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A.1.1 Predictions and confidence intervals for differences

We often want predictions and confidence intervals not for means but for
differences. For example given a model:

Yij = Boxo + Brx1ij + Paai; + PBa1ijT2ij + uj + €
uj ~N(0,07)
eij ~ N(0,07)

we may want the difference curve with confidence intervals for x9;; = a
and wxg;; = b, i.e. the curve giving the difference in y;; for two different
values of x9;;, a and b, across a range of values of zy;;. In the Normal
case this can be derived analytically: the difference curve is given by the
formula Sox24i; + B3714j224i5, Where x94;; = a — b; however the software uses
simulation. For example if the user asks for the difference curve for xq;;=
0 and xg;;= 1 for zy;; = {—3,0,3}, by asking for predictions for values
{z1;; = {-3,0,3}; x9;; = {0,1}} and setting differences from z;; = 0, the
software follows this procedure:

1. Simulate By ~ N(8, cov(3)), k=1:K

2. For each k, calculate z.By for each combination x. of values of the
other explanatory variables (in this case, just xy;;), for both xg;; = 0
(call this gox) and x9;; = 1 (call this gicx). So in this example, for each
k calculate

c | Tiij Yok Ylck

L] =3 | Bro— 3Bk | Bro — eBr1 + Bra — 353
2,0 Bro Bro + Bro

3| 3 | Bro+ 3Bk | Bro + 3Bkt + Bra + 36k

3. Now for each ¢ calculate

dck = Yock — Yick

and then
| X
dc - ? kz_; dck

is the difference for prediction case ¢, so the set {d.} is the set of values
requested by the user. The software uses the same simulation process to
calculate confidence intervals for differences, finding for each ¢ the range of
values between which d.; lies for 95% of the By.

If coverage intervals are required, then in step 1 the software simulates M
values of u from N(0,€2,). In step 2 the software calculates z.3 + Z.ul, for
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each ¢, for x9;; = a (call this Jsem) and zg;; = b (call this gy, ), and then the
difference between these, d.,, = Yaem — Ybem.-

~

«m NOW gives the required coverage intervals.
1

d, =

L
M

NS

A.2 Binomial models

As an example let’s take a 2 level binomial model

Yy;; ~ Binomial(n;, 7;;)
Flmy) = (XB)y + Zigu]

Now we can get predictions on the raw (probabilities) or transformed (logit)
scales and predictions can be for the median or mean

A.2.1 Median (Cluster specific)

As with Normal models we form
By, ~ N(B,cov(B)), k=1:K

Now for each k and each ¢, the median (cluster specific) predicted probability
is
Per = antilogit(z.By)

and the median predicted probability from the cluster specific predictions is
P = median(per) across k

Again percentiles are derived from the set p.y.

Predictions and confidence intervals on the logit scale we derive from
:gck = chk

Required summary statistics for differences are calculated from the fol-
lowing;: R
di%) = 2By — (7., Bg)

d® = antilogit (x.By) — antilogit (., By)

For coverage intervals from higher level variances, we pick M values of u
from N(0,,). We then construct

Pem = antﬂogit(:zcﬁ + zeul)
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and required coverage intervals can be calculated from the p., chain and
likewise for logit predictions. Coverage intervals for differences:

A9 = 2,8 + zeul, — (2o, B + ze,ul)

i

)
c,m

— antilogit(z.f + z.ul) — antilogit(z,, 3 + z.,ul)

A.2.2 Mean (Population average)

We pick M values of u from N(0,2,); these M values are applied to each
combination of x, and Bj. So now

1
Dok = % Zm: antilogit(z.By, + zeul)
. 1 ﬁck
Again upper and lower intervals can be calculated from the p. chain. On the
population average logit scale we work with:

gck = 10glt (pck)

. 1 .

Ye = E g Yek
Coverage intervals from level 2 variance do not apply in population average
models

and

Differences on the probability scale are given by
~ 1 R R
dﬁ’,';) 7 Z (Pet — De,r)

k
and on the logit scale are given by

o 1 . )
dy) = 2> (logit (pux) — logit (pe,))
k

A.3 Unordered Multinomial

With A categories and the Ath category as the base

F(L)) =log(pt) /piM)

ex Te (s)

Ailp(( B)')) G#A
14 E X))

P = f(B,s,c) = B
1— Y pi otherwise
a=1
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where s and a both index the categories of the multinomial response
By ~N(B,cov(B)), k=1:K

Now

P = f'BY,s,0)
and the median predicted probability from the cluster specific predictions is

~(s) 1 ()
b’ = ? Z Deg
k

The simulation method gives us confidence intervals for all categories includ-
ing the reference category A.

For cluster specific logits:

(s) 0 s=A
Yot = (zc55) otherwise

and 1
NO ~(s)
Yo' = K ;yck

Required summary statistics for differences are calculated from the following

chains:
0 s=A

G _
ck (2Br)® — (2, By)® otherwise
AP = f'(BY,s,¢) - ['(BY, 5,¢,)

For coverage intervals from higher level variances, we pick M values of u from
N(0,€23). We then construct

@
11— > p s=A
a=1
P = f'(B,s,c,m) =
EXP((xeB) ™) +(zeul) )

A-1 otherwise
14+ 3 eXP((zef) (@ +(zcul, ) (@)
a=1

and required coverage intervals can be calculated from the ;38,{ chain and
likewise for logit predictions. Coverage intervals for differences:

=A
Jws) _ . A °
cm ((a:cﬂ)(s) + (zcuTTn)(s)> — <(a:rcﬁ)(s) + (zrcuﬁ)(s)) otherwise

AP = f'(B,s,¢,m) — fI(f,s,c,m)
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A.3.1 Population average

We pick M values of u from N(0,€,), these M values are applied to each
combination of ¢ and k. So now

P = j{j¢f Br, s,¢,m)

1
NO ~(s)
pc - K Ek :pck

Again upper and lower intervals can be calculated from the p. chain. On the
population average logit scale we work with:

yck IOg (pck /pck >

and

A(S Z Yek

Coverage intervals from level 2 variance do not apply in population average
models

Differences on the probability scale are given by
7(p)(s 1 s) A~
9= L3 (1 - 4)
k
and on the logit scale are given by

dg)(s) = %Z (10?; <Pck /pck ) log (Pcrk/P ))
k

A.4 Ordered Multinomial

o) is the cumulative probability for category s in an ordered set of categories

(S)ZZpga) s=1:A-1
a=1
f(0f) = logit(ol)

=fw@@={1 o=

antilogit(z.f) otherwise

Since we are working with predictions now on the logit scale, we can proceed
with customised predictions as described for the binary, logistic case (as in
section A.2)
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autocorrelation function, 78
SETD, 77
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Categorical variables, 83
Categories button, 83
CENT, 15, 16
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Centring, 1, 15
around value, 3
by groups defined by, 3
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grand mean, 3
uncentred, 3
Change range, 19

for categorical explanatory vari-

ables, 26

nested means tab, 25

percentiles tab, 24

range tab, 20

values tab, 24
Cluster specific predictions, 37
Column descriptions, 84

DESC, 84

Description button, 84
COMB, 85
Combining categorical columns, 85
Command line, 93

Commands, 31, 42, 80, 84, 85, 92

ADDT, 14
and string variables, 92
CENT, 15
COMB, 85
COPY, 85
CTOL, 7
DESC, 84
DOFF, 92
ESTM, 91
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31
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33, 43
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33
for predicted differences, 32, 43
for predictions for binomial response
models, 42
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sponse models, 31
for predictions for discrete response
models, 42
for predictions for multinomial re-
sponse models, 42
for predictions for multivariate re-
sponse models, 32, 43
for predictions for Normal response
models, 31
for specifying terms in models, 14
ADDT, 14
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SWAP, 15
for storing and comparing model
results, 67
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LFUN, 91
LINE, 91
MCOM, 67
MERA, 67
MPRI, 67
MSTO, 67
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MWIP, 68 Copy

NEXT, 89 button, 85

NMST, 92 command, 85

NMVA, 91 Copying stored model results, 69

NOTA, 91 Coverages for predictions, 32, 33, 43

PASTe, 85 CTOL, 7, 14

PAUSe, 90 Customised prediction plot window,

PGDE, 31 21, 28, 29, 39, 45

PGRI, 31 and customised graph window, 29

PLTP, 33 for binomial response models, 39

predictions for multivariate response  for multinomial response models,
models, 32 45

PREG, 32, 42 Customised predictions, 17

for discrete response models, 42
for normal response models, 32
RDISt, 91
RMTW, 80
RSPS, 80
RSTA, 80
SCATY, 58, 63
SETD, 77
SHOW, 58
SJOI, 92
SMTW, 80
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SSTA, 80
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UCOM, 86
UNIQ, 86
UNVE, 88
ZRET, 81
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model results, 67
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MPRI, 67
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differences for binomial response
models, 96, 97
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cluster specific and population
average, 37
commands, 42
differences on logit scale, 41
differences on probability scale,
40
log odds ratio, 41
on logit or probability scale, 35,
43
on probability scale, 39
predicting mean and median, 34,
37
predicting mean or median, 35,
43
prediction distribution, 35
commands, 31, 42
for binomial response models,
42
for continuous response models,
31
for coverages, 32, 33, 43
for discrete response models, 42
for multinomial response mod-
els, 42
for multivariate response mod-
els, 32, 43
for Normal response models, 31
for plotting predictions, 33
for predicted differences, 32, 43
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continuous response models, 17
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algorithms, 95, 96, 98
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algorithms, 95-99
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48
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predicting median, 45, 53
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Poisson response models, 53
predicting mean and median, 54
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setting values as a range, 20
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differences for binomial response
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dictions for binomial response
models, 97

mean (population average) pre-
dictions for multinomial response
models, 99

median (cluster specific) predic-
tions for binomial response mod-
els, 96

median (cluster specific) predic-
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algorithms, 96

cluster specific and population
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40
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43

on probability scale, 39

predicting mean and median, 34,
37

predicting mean or median, 35,
43
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algorithms, 94
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48
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multivariate response models, 55
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out of date, 27
Poisson response models, 53
predicting mean and median, 54
predict, 20
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prediction grid, 20
predictions tab, 20
selecting the response for a mul-
tivariate model, 56



setting values as a range, 20 Link function

simulation, 36 command for specifying, 91
simulations, #, 38 Longitudinal data, 10, 74
values to include window, 19, 20 autocorrelation function, 78
SETD, 77
Data button, 82 SUBS, 75
Delete button, 85
Denominator Macro programming, 89
command for specifying, 92 blue estimates, 90
DESC, 84 controlling the equations window
Description button, 84 from a macro, 91
Design matrix, 77 DOFF, 92
Differences (predictions), 22 estimates in blue, 90
DOFF, 92 ESTM, 91
executing models from macros, 89
Equations window EXPA, 91
controlling from a macro, 91 INDE, 91
Store button, 66 LFUN, 91
Estimate tables, 66 LINE, 91
commands, 67 NMST, 92
copying results table, 69 NMVA, 91
delete models, 67, 68, 70 NOTA, 91
Manage stored models, 70 RDISt, 91
Stored Model Results window, 70 running models from macros, 89
view selected models, 67, 70 SJOI, 92
Estimates in blue, 90

Manage stored models, 70
ESTM, 91 MCOM. 67
Executing models from macros, 89 mean.hiéh.pred 20

blue est.imates, 90 . ‘ mean.low.pred, 20
controlling the equations window mean.pred, 20

from a macro, 91 MERA. 67
estimates in blue, 90 Minitab worksheets, 80
EXPA, 91 Model comparison tables, 66
Fill grid, 20 commands, 67

copy button, 69

Finding unique codes, 86 .
copying results table, 69

Grand mean, 3 delete models, 67, 68, 70
Graph trellis, 34, 47 Manage stored models, 70
Groups defined by, 3 Stored Model Results window, 70
view selected models, 67, 70
INDE, 91 Modify term, 9
Interaction term, 14 MPRI, 67
Interactions, 1, 15 MQL
and polynomials, 3, 15 command for specifying, 91
Invoking MLwiN from a command line, MSTO, 67
93 MVIE, 76
LFUN, 91 MWIP, 68
LINE, 91 Names window
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categorical variables, 83
Categories button, 83
column descriptions, 84
Copy button, 85
Data button, 82
Delete button, 85
Description button, 84
Paste button, 85
Toggle categorical button, 83
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Nested means tab, 25

NEXT, 89

NMST, 92
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command for specifying, 91

NOTA, 91
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commands, 80, 81
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commands, 80
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commands, 80
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commands, 80
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models, 99

median (cluster specific) predic-
tions for binomial response mod-
els, 96

median (cluster specific) predic-
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models, 98

Normal response models, 94

ordered multinomial response mod-
els, 99

unordered multinomial response
models, 97

binomial response models, 34

algorithms, 96

cluster specific and population
average, 37

commands, 42

differences on logit scale, 41

differences on probability scale,
40

log odds ratio, 41

on logit or probability scale, 35,
43

on probability scale, 39

predicting mean and median, 34,
37

predicting mean or median, 35,
43

prediction distribution, 35

commands, 31, 42

for binomial response models,
42

for continuous response models,
31

for coverages, 32, 33, 43

for discrete response models, 42

for multinomial response mod-
els, 42



for multivariate response mod-
els, 32, 43
for Normal response models, 31
for plotting predictions, 33
for predicted differences, 32, 43
PGDE, 31
PGRI, 31
PLTP, 33
PREG, 32, 42
confidence intervals, 23
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algorithms, 94
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algorithms, 95, 96, 98
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commands, 32, 33, 43
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17
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commands, 32, 43
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commands, 42
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tions
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tions
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commands, 42
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differences on probability scale,
48
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on probability scale, 45, 52
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predicting median, 45, 53
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multivariate response models, 55

commands, 32, 43

Normal response models, 17
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out of date, 27
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tivariate model, 56
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simulation, 36
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PGDE, 31
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PQL
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" algorithms, 94
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dictions for multinomial response
models, 99

median (cluster specific) predic-
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els, 96

median (cluster specific) predic-
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models, 98

Normal response models, 94

ordered multinomial response mod-
els, 99
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models, 97
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algorithms, 96
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commands, 42
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differences on probability scale,
40

log odds ratio, 41

on logit or probability scale, 35,
43

on probability scale, 39
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37
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mial models, 53
differences on logit scale, 50
differences on probability scale,
48
log odds ratio, 50
on probability scale, 45, 52
ordered, 51
predicting median, 45, 53
unordered, 44
multivariate response models, 55
commands, 32, 43
Normal response models, 17
algorithms, 94
Poisson response models, 53
predicting mean and median, 54
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view selected models, 67, 70
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commands, 80, 81
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RSPS, 80
RSTA, 80
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commands, 80
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commands, 80
zipped worksheets, 81
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