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Abstract 

A very general class of multilevel factor analysis and structural equation models is 

proposed which are derived from considering the concatenation of a series of building 

blocks that use sets of factor structures defined within the levels of a multilevel model. 

An MCMC estimation algorithm is proposed for this structure to produce parameter 

chains for point and interval estimates. A limited simulation exercise is presented 

together with an analysis of a data set. 
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Introduction 

Traditional applications of structural equation models have, until recently, ignored 

complex population data structures.  Thus, for example, factor analyses of achievement 

or ability test scores among students have not adjusted for differences between schools 

or neighbourhoods.  In the case where a substantial part of inter-individual differences 

can be accounted for by such groupings, inferences which ignore this may be seriously 

misleading.  In the extreme case, if all the variation was due to a combination of school 

and neighbourhood effects, a failure to adjust to these would lead to the detection of 

apparent individual level factors which would in fact be non-existent.   

Recognising this problem, McDonald and Goldstein (1989) present a multilevel factor 

analysis, and structural equation, model where individuals are recognised as belonging 

to groups and explicit random effects for group effects are incorporated. They present 

an algorithm for maximum likelihood estimation.  This model was further explored by 

Longford and Muthen (1992) and McDonald (1993).  Raudenbush (1995) applied the 

EM algorithm to estimation for a 2-level structural equation model.  Rowe and Hill 

(1997, 1998) show how existing multilevel software can be used to provide 

approximations to maximum likelihood estimates in general multilevel structural 

equation models. 

In the present paper we extend these models in two ways. First, we show how an 

MCMC algorithm can be used to fit such models. An important feature of the MCMC 

approach is that it decomposes the computational algorithm into separate steps, for each 

of which there is a relatively straightforward estimation procedure. This provides a 

chain sampled from the full posterior distribution of the parameters from which we can 

calculate uncertainty intervals based upon quantiles etc.  The second advantage is that 

the decomposition into separate steps allows us easily to extend the procedure to the 

estimation of very general models, and we illustrate how this can be done. 

A fairly general 2-level factor model can be written as follows, using standard factor 

and multilevel model notation: 

2 2 1 1

{ },    
1,...,        1,...,      1,...,

rij

j
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= = =

           (1) 
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where the 'uniquenesses'  are mutually independent with 

covariance matrix Ψ , and there are R response measures.  The  are the loading 

matrices for the level 1 and level 2 factors and the are the, independent, factor 

vectors at level 1 and level 2. Note that we can have different numbers of factors at each 

level. We adopt the convention of regarding the measurements themselves as 

constituting the lowest level of the hierarchy so that equation (1) is regarded as a 3-level 

model.  Extensions to more levels are straightforward.  

 (level 2) , (level 1)u e

1 1, Λ Λ

1,  v v

Model (1) allows for a factor structure to exist at each level and we need to further 

specify the factor structure, for example that the factors are orthogonal or patterned with 

corresponding identifiability constraints.  We can impose further restrictions, for 

example we may wish to model the uniquenesses in terms of further explanatory 

variables.  In addition we can add measured covariates to (1) and extend to the general 

case of a linear structural or path model (see discussion). 

A simple illustration 

To illustrate our procedures we shall begin by considering a simple single level model 

which we write as  

            

2

,  1,..., ,  1,...,

~ (0,1),  ~ (0, )
ri r i ri

i ri er

y e r R i

N e N

λ ν
ν σ

= + = =
          (2) 

This can be viewed as a 2-level model with a single level 2 random effect ( ) with 

variance constrained to 1 and R level 1 units for each level 2 unit, each with their own 

(unique) variance. 

iv

If we knew the values of the 'loadings' rλ  then we could fit (2) directly as a 2-level 

model with the loading vector as the explanatory variable for the level 2 variance which 

is constrained to be equal to 1; if there are any measured covariates in the model their 

coefficients could also be estimated at the same time.  Conversely, if we knew the 

values of the random effects , we could estimate the loadings; this would now be a 

single level model with each response variate having its own variance.  These 

considerations suggest that an EM algorithm can be used in the estimation where the 

iv
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random effects are regarded as missing data (see Rubin and Thayer, 1982).  In this 

paper we propose a stochastic MCMC algorithm.   

MCMC works by simulating new values for each unknown parameter in turn from their 

respective conditional posterior distributions assuming the other parameters are known.  

This can be shown to be equivalent (upon convergence) to sampling from the joint 

posterior distribution. MCMC procedures generally incorporate prior information about 

parameter values and so are fully Bayesian procedures. In the present paper we shall 

assume diffuse prior information although we give algorithms that assume generic prior 

distributions (see below). Inference is based upon the chain values: conventionally the 

means of the parameter chains are used as point estimates but medians and modes 

(which will often be close to maximum likelihood estimates) are also available, as we 

shall illustrate.  This procedure has several advantages.  In principle it allows us to 

provide estimates for complex multilevel factor analysis models with exact inferences 

available.  Since the model is an extension of a general multilevel model we can 

theoretically extend other existing multilevel models in a similar way.  Thus, for 

example, we could consider cross-classified structures and discrete responses as well as 

conditioning on measured covariates. Another example is the model proposed by Blozis 

and Cudeck (1999) where second level residuals in a repeated measures model are 

assumed to have a factor structure.  In the following section we shall describe our 

procedure by applying it to the simple example of equation (2) and we will then apply it 

to more complex examples. 

A simple implementation of the algorithm 

The computations have all been carried out in a development version of the program 

MLwiN (Rasbash et al., 2000).  The essentials of the procedure are described below.  

We will assume that the factor loadings have Normal prior distributions, 

 and that the level 1 variance parameters have independent inverse 

Gamma priors, 

* 2( ) ~ ( ,r rp N λλ λ σ
2 1 *( ) ~ ( ,er er erp a b−Γσ . The * superscript is used to denote the appropriate 

parameters of the prior distributions. 
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This model can be updated using a very simple three step Gibbs sampling algorithm 

Step 1: Update  (r=1,…,R) from the following distribution :  

where  

rλ ),ˆ(~)( rrr DNp λλ

1
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Step 2: Update iν  (i=1,…,N) from the following distribution : ˆ( ) ~ ( , )i i ip N Dν ν  where  
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Step 3: Update from the following distribution :  where 

 and 

2
erσ )ˆ,ˆ(~)( 12

ererer bap −Γσ

*ˆ / 2er era N a= + 2 *1
2er ri er

i

b e= +∑ˆ b

=

. 

To study the performance of the procedure we simulated a small data set from the 

following model and parameters: 

1

1 0.2
2 0.3

,     ,    N 20,    R 4
3 0.4
4 0.5

λ

   
   
   = Ψ = =
   
   
   

      

 (3) 

,      ri r i riy v eλ= +                (4) 

The lower triangle of the correlation matrix of the responses is 
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All the variables have positively skewed distributions, and the chain loading estimates 

also have highly significant positive skewness and kurtosis. 

The initial starting value for each loading was 2 and for each level 1 variance 

(uniqueness) was 0.2. Good starting values will speed up the convergence of the 

MCMC chains. 

Table 1 shows the maximum likelihood estimates produced by the AMOS factor 

analysis package (Arbuckle, 1997) together with the MCMC results.  The factor 

analysis program carries out a prior standardisation so that the response variates have 

zero means.  In terms of the MCMC algorithm this is equivalent to adding covariates as 

an 'intercept' term to (4), one for each response variable; these could be estimated by 

adding an extra step to the above algorithm. Prior centring of the observed responses 

can be carried out to improve convergence. 

We have summarised the loading estimates by taking both the mean and medians of the 

chain.  The mode can also be computed, but in this data set for the variances it is very 

poorly estimated and we give it only for the loadings. In fact the likelihood surface with 

respect to the variances is very flat. The MCMC chains can be summarised using a 

Normal kernel density smoothing method (Silverman 1986). 
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Table 1. Maximum likelihood estimates for simulated data set together with 
MCMC estimates using chain length 50,000 burn in 20. 
Parameter ML estimate 

(s.e.) 
MCMC mean 
estimates (s.d.) 

MCMC median 
estimates  

 MCMC modal 
estimates  

1λ  0.92 (0.17) 1.03 (0.22) 1.00  0.98 

2λ  2.41 (0.41) 2.71 (0.52) 2.65 2.59 

3λ  3.86 (0.57) 3.91 (0.72) 3.82 3.71 

4λ  4.30 (0.71) 4.82 (0.90) 4.71 4.58 

σ e1
2  0.15 (0.05) 0.17 (0.07) 0.16  

σ e2
2  0.25 (0.09) 0.31 (0.14) 0.28  

σ e3
2  0.09 (0.10) 0.10 (0.17) 0.06  

σ e4
2  0.43 (0.20) 0.55 (0.31) 0.50  

 

 

The estimates and standard errors from the MCMC chain are larger than the maximum 

likelihood estimates.  The standard errors for the latter will generally be underestimates, 

especially for such a small data set since they use the estimated (plug in) parameter 

values. The distributions for the variances in particular are skew so that median rather 

than mean estimates seem preferable. Since we are sampling from the likelihood, the 

maximum likelihood estimate will be located at the joint parameter mode. We have not 

computed this but as can be seen from the loading estimates the univariate modes are 

closer to the maximum likelihood estimates than the means or medians. Table 2 shows 

good agreement between the variable means and the fitted intercept terms.  

  Table 2. Variable means and fitted intercepts 

variable mean Intercept 

1 0.54 0.57 

2 0.64 0.71 

3 1.12 1.21 

4 1.28 1.36 

 

We have also fitted the structure described by (3) and (4) with a simulated data set of 

200 cases rather than 20. The results are given in table 3 for the maximum likelihood 

estimates and the means and medians of the MCMC procedure. 
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Table 3. Model (3) & (4) with 200 simulated individuals. 5000 cycles. 

Parameter ML estimate 
(s.e.) 

MCMC mean 
estimates (s.d.) 

MCMC median 
estimates 

MCMC 
mode 

estimates 

1λ  0.95 (0.06) 0.97 (0.06) 0.96 0.96 

2λ  1.86 (0.10) 1.89 (0.10) 1.89 1.88 

3λ  2.92 (0.15) 2.98 (0.16) 2.97 2.97 

4λ  3.86 (0.20) 3.94 (0.20) 3.93 3.92 

σ e1
2  0.22 (0.023) 0.23 (0.024) 0.22 0.22 

σ e2
2  0.27 (0.033) 0.27 (0.033) 0.27 0.27 

σ e3
2  0.38 (0.058) 0.38 (0.060) 0.38 0.38 

σ e4
2  0.39 (0.085) 0.39 (0.087) 0.38 0.38 

 

We see here a closer agreement. The MCMC estimates are slightly higher (by up to 2%) 

than the maximum likelihood ones, with the modal estimates being closest. 

In more complex examples we may need to run the chain longer with a longer burn in 

and also try more than one chain with different starting values. For example, a 

conventional single level factor model could be fitted using standard software to obtain 

approximations to the level 1 loadings and unique variances. 

Other procedures 

Geweke and Zhou (1996) consider the single level factor model with uncorrelated 

factors. They use Gibbs sampling and consider identifiability constraints. Zhu and Lee 

(1999) also consider single level structures including non-linear models that involve 

factor products and powers of factors. They use Gibbs steps for the parameters and a 

Metropolis Hastings algorithm for simulating from the conditional distribution of the 

factors. They also provide a goodness-of-fit criterion (see discussion). It appears, 

however, that their algorithm requires individuals to have complete data vectors with no 

missing responses, whereas the procedure described in the present paper has no such 

restriction. 

Scheines et al (1999) also use MCMC and take as data the sample covariance matrix, 

for a single level structure, where covariates are assumed to have been incorporated into 

the means. They assume a multivariate Normal prior with truncation at zero for the 



Multilevel Factor Analysis  9 
 
 
variances. Rejection sampling is used to produce the posterior distribution.  They 

discuss the problem of identification, and point out that identification issues may be 

resolved by specifying an informative prior.  

McDonald and Goldstein (1989) show how maximum likelihood estimates can be 

obtained for a 2-level structural equation model. They derive the covariance structure 

for such a model and show how an efficient algorithm can be constructed to obtin 

maximum likelihood estimates for the multivariate Normal case. Longford and Muthen 

(1992) develop this approach. The latter authors, together with Goldstein (1995, 

Chapter 11) and Rowe and Hill (1997, 1998) also point out that consistent estimators 

can be obtained from a 2-stage process as follows. A 2-level multivariate response 

linear model is fitted using an efficient procedure such as maximum likelihood. This 

can be accomplished, for example as pointed out earlier by defining a 3-level model 

where the lowest level is that of the response variables (see Goldstein, 1995, Chapter 8 

and model (5) below). This analysis will produce estimates for the (residual) covariance 

matrices at each level and each of these can then be structured according to an 

underlying latent variable model in the usual way. By considering the two matrices as 

two ‘populations’ we can also impose constraints on, say, the loadings using an 

algorithm for simultaneously fitting structural equations across several populations. 

Rabe-Hesketh et al. (2000) consider a general formulation, similar to model (7) below, 

but allowing general link functions, to specify multilevel structural equation generalised 

linear models (GLLAMM). They consider maximum likelihood estimation using 

general maximisation algorithms and a set of macros has been written to implement the 

model in the program STATA. 

 In the MCMC formulation in this paper, it is possible to deal with incomplete data 

vectors and also to use informative prior distributions, as described below. Our 

algorithm can also be extended to the non-linear factor case using a Metropolis Hastings 

step when sampling the factor values, as in Zhu and Lee (1999). 

General multilevel Bayesian factor models 

Extensions to models with further factors, patterned loading matrices and higher  levels 

in the data structure are straightforward.  We will consider the 2-level factor model 
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Here we have R responses for N individuals split between J level 2 units. We have F 

sets of factors, defined at level 2 and G sets of factors,  defined at level 1. For 

the fixed part of the model we restrict our algorithm to a single intercept term

)2(
fjν )1(

gijν

rβ  for 

each response although it is easy to extend the algorithm to arbitrary fixed terms. The 

residuals at levels 1 and 2, erij and urj are assumed to be independent. 

 

Although this allows a very flexible set of factor models it should be noted that in order 

for such models to be identifiable suitable constraints must be put on the parameters. 

See Everitt (1984) for further discussion of identifiability. 

These will consist of fixing the values of some of the elements of the factor variance 

matrices, Ω1 and Ω2 and/or some of the factor loadings,  and . )2(
frλ )1(

grλ

The algorithms presented will give steps for all parameters and so any parameter that is 

constrained will simply maintain its chosen value and will not be updated. We will 

initially assume that the factor variance matrices, Ω1 and Ω2 are known (completely 

constrained) and then discuss how the algorithm can be extended to encompass partially 

constrained variance matrices. The parameters in the following steps are those available 

at the current iteration of the algorithm. 

Prior Distributions 

For the algorithm we will assume the following general priors 

* 2

(2) (2)* 2 (1) (1)*
2 1

2 1 * * 2 1 * *

( ) ~ ( , )

( ) ~ ( , ), ( ) ~ ( ,

( ) ~ ( , ), ( ) ~ ( , )

r r br

fr fr fr gr gr gr

ur ur ur er er er

p N

p N p N

p a b p a b

β β σ
λ λ σ λ λ σ

σ σ− −Γ Γ

2 )
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As we are assuming that the factor variance matrices are known we can use a Gibbs 

sampling algorithm which will involve updating parameters in turn by generating new 

values from the following 8 sets of conditional posterior distributions. 

 

Step 1: Update current value of (r=1,…,R) from the following distribution rβ

),ˆ(~)( brrr DNp ββ  where  

1

2 2
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Step 2: Update  (r=1,…,R, f =1,…,F where not constrained) from the following 

distribution :  where  

)2(
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fjfrrijrijf ved λ+=  
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Step 3: Update  (r=1,…,R, g =1,…,G where not constrained) from the following 

distribution :  where  

)1(
grλ

~))1(
grλ ),ˆ(( )1()1(
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Step 4: Update ( j= 1,…,J) from the following distribution: 
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Step 6: Update (r=1,…,R, j=1,…,J) from the following distribution : 
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Step 7: Update from the following distribution :  where 
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2
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Step 8: Update from the following distribution :  where 
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Note that the level 1 residuals, e  can be calculated by subtraction at every step of the 

algorithm.  

rij

Unconstrained Factor Variance Matrices 

In the general algorithm we have assumed that the factor variances are all constrained. 

Typically we will fix the variances to equal 1 and the covariances to equal 0 and have 

independent factors. This form will allow us to simplify steps 4 and 5 of the algorithm 

to univariate Normal updates for each factor separately. We may however wish to 

consider correlations between the factors. Here we will modify our algorithm to allow 

another special case where the variances are constrained to be 1 but the covariances can 

be freely estimated. Where the resulting correlations obtained are estimated to be close 

to 1 or –1 then we may be fitting too many factors at that particular level. As the 

variances are constrained to equal 1 the covariances between factors equal the 

correlations between the factors. This means that each covariance is constrained to lie 

between –1 and 1. We will consider here only the factor variance matrix at level 2 as the 

step for the level 1 variance matrix simply involves changing subscripts. We will use 

the following priors: 

2,( ) ~ ( 1,1)lmp Uniform l mΩ − ∀ ≠  

Here is the l,m-th element of the level 2 factor variance matrix. We will update 

these covariance parameters using a Metropolis step and a Normal random walk 

proposal (see Browne and Rasbash (in preparation) for more details on using Metropolis 

Hastings methods for constrained variance matrices). 

lm,2Ω

 

Step 9 : At iteration t generate ~ N( ) where   is a proposal 

distribution variance that has to be set for each covariance. Then if Ω > 1 or  < -

1 set Ω = Ω  as the proposed covariance is not valid else form a proposed new 

matrix  by replacing the l,m th element of by this proposed value. We then set  

*
,2 lmΩ 2)1(

,2 , plm
t
lm σ−Ω

)1(
2

−Ω t

2
plmσ

*
,2 lm

*
,2 lmΩ
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,2
t
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*
2Ω

)1(
,2
−t
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This procedure is repeated for each covariance that is not constrained. 

 

Missing Data 

The exam example that is discussed in this paper has the additional difficulty that 

individuals have different numbers of responses. This is not a problem for the MCMC 

methods if we are prepared to assume missingness is at random or effectively so by 

design. This is equivalent to giving the missing data a uniform prior. We then have to 

simply add an extra Gibbs sampling step to the algorithm to sample the missing values 

at each iteration. As an illustration we will consider an individual who is missing 

response r. In a factor model the correlation between responses is explained in the factor 

terms and conditional on these terms the responses for an individual are independent 

and so the conditional distributions of the missing responses have simple forms. 

Step 10: Update  (r=1,…,R, i=1,…,nrijy

∑
=

G

g 1

(λ

j, j=1,…,J ∀  that are missing) from the 

following distribution, given the current values, where = 

. 

rijy

rijy ),ˆ(~ 2
errijyN σ rijŷ

∑
=

+++ rjgijgr

F

f
fjfrr u)1()1

1

)2()2( ννλβ

Example 

The example uses a data set discussed by Goldstein (1995, Chapter 4) and consists of  a 

set of responses to a series of 4 test booklets by 2439 pupils in 99 schools. Each student 

responded to a core booklet containing Earth science, biology and physics items and to 

a further two booklets randomly chosen from three available. Two of these booklets 

were in biology and one in physics. As a result there are 6 possible scores, one in earth 
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science, three in biology and 2 in physics, each student having up to five. A full 

description of the data is given in Goldstein (1995).  

A multivariate 2-level model fitted to the data gives the following maximum likelihood 

estimates for the means and covariance/correlation matrices in Table 4. The model can 

be written as follows 

6 6 6 6

1 1 1 1

1 1

2 2

3 3

4 4

5 5

6 6

~ (0, )    ~ (0, )

1  if ,   0 otherwise
1 if a girl, 0 if a boy

 

ijk i hjk i hjk jk ijk hjk ik hjk
h h h h

u v

hjk

jk

y x x z u x v x

u v
u v
u v

N N
u v
u v
u v

x h i
z
i

β γ
= = = =

= + + +

   
   
   
   

Ω Ω   
   
   
      
   

= =

= =

∑ ∑ ∑ ∑

indexes response variables,  indexes students,  indexes schoolsj k

   (5) 
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Table 4. Science attainment estimates. 
 
Fixed Estimate (s.e.) 
  
Earth Science Core 0.838 (0.0076) 
Biology Core 0.711 (0.0100) 
Biology R3 0.684 (0.0109) 
Biology R4 0.591 (0.0167) 
Physics Core 0.752 (0.0128) 
Physics R2 0.664 (0.0128) 
  
Earth Science Core (girls - boys) -0.0030 (0.0059) 
Biology Core (girls - boys) -0.0151 (0.0066) 
Biology R3 (girls - boys)  0.0040 (0.0125) 
Biology R4 (girls - boys) -0.0492 (0.0137) 
Physics Core (girls - boys) -0.0696 (0.0073) 
Physics R2 (girls - boys) -0.0696 (0.0116) 
  
Random.  Variances on diagonal; correlations off-diagonal 
Level 2 (School) 
 

 

 E.Sc. core Biol. Core Biol R3 Biol R4 Phys. core Phys. R2 
E.Sc. core 0.0041      
Biol. core 0.68 0.0076     
Biol R3 0.51 0.68 0.0037    
Biol R4 0.46 0.68 0.45 0.0183   
Phys. core 0.57 0.90 0.76 0.63 0.0104  
Phys. R2 0.54 0.78 0.57 0.65 0.78 0.0095 
  
Level 1 (Student) 
 

 

 E.Sc. core Biol. Core Biol R3 Biol R4 Phys. core Phys. R2 
E.Sc. core 0.0206      
Biol. core 0.27 0.0261     
Biol R3 0.12 0.13 0.0478    
Biol R4 0.14 0.27 0.20 0.0585   
Phys. core 0.26 0.42 0.11 0.27 0.0314  
Phys. R2 0.22 0.33 0.14 0.37 0.41 0.0449 
       
 

We now fit two 2 level factor models to these data, shown in Table 5. We omit the fixed 

effects in Table 5 since they are very close to those in Table 4. Model A has two factors 

at level 1 and a single factor at level 2. For illustration we have constrained all the 

variances to be 1.0 and allowed the covariance (correlation) between the level 1 factors 

to be estimated. Inspection of the correlation structure suggests a model where the first 

factor at level 1 estimates the loadings for Earth Science and Biology, constraining 

those for Physics to be zero (the physics responses have the highest correlation), and for 

the second factor at level 1 to allow only the loadings for Physics to be unconstrained. 

The high correlation of 0.90 between the factors suggests that perhaps a single factor 

will be an adequate summary. Although we do not present results, we have also studied 
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a similar structure for two factors at the school level where the correlation is estimated 

to be 0.97, strongly suggesting a single factor at that level.  

For model B we have separated the three topics of Earth Science, Biology and Physics 

to separately have non-zero loadings on three corresponding factors at the student level. 

This time the high inter-correlation is that between the Biology and Physics booklets 

with only moderate (0.49, 0.55) correlations between Earth Science and Biology and 

Physics. This suggests that we need at least two factors to describe the student level data 

and that our preliminary analysis suggesting just one factor can be improved. Since our 

analyses are for illustrative purposes only we have not pursued further possibilities with 

these data.   
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Table 5. Science attainment MCMC factor model estimates. 
Parameter A    Estimate (s.e.) B   Estimate (s.e.) 
Level 1; factor 1 loadings   
E.Sc. core 0.06 (0.004) 0.11 (0.02) 
Biol. core 0.11 (0.004) 0* 
Biol R3 0.05 (0.008) 0* 
Biol R4 0.11 (0.009) 0* 
Phys. core 0* 0* 
Phys. R2 0* 0* 
Level 1; factor 2 loadings   
E.Sc. core 0* 0* 
Biol. core 0* 0.10 (0.005) 
Biol R3 0* 0.05 (0.008) 
Biol R4 0* 0.10 (0.009) 
Phys. core 0.12 (0.005) 0* 
Phys. R2 0.12 (0.007) 0* 
Level 1; factor 3 loadings   
E.Sc. core - 0* 
Biol. core - 0* 
Biol R3 - 0* 
Biol R4 - 0* 
Phys. core - 0.12 (0.005) 
Phys. R2 - 0.12 (0.007) 
Level 2; factor 1 loadings   
E.Sc. core 0.04 (0.007) 0.04 (0.007) 
Biol. core 0.09 (0.008) 0.09 (0.008) 
Biol R3 0.05 (0.009) 0.05 (0.010) 
Biol R4 0.10 (0.016) 0.10 (0.016) 
Phys. core 0.10 (0.010) 0.10 (0.010) 
Phys. R2 0.09 (0.011) 0.09 (0.011) 
Level 1 residual variances   
E.Sc. core 0.017 (0.001) 0.008 (0.004) 
Biol. core 0.015 (0.001) 0.015 (0.001) 
Biol R3 0.046 (0.002) 0.046 (0.002) 
Biol R4 0.048 (0.002) 0.048 (0.002) 
Phys. core 0.016 (0.001) 0.016 (0.001) 
Phys. R2 0.029 (0.002) 0.030 (0.002) 
Level 2 residual variances   
E.Sc. core 0.002 (0.0005) 0.002 (0.0005) 
Biol. core 0.0008 (0.0003) 0.0008 (0.0003) 
Biol R3 0.002 (0.0008) 0.002 (0.0008) 
Biol R4 0.010 (0.002) 0.010 (0.002) 
Phys. core 0.002 (0.0005) 0.002 (0.0005) 
Phys. R2 0.003 (0.0009) 0.003 (0.0009) 
Level 1 correlation factors 1 &2 0.90 (0.03) 0.55 (0.10) 
Level 1 correlation factors 1 &3 - 0.49 (0.09) 
Level 1 correlation factors 2 &3 - 0.92 (0.04) 
* indicates constrained parameter. A chain of length 20,000 with a burn in of 2000 was 
used. Level 1 is student, level 2 is school. 
 

Discussion 

This paper has shown how factor models can be specified and fitted.  The MCMC 

computations allow point and interval estimation with an advantage over maximum 
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2 2

2 )

likelihood estimation in that full account is taken of the uncertainty associated with the 

estimates. In addition it allows full Bayesian modelling with informative prior 

distributions which may be especially useful for identification problems. 

As pointed out in the introduction, the MCMC algorithm is readily extended to handle 

the general structural equation case, and further work is being carried out along the 

following lines. For simplicity we consider the single level model case to illustrate the 

procedure.  

A fairly general, single level, structural equation model can be written in the following 

matrix form (see McDonald, 1985 for some alternative representations)  

1 1 2 2

1 1 1 1

2 2 2 2

A v A v W
Y v U
Y v U

= +
= Λ +
= Λ +

          (6) 

Where  are observed multivariate vectors of responses,  is a known 

transformation matrix, often set to the identity matrix,  is a coefficient matrix which 

specifies a multivariate linear model between the set of transformed factors, , 

 are loadings, U U  are uniquenesses, W is a random residual vector and 

 are mutually independent with zero means. The extension of this model to the 

multilevel case follows that of the factor model and we shall restrict ourselves to 

sketching how the MCMC algorithm can be applied to (6). Note, that as before we can 

add covariates and measured variables multiplying the latent variable terms as shown in 

(6). Note that we can write  as the vector  by stacking the rows of . For 

example if 

Y Y1 2,

2

1A

2A

1 2,  and v v

2A

Λ Λ1,

W U, ,1

1,

U

2A *
2A

0

0 1 1*
2 2

2 3 2

3

,    then   

a
a a a

A A
a a a

a

 
    = =       
 

 

The distributional form of the model can be written as 

1 2

1 1 2 2 3

1 2

1 1 1 1 2 2 2

~ ( , )
~ (0, ),   ~ (0, )

~ ( , ),    ~ ( ,
v v

A v MVN A v
v MVN v MVN

Y MVN v Y MVN v

Σ
Σ Σ

Λ Σ Λ Σ

 

with priors 
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)

3

* 1 22

* *
2 2 1 1 2 2

ˆ ˆ ˆ ~ ( , ),  ~ ( , ),    ~ ( ,
A

A MVN A MVN MVNΛ ΛΣ Λ Λ Σ Λ Λ Σ  

and  having inverse Wishart priors. 1 2, ,Σ Σ Σ

The coefficient and loading matrices have conditional Normal distributions as do the 

factor values. The covariance matrices and uniqueness variance matrices involve steps 

similar to those given in the earlier algorithm. The extension to two levels and more 

follows the same general procedure as we have shown earlier. 

The model can be generalised further by considering m sets of response variables, 

 in (6) and several, linked, multiple group structural relationships with the k-

th relationship having the general form 

Y Y Ym1 2, ,...

V A V A Wh
k

h
k

h
g

k
g

k k

g

( ) ( ) ( ) ( ) ( )= +∑ ∑  

and the above procedure can be extended for this case. We note that the model for 

simultaneous factor analysis (or, more generally, structural equation model) in several 

populations is a special case of this model, with the addition of any required constraints 

on parameter values across populations. 

We can also generalise (1) to include fixed effects, responses at level 2 and covariates 

hZ  for the factors, which may be a subset of the fixed effects covariates X 

(1) (1) (1) (1) (1) (1)
2 2 2 1 1 1

(2) (2) (2) (2)
2 2 2

(1) (2){ },    { }
1,...,        1,...,      1,...,

rij rj

j

Y X v Z u v Z e

Y v Z u
Y y Y y
r R i i j J

β= + Λ + + Λ +

= Λ +

= =

= = =

        (7) 

The superscript refers to the level at which the measurement exists, so that, for example, 

 refer respectively to the first measurement in the i-th level 1 unit in the j-th 

level 2 unit (say students and schools) and the second measurement taken at school 

level for the j-th school.   

1 2,  ij jy y

Further work is currently being carried out on applying these procedures to non-linear 

models and specifically to generalised linear models.  For simplicity consider the 

binomial response logistic model as illustration.  Write 
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1

ij

( ) [1 exp ( )]
~Bin( , )    

ij ij i i j

ij ij

E y a v
y n

π λ
π

−= = + − +
           (8) 

The simplest model is the multiple binary response model ( ) that is referred to in 

the psychometric literature as a unidimensional item response model (Goldstein & 

Wood, 1989, Bartholomew and Knott, 1999). Estimation for this model is not possible 

using a simple Gibbs sampling algorithm but as in the standard binomial multilevel case 

(see Browne, 1998) we could replace any Gibbs steps that do not have standard 

conditional posterior distributions with Metropolis Hastings steps.   

nij = 1

The issues that surround the specification and interpretation of single level factor and 

structural equation models are also present in our multilevel versions. Parameter 

identification has already been discussed; another issue is the boundary ‘Heywood’ 

case. We have observed such solutions occurring where sets of loading parameters tend 

towards zero or a correlation tends towards 1.0. A final important issue that only affects 

stochastic procedures is the problem of ‘flipping states’. This means that there is not a 

unique solution even in a 1-factor problem as the loadings and factor values may all flip 

their sign to give an equivalent solution. When the number of factors increases there are 

greater problems as factors may swap over as the chains progress. This means that 

identifiability is an even greater consideration when using stochastic techniques.  

For making inferences about individual parameters or functions of parameters we can 

use the chain values to provide point and interval estimates. These can also be used to 

provide large sample Wald tests for sets of parameters. Zhu and Lee propose a chi-

square discrepancy function for evaluating the posterior predictive p-value, which is the 

Bayesian counterpart of the frequentist p-value statistic (Meng, 1994). In the multilevel 

case the  probability becomes levelα −

1 2 ( ) ( )

1 1

1( ) ( )

ˆ ˆ( ) ( ) ( ) ( | , )

ˆ( | , )

jiJ
i i

B j j i
i i

i i T
i i i i

p Y i i p D Y v

D Y v Y Y

αχ θ

θ

−

= =

−

= ≥

= Σ

∑ ∑         (9) 

where  is the vector of responses for the i-th level 2 unit and  is the (non-diagonal) 

residual covariance matrix. 

iY iΣ
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