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A general two-level model for muitivariate data is described and illustrated
by specializations to a common factor model and a path model with latent
variables. The problem of estimation is treated, and in the special case of a
balanced sampling design, a likelihood-based discrepancy function and a test
of goodness of fit are obtained in terms of some simple sufficient statistics.

1. Introduction

There has recently been an upsurge of research activity concerned with defining and
fitting suitable statistical models for multilevel data (see Goldstein, 1987). Multilevel
data arise from a nested or hierarchical sampling scheme, or the sampling of a
hierarchically structured population, the paradigm example of which might be the
drawing of random samples of students from within random samples of classes from
within random samples of schools. In this case, sampling takes place at three
levels—students, classes and schools-——with sampling units of each level nested within
a unit of the next level.

For the analysis of a simple random sample and the simultaneous analysis of
random samples from a number of distinct populations, theory providing for the
definition, fitting and testing of linear models, including regression models with fixed
regressors and general models for linear structural relations with latent variables
{path analysis and factor analysis), has reached the stage of general practical
application (see, for example, Joreskog & Sorbom, 1979; McArdle & McDonald.
1984). The extension of such methods to multilevel data presents both theoretical
problems and practical computational difficulties.

It is well known that methods for the analysis of multilevel data based on
aggregation (as when we combine student measures to yield class means and perform
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a means-on-means regression) or disaggregation (as when we assign a class-based
measure to each student in the class) are inadequate and at the same time they create
severe problems of interpretation (see. for example, Aitkin & Longford, 1986;
Hannan. 1971; Robinson. 1950: Tate & Wongbundhit, 1983). It is therefore generally
understood that statistical models are needed for such data to take account of the
sampling scheme. or population structure, directly and appropriately.

A number of writers have developed multilevel models in which regression
coefficients at one level are treated as random variables and regressed on variables at
a higher level. Harville (1977) applies maximum likelihood and restricted maximum
likelihood to normal mixed models. For a two-level model with fixed regressors,
Mason. Wong & Entwisle (1984) obtain restricted maximum likelihood estimates by
the EM algorithm. Longford (in press) shows how to obtain maximum likelihood
estimates for a general multilevel mixed-effects model by the method of scoring.
Aitkin & Longford (1986) illustrate the procedure. De Leeuw & Kreft (1986) show
how to fit the Mason er al. model by least squares, weighted least squares and
maximum likelthood, using the method of scoring. Goldstein (1986) describes a
general multilevel mixed model and shows how to fit it by an iterated generalized
least squares algorithm.

While each of the models in the contributions just cited can be described as the
regression of a univariate dependent variable on one or more fixed regressors,
Goldstein (1986) points out that an h-level model (h=3) of this kind can be applied
to give an (h— D-level model for a g-variate dependent variable, possibly with missing
data. by treating the ¢ variates measured within a unit as a level of observation. De
Leeuw (1985) shows that theory for a univariate dependent variable with fixed
regressors can in principle be applied with little modification to fit a multilevel
recursive path model with random exogenous and endogenous variables provided
that the random path coefficients of distinct variables are mutually independent.

Goldstein & McDonald (1988) develop the model in Goldstein (1986) into a more
general one which includes as special cases all of the models cited, and contains
models for multilevel structural relations, possibly with latent variables and with data
from any level missing at random. The model covers data with a fully nested,
hierarchical structure. and more general variance—covariance component models with
cross-classification at any level.

The present paper gives a seif-contained account, in some detail, of the properties
of a two-level model for linear structural relations. The model considered is a special
case of the one treated by Goldstein & McDonald (1988) and it may indeed be fitted
by a three-level model as described by Goldstein (1986). The object here, however, is
to see how far the well known results on estimating and testing goodness of fit for
the single level case generalize to a case with more than one level of sampling. In
Section 2. a general two-level model is described and illustrated by specializations to
a common factor model and a path model with latent variables. Section 3 treats
problems of estimation. with particular attention to the case of a balanced sampling
design. with the same number of level-one units in each level-two unit. The balanced
design yields a suitable discrepancy function, convenient sufficient statistics, and an
overall test of fit. The more general case. which is treated by Goldstein & McDonald
(1988). does not appear to vield comparable results.
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2. The general two-level model

We suppose we have measures v,;; on j=1,.... q variables from i=1...., n, levei-one
units (say, individual students) randomly sampled from k=1...., m level-two units
(say, classrooms) also randomly sampled. We may also suppose. in general, that we
have measures x,, on /=1,....,p variables characterizing the level-two units
{classrooms), We consider cases where there are no missing data.

We write the entire data-set in the form of a single vector

z'=[z\,....2,].
of
N=pm+q Y n, components.
k=1
where
Se=0X Yer - Yamd
with

X = [ Xpqeen.ns Xy,

yl’(i = [}‘kli’ rrne ykqi]?

and note that z, has p+gn, components.

We write
=82 =4\ M) (1)
where
He=E2 = 1, ®u] (2)
and
EX, =n, Yk, (3
E{Vut =8, ki (4)
Writing further
Yi=You + Vi (5)

{where the subscripts | and 2 index the level of sampling) we assume that
cov{Ya, Vi) =0 ki (6a)

COV{Xe Y 1uif =0 Vkii. (6b)



218 Roderick P. McDonald and Harvey Goldstein
We define

V.=coviz . (p+qn) x(p+4qn), (7a)
V=cov{z}, NxN, (7b)
Yoe=covi{x},pxp, Vk (7¢)
L., =coviv.f, gxq. Vki (7d)
L, =C0vViX, Y, pxg, Yk (7e)
Ly=cov|yu,gxq, vk (7F)
Lo =coviyiuqxq, Vki (7g)
Noting that
COV { ¥y, Yuir =COV Yyt =F, Vk izl (8a)
and
COV Xy Vi) =COV {Xy, Yau) =L,y (8b)
and hence by (6a).
L,=I,+L,, ©)

we may think of £, as the within-level-two-units, between-level-one-units, covariance
matrix of y,;, and X, as its between-level-two-units covariance matrix.

Structural models for such a data-set may be defined by restricting the elements of
L. k. 5,0 I and, possibly, g, g, to be functions of some basic set of parameters
r=[n,.... 7,]. Thus, g, u4, could be expressed in terms of a design matrix (known
values of fixed regressors) with fixed regression coefficients to be estimated, and the
covariance matrices could be structured as implied by a factor model or path model.

For example. we may define a general two-level common factor model by writing,

Sa_V.
[ k :l |: x} : [ k} (1 )
ka “2 EZk

Yi =NV teny (10b)

and
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with
@, =coviv,} (I11a)
@, =coviv,}, (11b)
and diagonal matrices
W_=cov{e,! (12a)
¥, =cov e, (12b)
¥, =covie,}, Yk.i {12¢)

The matrices A,, pxs, say, and A,, gxs, are patterned factor loading matrices
respectively relating the levei-two variables and the level-one variables to the level-
two factors v,, while A, g xt, say, is a patterned factor loading matrix relating the
level-one variables to the level-one factors v,. The covariance matrices ®,, s x s, of
the level-two factors, and @,, txt, of the level-one factors, are also possibly
patterned, including possibly diagonal for an orthogonal model. The diagonal
matrices ¥,, ¥,, ¥, are the corresponding residual variance {uniqueness) matrices.
We then have

L.=A0,A +Y, (13a)
L,=AD,A; (13b)
L,=A,0,A,+ Y, {13c)
. =A0 A +Y,, (13d)
hence
. b, A’
Z},y=[A2:A1][ - d)l][A’j]+W2+\y‘ {14)

Identifiable, restrictive models can be obtained by appropriate choices of pattern in
the three factor loading and two factor covariance matrices of the model. In most
applications we would expect to set A,=A,, thus supposing that the level-one
observed variables imply the same definition (‘interpretation’) of the factors at both
levels, but we would still wish to estimate distinct factor covariance matrices ¢,, ¢,
corresponding to their between-level-two and between-level-one-within-level-two
variability. Even in the case where there are no observed level-two variables (ie.
p=0), so that the model reduces to (14), it would still be generally necessary to fit
both a level-two uniqueness matrix ¥, and a level-one uniqueness matrix y,, as well
as level-two and level-one factor covariance matrices.

In a similar way, we may develop a two-level version of any model for linear
structural relations—for example, the LISREL model of Joreskog & Sérbom (1979),
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the COSAN model of McDonald 11978, 1980) or McArdle’'s RAM model (McArdle &
McDonald. 1984)—by writing the model as required for x,, y,, and y,,;. The RAM
mode! will serve as an illustration. For single-level data it can be defined by

v=F(Av* +u) (15)

where v is a tx | vector of observed variables. v* is a sx | vector containing the
components of v and all additional latent variables in the model, F is a matrix of
unities and zeros such that

v=Fv*. (16a)
and
VE=AV* 40, (16b)

where A. s x s, s patterned such that g, is the path coefficient from v, to v, and,
with

S=cov |u}. {16c)

S, is the residual covanance corresponding to a non-directed path between v, and v,,.
Then the covariance structure of v is given by

cov v =F(I-A)"'S(I-A)'F (17

{see McArdle & McDonald. 1984).
The two-level counterpart can easily be recognized to be given by

D‘J{n FM?}:[F FJ{A [;‘;}{:ﬂ} (18)

A Ao
A=| e s 19
b )

Y =F ¥y =F [A i +u], (20)

where

together with

where F . F.. and A. A, are obvious counterparts of F, A in the single-level model.
The four submatrices of A. namelv A... A, A,,, A,, all represent level-two paths.
These are. respectively, paths between level-two variables, paths from level-one to
level-two, paths from level-two to level-one, and paths between level-one variables. In
addition. we have level-one paths between level-one variables represented in A,. If the
model is recursive at each level. there will exist a permutation of [x}, y;;] such that A
is lower triangular. and a permutation of y,; such that A, is lower triangular. It need
not be that these two permutations are the same in respect of y,;, We can easily
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entertain the possibilitv that a causal path reverses its sign. or. indeed. its direction.
between level one and level two. For example. we might conjecture that self-esteem
partly determines and increases academic achievement in terms of between-
individual-within-class variability while academic achievement partly determines and
decreases self-esteem in terms of between-class variability by a frame-of-reference
effect (see Marsh, 1984. for evidence of relations of this type.)

The structures for the matrices of the model given by (18) and (20) are. then.

.‘:nz[Fx0](I—A)“S:1I—A')"[g;‘] {21a)
E.‘)-=[FxOl(l—A)“Sz(l—A'a“[g] (21b)
o o
L,=[0FJ{I-A)"'S,(1-A") [FJ {21c)
I, =F{I—A,) 'S (I—A}F.. (21d)
where
S, =cov {[UHJ} (22a)
Uy
S, =coviu,. (22b)

For the remainder of this paper we consider. as above. the vectors g, u. and
matrices £, ., X, X, I, to be functions of a vector of parameters n. where. it will be
understood, n typically contains the quantities to be estimated in the matrices of
factor loadings, path coefficients, and the like. considered in these two examples.

3. Estimation and testing fit
From the definitions and assumptions (1) through (9} given above. it follows that

r . 1, ®%..
vk= XX : i Xy (23)
1,®E, = L ®E+1,1, ®L,

and

V=@ V,. (24)
k=1

where ® represents the direct (Kronecker) product and @ the direct sum of matrices.
It is convenient here and in the sequel to write £, =X and the like.
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By well-known theorv. if z, has a normal density function, the maximum likelihood
estimate of = is a solution of

=0, (25)

where

[=logVI+{z—p )V Yz —p.) (26)

differs by a constant from twice the negative of the log-likelihood. Further,

3

1=5 1. (27

where
L=log{V,\|+(z, — ) Vi "z~ ). (28)
Since v, is of order p+yn,. which may be extremely large in applications, the

problem 1s to reduce the terms in /, to a practical form for computation.
We define

El \:EZ—“:'\'xE;xlzr)s (29)
L o=nk, +X, (30)
Vo=nt Z Yuis (31a)
i=1

F=m=' Y ¥ (31b)
k=1

i:m-l Z Xk. (31(:)

By Appendix A. the kth term of the function of likelihood (28) may be written as
L=log|Z, | +(n—1)log X, +log|L,]
+TI‘ ‘l[:,\:\'l + )1I-'Er‘xl:xx'2k~ 12_\',\""",\'—,:1 (xk —.ux) (xk _.ux)'}

(vl -1z /
—2”k Tr :E.rx E.V\‘El( (yk'—'.uy)(x—px) }

+Tr{2(‘ Z (yki'—ﬂ)’)(yki_‘u,\‘),}

=1
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—n Tr{[E ' = E T (T — s (e — 1)} (32)

In this form, the order of the largest matrix requiring inversion or computation of its
determinant is the greater of p and ¢. In a structural model in which g, ¢ T . Z .
L,, I, are prescribed functions of a vector of parameters =m. 1t is therefore
computationally feasible, even when n, is very large for some or all k. to obtain an
ML estimate of the parameters by minimizing Y i, /, with respect to n. using one of
a number of available algorithms for minimizing a function.

In the special case of a balanced sampling design, with n,=nVk it is possible to
express / as a function in a convenient set of sufficient statistics. For, in such cases.
writing

(9]

(W]

Y, =L=n%, +%, (
yields, from (32),
I=m{log|Z..|+(n—1)log|Z,|+log|Z[}
+mTr{[T +nE D 2 R B T[S +HIX — p) (X — ) ]
—2mn Tr{E 'L B S +(F— ) (R=p)])
)
j

+maTr (L] [S,+(F— ) (F—n,)]

—mnTr (B =L T[Sy +(F—p,) (F—p,)]). (34)
where
Sex=m"" Y (X=X (X~ XV {35a)
k=1
S,a=m~! Y (U—FHE X (35b)
k=1
S,=(mn) ! Z Z (Vi —= ¥ v —FY (35¢)
k=11i=1
Sy=m~" Z (Y= ¥—¥) (35d)
k=1
S,=(mn)! Z Z (Y=Y (yi— %) (35e)
k=1i=1
whence

S,———Sb""Sw. (36)
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Thus clearly in the balanced case the statistics X, ¥, S,,, S,,, S, S, are minimal
sufficient.

From the derivatives of [, in (32) with respect to u,, u,. £,,, E,,, £,, I,, we may
obtain the derivatives with respect to = of which these are functions in any specified
restrictive model by use of the matrix chain rule and rearrangement rules (McDonald
& Swaminathan, 1973). The former derivatives are given in Appendix B. In the
general case the resulting likelihood equations (B1)«{B2) and (B5)«B13) cannot be
solved in closed form to estimate these matrices as unrestricted sets of parameters.

On the other hand. in the special case of a balanced sampling design, the resulting
likelthood equations [(B3)<B4) and (B14}{B17)], are, by inspection, jointly satisfied
by u,=x. p,=§ and

Exx = S,\—x (373)
£.,=S. (37b)
L, =nn—1)"1S, (37¢)
Z=n(S, —S}.XS;;SI‘,.) (37d)

whence
22*x=sb_(n_I)Hlsw——s}’xs;xlsxy (38)

whence
L,=S,—(n—1"1S,. {39)

That 1s. in the balanced case, with unrestricted parameter matrices, the maximum
likelihood estimates are obtainable in closed form as simple functions of the sufficient
statistics X. §. S, 8¢ S48,

Substituting the unrestricted estimates in the function of likelthood yields

I=mi{log|S,,|+(n—=1)log|n(n—1)"'S,|

+log \S,,—S,_,S;XLS,J +p+ng}=I[gsay. (40
IfZ... .. %, X, are constrained to be functions of =, t x 1, and we write
l,=min [(r), (41)
then the quantity
U=1I,—I, (42)

is a suitable discrepancy function for measuring the misfit of the model, since it is
bounded below by zero and the bound is attained if and only if the model fits the
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sample exactly. Further, by well-known theory, U has an asymptotic chi-square
distribution that yields an overall test of the restrictive hypothesis, with, in an
identified model, degrees of freedom given by

d=(1/2p(p+ 1} +qglg+ D +pg—t.

Alternatively, we might measure the misfit of the model by a suitable function of U
and d. (Measures of goodness-of-fit of generally false restrictive models that
nevertheless approximate the data seem currently open to a number of
methodological and statistical questions, so it seems best not to make specific
recommendations here.)

We note that we may alternatively estimate the parameters in the balanced case
with unrestricted mean vectors by a generalized least squares procedure in which.
defining

w= Sxx ’ 1n®sx_\‘, (43)
1n®s_\'x ’ In®sn+ 1n1n®sb
we minimize
s(my=[vec(V=W)I[W QW '[vec(V-W)], (44)
that is
s(m)=Tr {{[W~{V-W)]?} (43)

since W so defined is a consistent estimator of V (see Browne, 1982).
Since W™! may be written as the obvious analogue of V™! as given in (A8)+A10),
it is easily verified that

_ A - 1,0B
W LV_W)= "
( ) [1"®C~IH®D+1,,1;®E:|’ (46)

where
A=S_'A, +nS.'S, S7I[S,, S 1A, —A,] (47a)
B=[S.'+nS.'S,S7'S,.S; ' 1A, —S.'S,,ST'[A, +nA,] {47b)
C=S7'[A,,—S,.S'AL] (47¢)
D=S¥"'A, (47d)
E=S7'A,—n '(St7'—=S"HA, -S7'S S A, (47e)
and

S=n(S,—S,,S:.' S, +S.., (48)
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and we write

Au=I— S (49a)
A=, —S,, (49b)
A =X, -8§, (49¢)
A,=E,—S,. (49d)
It follows that
s(m)=m Tr {A? +2aBC +nD? +n’E’ + 2nDE}, (50)

a form which allows a computationally practical treatment of this alternative.

Investigators have shown a great deal of ingenuity in developing algebraic devices
enabling the application of computer programs such as the LISREL series of
Jéreskog & Soérbom (1979) or the COSAN program for McDonald’s (1978, 1980)
model to problems to which they may at first sight appear inapplicable. It is natural
to ask whether there may exist an algebraic formulation of a mulitilevel model such
as those described here, and an arrangement of the data, that would allow efficient
estimates to be obtained by LISREL or COSAN. (It seems likely that crude estimates
of some kind could be obtained in the balanced case using the sample covariance
matrices defined above as submatrices of a suitably partitioned matrix of acceptably
small order. but such estimates may not have good properties.)

[n the balanced case with unrestricted mean vectors, we may indeed obtain GLS or
ML estimates of the parameters in the models discussed in Section 2, using COSAN
(and in special cases by LISREL) if n is small enough to allow the available
computer configuration to accept an input covariance matrix of order p+nq. In such
a case. we may obtain GLS estimates with COSAN by fitting the model

(1 [ e =, I,
=, °F £, I, 1.1 (51)
\ 1,01, LRl LT I®I"

L n 1 n q

(using the algebraic identities given in McDonald, 1978, 1980 and McArdle &
McDonald. 1984, to express X,, X, ., £, £, as matrix functions of the parameters),
to the (p+ng) x {p+nq) sample matrix W defined in (43). It is easily verified from (34)
or directly from (26) that in the balanced case with unrestricted means, ML estimates
may similarly be obtained by minimizing the discrepancy function

|=Tr {WZ™ !} ~log|WE™![—(p+nq), (52)

where, again, W is given by (43) and £ by (S1). It does not seem possible to obtain
these estimates by defining £ and W of smaller order. (Because of the algebraic
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structure of LISREL, it seems that its application to this class of model would best
be investigated case by case.) In practice, n will commonly be too large to allow this
device to be employed. Further, it does not seem possible to carry this alternative
treatment over to the unbalanced case.

4. Summary and discussion

A general model for linear structural relations in two-level data has been described
and illustrated with a two-level common factor model and a two-level extension of
McArdle’'s RAM model. The derivatives of the likelihood with respect to the
parameter matrices of the model have been obtained, as a basis for numerical
algorithms for estimating the parameters in any fully specified case.

In the balanced sampling design, with the same number of level-one units in each
level-two unit, the sample analogue mean vectors and covariance matrices have been
shown to be minimal sufficient statistics. It was further shown that these or simple
functions of them are maximum likelihood estimates of the unrestricted parameter
matrices. Hence we obtain a discrepancy function based on the ratio of likelihoods,
respectively under a restrictive hypothesis and without restriction, which will also
yield an asymptotic chi-square test for any identified model. In the balanced case
these results further provide the basis for a generalized least squares estimation
procedure that is non-iterative in the sense that the weight matrix is not updated.

The results show that it will commonly be impractical to rearrange a two-level
model for linear structural relations so as to fit it by an existing computer program
such as LISREL or COSAN in the balanced case, and a fortiori the unbalanced case
is unlikely to admit such treatment. They also suggest that there may be strategic
advantages in developing special computer programs for balanced designs in addition
to programs for what will almost certainly be the more common case of the
unbalanced design.

In unbalanced designs, there may be little to be gained in the way of special
properties for models less general than that given by Goldstein & McDonald (1988)
which, inter alia, takes account in a natural way of data missing at random at any
level of sampling. In developing the necessary computer programs we can expect to
find it desirable to test the efficiency of a variety of numerical algorithms, including
quasi-Newton methods and Fisher’s method of scoring, possibly in combination with
the iterated generalized least squares algorithm given by Goldstein (1986).

Acknowledgement

* We thank George Cooney for his comments on the manuscript.

References

Aitkin, M. & Longford, N. (1986). Statistical modelling in school effectiveness studies (with
discussion). Journal of the Royal Statistical Society, A, 1949, 143



228 Roderick P. McDonald and Harvey Goldstein

Browne. M. W. (1982). Covariance structures. In D. M. Hawkins (Ed.), Topics in Applied
Multivariate Analvsis. Cambridge: Cambridge University Press.

De Leeuw. J. (1985). Path Models with Random Coefficients. Leiden, The Netherlands:
Department of Data Theory FSW/RUL.

De Leeuw. J. & Kreft. [. (1986). Random coefficient models for multileve! analysis. Journal of
Educational Statistics. 11, 57-85.

Goldstein, H. (1986). Multilevel mixed linear model analysis using iterative generalized least
squares. Biometrika. 73, 43-56.

Goldstein, H. (1987). Multilevel Models in Educational and Social Research. London: Griffin;
New York: Oxford University Press.

Goldstein. H. & McDonald, R. P. (1988). A general model for the analysis of multilevel data.
Psychometrika. 53, 435-467.

Hannan, M. T. (1971). Aggregation and Disaggregation in Sociology. Lexington, MA:
Heath-Lexington.

Harville. D. A. (1977). Maximum likelihood approaches to variance component estimation and
to related problems. Journal of the American Statistical Association, 72, 320-340.

Joreskog, K. G. & Sorbom, D. (1979). Advances in Factor Analysis and Structural Equation
Models. Cambridge. MA: Abt Books.

Longford, N. (in press). A fast scoring algorithm for maximum likelihood estimation in
unbalanced mixed models with nested random effects. Journal of the American Statistical
Association.

Marsh. H. W. (1984). Determinants of student self-concept: [s it better to be a relatively iarge
fish in a small pond even if you don’t learn to swim as well? Journal of Personality and
Social Psychology, 47, 213-231.

Mason. W. M., Wong, G. Y. & Entwisle. B. (1984). Contextual analysis through the mulitilevel
linear model. In S. Leinhardt (Ed.), Sociological Methodology 1983. San Francisco:
Jossey-Bass.

McArdle, J. J. & McDonald. R. P. (1984). Some algebraic properties of the Reticular Action
Mode! for moment structures. British Journal of Mathematical and Statistical Psychology,
37, 234-251.

McDonald. R. P. (1978). A simple comprehensive model for the analysis of covariance
structures. British Journal of Mathematical and Statistical Psychology, 31, 59-72.

McDonald, R. P. {1980). A simple comprehensive model for the analysis of covariance
structures: Some remarks on applications, British Journal of Mathematical and Statistical
Psychology, 33, 161-183.

McDonald. R. P. & Swaminathan. H. (1973). A simple matrix calculus with applications to
multivariate analysis. General Systems, 18, 37-54.

Robinson, W. S. (1950). Ecological correlation and the behavior of individuals. American
Sociological Review, 15, 351-357.

Tate. R. L. & Wongbundhit, Y. {1983). Random versus nonrandom coefficient models for
multilevel analysis. Journal of Educational Statistics, 8, 103-120.

Received 3 December 1987 revised version received 21 June 1988

Appendix A
Derivation of (32)

We write

sz[vn Vu] (A1)
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and
_ Vl 1 vlz
Vi ‘z[vu sz:, (A.2)

where the submatrices correspond to those in (23).
Then by the well-known identity for the inverse of a partitioned matrix, with a
little algebra we obtain

Vl ! =Ex_xl + nkzx_xl “:xy(nkEZ cx + El) - 12}':2;:1 (A3)
Vii= —E L, @, (mE; +E) 7] (A4)
V22=[Ink®21+1nk1;k®22'x]_1‘ {As)

where X, ., is given by (29).
By the easily verified identity, for symmetric A and B.

(IQA+11'®B) '=I®QA ' —11'®(1I'l1A+ AB " 'A) . (A.6)
(A.5) reduces further to
V=1 L '-1,1,1,) "1, @ "'—-(nE, ,+%,) '] (A7)

Using (30) we write these expressions as

V=Xl 4nEoE 5L Fo! (A8)
le = _E;xl[l;k®2xy2k_ 1] (A9)
Vil @E;—1,(1,1,) 1, ®E  ~ L7 1. (A.10)

Next we require a computationally convenient form for the determinant of V,. By
a well-known identity, we have

V| =B 1L ®F, +1,1, ®F, ,|. (A.11)

Define
L=L®X +1,I;®L, ., (A.12)
A;=|E. (A.13)

Then

A =45+, (i@, )L '(1,®L,.,), (A.14)

which may be written as



230 Roderick P. McDonald and Harvey Goldstein
iy =4[E+ DBy + T /iE,  + 5y (A.15)

whence
Ape=|Ea[™ T+ ), (A.16)
whence, further, we have
Vil =B[22 E]. (A1T)
Thence we have (32).
Appendix B

Derivatives

From (32) we have

e B ¥ M I EL I E, ] (X — i)
Cly :
_nkzx—xl nyzk— l(yk*”y)} (B'l)
cl s _ -
Tk 0 (7 (- ) — B ' B (X — 4} (B.2)

¥

and the corresponding derivatives of ! are, of course, the sums of these over k. In the
general case, the resulting likelihood equations cannot be solved in closed form for
unrestricted u,, g, In the special case of a balanced sampling design, by (27) and
(33), we have

il =2m{[E +nE B BT B (R —pu) B D BT (F )} =0 (BI)

¥
x

and

ﬂ-—Zmn{E_’(y—ﬂy)—znlzyxz;xl(i*ﬂx]}=0, (B4)

-

cH,
which are satisfied, as we might have expected, by
me=% =7, (B.5)

We now require the derivatives of [, k=1,...,m (hence immediately of [} with
respect to &, &, &, X,. It is convenient to write

Sx,zk =(xk—.ux) (xk—ﬂx)' (B‘6)
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sxykz(xk_.ux) (yk_#y), {B.7)

Syyk— Z (Yui—#,) (Yei—ny) (B.8)
i=1

sy'yk':(yk-l‘y] (yk_#y),' (B.9)

A reasonably mechanical procedure for obtaining the required matrices of derivatives
is given by McDonald & Swaminathan (1973). These may be arranged in the form

o ISR S (N, ES,
~n L, E,xlS,kE,xlixy+Ek Sya e IE).XZ;;
+2n, L.} [S,ykz;‘):y,—z I ‘zy,_,, S . JELL, (B.10}
O‘Z*X = 2[R ST -
——2an ' My 12 ! [Sou— x,kz;;E,yz:;‘
~2n, L} (S, — mE I 1(Sy—y-,, —Syx,‘f.;,lf.,y)] paa (B.11)
;;é"l (n,— HET 1—2, (Syyk—n,‘sﬁ,‘)zl‘l
I [ (S — £, T (28, il iy — S, TEC (B.12)
ch = Iy [ — Sy Ei ]
X,
+n,‘ pa 1[5”,‘ 2ny):;xl S,
+E, LS B B I8 (B.13)

The corresponding derivatives of | are, again, the sums of these over k.
In the special case of a balanced sampling design these yield the likelihood
equations

al
T = (T~ S.)EL
m azxx xx( XX xx) xXx

+nEL L £ [E—nS,+nE, E71(2S,,— S, L5E, )JETIE L

yx“xx
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+2nE ' [S,E L, R LIRS 12 =0,

mt XL anE S, ~E IR E, T
cx,,
=Rt ETIE CECMS,,—S LR 1R
—~2nE S, — L L7 (S, =S, EL L) ] =0,
- R B
mt o =E{ [0 UE, —nS,]E]
Cay

+Z° ! [2 - n{sb _Zy,\:zx—xl(2Sx.1:2x_x1 ny - Sxy)}]z— l= 0;
_, dl

T 2

m

=nk” t— nlz ! [Sb _(22)::2;:1 Sxy - Zyxzx_xl Sxxz;xlxxy)]z = 0.

(B.14)

{B.15)

(B.16)

(B.17)



