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Abstract

This article reviews the statistical models that underpin institutional compar-
isons on the basis of outcome measures for their students. These multilevel
models are developed to levels of complexity that match the problems posed.
The strengths and limitations of inferences from these models are explored
with examples taken from education.
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1. INTRODUCTION

One striking feature of public policy over the past three decades has been the growing utilization
of quantitative measures of institutional performance in many countries to make judgments and
allocate resources. The key feature of these systems is that the resulting rankings of institutions
such as schools, hospitals, and police forces are published by government bodies and publicized
by the media. These systems are distinguished from “intelligence systems” (Hood 2007) that also
produce rankings. However, rather than publish their rankings widely, intelligence systems use
their rankings to inform the institutions and those responsible for monitoring them. Such systems
operate, for example, in the area of public transport and have also been described in an educational
context (Yang et al. 1999). Intelligence systems also have advantages over published systems (Foley
& Goldstein 2012) in that they minimize unwanted or “perverse” side effects such as “gaming”
to improve ranking position. They also directly address the underlying issues of how institutional
performance can be improved, rather than indirectly attempting to address such issues by exposing
current performance to public scrutiny. Although the statistical issues associated with design and
analysis are similar in many respects between these two systems, in this review I do not consider
intelligence systems in any detail, but instead concentrate on a discussion of public rankings. I
deal largely with rankings in the area of education, especially school education.

This review addresses the issues associated with the design of ranking systems and with the
modeling and interpretation of the results of published rankings. Ideally, the evaluations of the
effects of such systems would be discussed, but such evaluations, however desirable, are rare and
typically not envisaged when systems are designed. Where attempted, however, these evaluations
are noted. Section 2 sets out some basic concepts, and Section 3 addresses different application
areas and technicalities. Some examples are then provided, and I conclude with recommendations
and areas for further work.

2. CONSTRUCTING RANKINGS

To illustrate the process of ranking construction, consider the case of school education where
data are available from individual students attending each school. These data may be generated
from, for example, responses to a questionnaire seeking views about satisfaction with teaching
or the results of test or examination scores. Typically, data are chosen to represent a particular
time point or period, such as the age at which external tests for admission to higher education
are taken. At its simplest, a ranking will be formed by calculating the mean value across students
and then producing a ranked list of these means. There may be several rankings, for example, for
different curriculum subjects; occasionally, rankings may also be averaged into a single index using
weights, as is done for rankings of universities (Dill & Soo 2005). In such cases, rankings are based
on aggregate measures made at the institutional level. For universities, these would include such
things as reputation among peers and measures of total research output. I discuss issues associated
with these measures below. Before doing so, I deal with cases where linked information is available
on individuals within institutions as is often the case with schools.

Aggregate rankings have been subject to criticism on two broad counts. First, they fail to
contextualize the results by taking into account factors over which institutions have little control
but which nevertheless have a strong association with the results. A particularly important factor is
a selective intake: For example, hospital units may have different case mixes; some have higher risk
patients than do others. Another example includes schools that recruit high-achieving students
who are expected to have higher test and exam scores irrespective of the quality of the schooling
received. In such cases, the ostensible purpose of the ranking, namely to compare schooling quality,
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will be undermined. A number of authors have discussed this issue and shown how such contextual
factors can be incorporated as covariates in a model-based, value-added approach (Bird et al. 2005,
Goldstein & Spiegelhalter 1996, Lockwood et al. 2007). The following model captures the essence
of such approaches and is elaborated as appropriate.

The basic data structure is that of a two-level hierarchy with students nested within schools
(or patients nested within hospitals, etc.). The standard approach to describing such data is via a
multilevel or random effects model as follows (Goldstein 2011):

yi j = β0 + β1xi j + u j + ei j ,

ei j ∼ N (0, σ 2
e ), u j ∼ N (0, σ 2

u ); 1.

for simplicity, mutually independent normal random effects are assumed. For example, an exam-
ination score at the end of secondary (high) school for student i in school j is yi j , and xi j is a prior
achievement test score designed to capture any selection by prior achievement. In the next section,
I discuss this model further, but first, I describe how, with appropriate data, we can derive rankings.

Ignoring the possibility of any missing data, Model 1 is fitted to all those students in the sample,
which may be the total number of pupils in each school-year group or cohort. Under the normality
assumption, we can obtain parameter as well as posterior estimates for each of the random effects
u j . If maximum likelihood is used, these effects are the usual shrunken residuals, and the equivalent
posterior estimates can be obtained from a straightforward Bayesian analysis, for example, using
a Gibbs sampler with diffuse priors (Goldstein 2011, ch. 2) (see also Figure 1).
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Figure 1
Ranking of a sample of 266 schools in England with a median cohort size of 190 (Leckie & Goldstein 2009).
The response is a normalized examination score taken at the end of compulsory secondary schooling in
grade 11 and adjusted using a test score taken prior to entry to secondary school as well as ethnic group and
various measures of social and linguistic disadvantage. The vertical bars are conventional 95% normal
confidence intervals, and approximately half the schools have an interval that includes the population mean.
Comparison of two chosen schools in terms of whether their intervals overlap yields an appropriate interval
length of approximately 0.7 times that of the intervals displayed (Goldstein & Healy 1995). Similar results
can also be displayed directly in terms of rankings, rather than residual estimates, with corresponding
intervals (Goldstein & Spiegelhalter 1996).
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Such displays as shown in Figure 1 can provide basic information about school effects that
may be useful to inspectors seeking more detailed follow-up of individual institutions. They have
also been advocated for use by students’ parents as an aid in choosing schools. However, such use
is problematic because what is really required is a prediction of school effects several years ahead,
although this adds extra uncertainty that makes any statistical separation very difficult (Leckie &
Goldstein 2009) and is further explored below. Alternative formulations have been proposed on the
basis of a measurement of the effects of individual teachers during a period of schooling (see below).

The use of such adjusted or value-added models is intuitively appealing as an improvement on
the use of unadjusted means and has become reasonably well established in the area of schooling. In
other areas, however, this approach is more problematic. For university rankings (see, for example,
Hazelkorn 2011), it is typically difficult to find sensible adjustment variables, and measuring and
linking these together for individuals within universities is also difficult. Furthermore, the purpose
of such rankings is often unclear. If the intention is to provide choice for undergraduate applicants,
then a measure of degree outcome or satisfaction would be appropriate, but such measures tend
to be incomparable both across universities and across disciplines. If the intention is to provide
overall measures of research performance, additional difficulties arise with defining these measures
in relation to factors such as citation indices, about which there seems to be little consensus
(Spiegelhalter & Goldstein 2009). Another difficulty lies with the typical requirement of combining
individual indicators into a single measure for presentational purposes, which involves decisions
about which weights to use in such a process (for a more detailed discussion, see Foley & Goldstein
2012; also see below).

3. THE IMPLEMENTATION OF ADJUSTED-RANKING MODELS

Within model implementation, the primary area of concern is with the nature of the criterion
being used to judge institutional performance. This issue is discussed in relation to university
rankings as well as schooling. For the latter, despite being common, the use of test scores raises
objections as schools may either overconcentrate on improving test scores at the expense of broader
educational measures or promote some students at the expense of others to improve their league
table position. Likewise, when measuring aspects of policing, the choice of outcome is debatable.
Although such debates are important, they are additional to the technical concerns of this review
and are not pursued here (but see Foley & Goldstein 2012).

When adjustments are incorporated into ranking models, they are typically based on measures
taken at an earlier time or set of times. They are distinct from scaling adjustments that may
be used, for example, to measure university research output per academic, where a measure of
total output is scaled by an estimate of the number contributing to it. Such an estimate may
not be straightforward to compute, but this is a measurement rather than a modeling problem.
Nevertheless, a university dropout rate may need to be adjusted for intake measures to avoid, for
example, any manipulation of the results owing to the exclusion of students from underprivileged
backgrounds who are more likely to drop out for financial reasons. In the following sections, I
consider several relevant issues, including the adequacy of prior measures used, student mobility,
differential school effects, missing data, endogeneity, and other aspects of model misspecification.

3.1. Prior Information

Most league table rankings, whether of schools or other institutions, utilize a single measure of
prior performance to adjust for selection factors, whether purposeful or haphazard. However, in
the case of secondary schooling, information about prior school attended and achievement during

388 Goldstein

A
nn

ua
l R

ev
ie

w
 o

f 
St

at
is

tic
s 

an
d 

It
s 

A
pp

lic
at

io
n 

20
14

.1
:3

85
-3

99
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 P

ro
f 

H
ar

ve
y 

G
ol

ds
te

in
 o

n 
01

/1
0/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



ST01CH17-Goldstein ARI 29 November 2013 16:4

that period of school will generally change inferences (Goldstein & Sammons 1997). Nevertheless,
other authors (Goldstein et al. 2007) suggest that rankings in primary (elementary) schools are
relatively unaffected when a sequence of prior achievement measures, as opposed to just one
measure, is used.

3.2. Moving Across Institutions

Most rankings are published using students’ school membership at the time at which the outcome
measure is taken. In practice, however, many students will change schools throughout their period
of schooling so that the contributions of all schools attended should be taken into account. When
this is done (Goldstein et al. 2007), the variation attributable to schools generally increases but,
again, seems to have little effect on the rankings.

To take account of such mobility, we may use a multiple-membership model that extends
Model 1. For simplicity, the following model includes just two schools between which students
can move:

yi{ j1 j2} = β0 + β1xi{ j1 j2} + w1i j1 u j1 + w1i j2 u j2 + ei{ j1 j2}

w1i j1 + wi j2 = 1 2.

ei j ∼ N (0, σ 2
e ), u j ∼ N (0, σ 2

u ).

Model 2 states that the random effects contribution to the response is a weighted combination
of the random effects associated with the schools attended. For several schools, contributions
come from one or more with associated weights. The weights have to be chosen, for example,
such that they are proportional to the time spent at each institution, and in some cases, these
weights can be estimated (see discussion below). In practice, sensitivity analyses are carried out
with different weighting functions, from which the one that produces the best fit may be chosen,
for example, as judged by the DIC (deviation information criterion) statistic in a Bayesian analysis
(Spiegelhalter et al. 2002). One consequence of Model 2 is that the total level-2 variance has
the form σ 2

u
∑

h w2
ih ≤ σ 2

u , so that ignoring mobility will lead to an underestimate of the level-2
variance. Further details on fitting such models are given in Goldstein (2011, ch. 13).

3.3. Moving Within Institutions

In the case of schools, especially secondary or high schools, longitudinal data may be available for
students at the end of each year of schooling and may be attached to different teachers who will
provide separate effects on outcome measures. Multiple-membership models such as Model 2 can
be adapted for this situation (Lockwood et al. 2007). Such a model can be written as

yti j = (X β)ti j + utj +
∑
t∗<t

αtt∗ut∗ + eti j , t = 1, . . . p, 3.

where utj is the contribution from the current teacher at the end of year t, and ut∗ represents the
contributions from all of the different teachers prior to year t. The covariates (X) can include prior
attainment as well as socioeconomic indicators and school-level variables. Model 3 is known as
the general persistence model (αtt∗ < 1): A special case is the “complete persistence” model where
αtt∗ = 1, indicating that each previous teacher has the same effect on a future outcome irrespective
of how far ahead year t may be. The level-1 (occasion) residuals for a student are also correlated
across occasions. Enough movement among groups of students is also assumed from year to year
to enable identification of the model parameters.
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To illustrate this model in a simple case with just three occasions, we have

y1i j = β10 + u1 j + e1i j ,

y2i j = β20 + u2 j + α21u1 j + e2i j ,

y3i j = β30 + u3 j + α32u2 j + α31u1 j + e3i j .

This basic model can be extended in a number of ways.

� If we have several teachers for each student in any given year, then we can introduce standard
multiple-membership weights for each student, thus adding to 1.0 as in Model 2.

� The pupil-level residual covariance matrix can be structured as a function of time to reduce
the number of parameters, for example, eti j = e0i + e1i t + δti j .

� Extra levels, such as those of school or cross classifications, can be introduced.
� Generalized linear models can be used.
� We can accommodate the same teacher in more than one year by modifying the indicator

matrix for the teacher random effects.
� A multivariate extension is possible whereby we can model outcomes in more than one

curriculum subject.

However, in any given data set, we may be missing the teacher identification for some students
for some years. In this case, one approach is to assume that all those students with a missing teacher
identification in any given year belong to a new pseudoteacher and to then sample accordingly.
An alternative is to assume that the true teacher is one of those for whom data are available and
use weights similar to multiple-membership weights corresponding to the observed distribution
of students among these teachers.

These models are used in many US state education systems to evaluate teachers. An introduction
to a series of papers discussing their strengths and weaknesses can be found in Amrein-Beardsley
et al. (2013). A key issue is that the confidence intervals associated with any one teacher tend to
be large and sensitive to the assumptions of the model (Lockwood et al. 2007).

3.4. Differential Effectiveness

So far, I have assumed a simple (random) effect for an institution. There is now a great deal of
evidence, at least for schooling, that the institutional effect will also depend on a characteristic of
the individual, for example, whether girl or boy or whether an initial low or high achiever (Nuttall
et al. 1989). Such characteristics can be incorporated using a random coefficient model such as the
following in which we allow different random effects for boys and girls, parameterized in terms of
an overall school effect as well as for the boy-girl difference:

yi j = β0 + β1x1i j + β2x2i j + u0 j + u1 j x2i j + ei j , 4.

or alternatively

yi j = β0 j + β1x1i j + β2x2i j + u0 j + u2 j x2i j + ei j ,

β0 j = β0 + u0 j , β2 j = β2 + u2 j ,(
u0

u2

)
∼ N

(
0
0
,

σ 2
u0

σu02 σ 2
u2

)
, ei j ∼ N (0, σ 2

e ).

When such a model is introduced, comparisons may alter considerably. Accordingly, Yang et al.
(1999) showed that rankings of primary schools can be very different for initially high and low
achievers. They also demonstrated that misspecifying the model by ignoring a random coefficient
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for initial test scores resulted in a spuriously high correlation between the adjusted and unadjusted
school effects.

3.5. Endogeneity and Model Misspecification

Some forms of model misspecification can lead to endogeneity, whereby one or more covariates
in the model are correlated with the random effects, in particular with the level-2 residuals. For
example, in Model 4, if the term u1 j x2i j is omitted, then this component of level-2 variation will be
absorbed into u0 j . As a result, the random effects will, in part, depend on x2i j , thereby inducing a
relationship with the covariate in the fixed-effects part of the model. Such an omission will usually
lead to misleading inferences for institutional rankings. In general, reporting and basing decisions
on estimates, when available, from the full model may be preferable.

In some cases, however, we may wish to estimate the parameters of the simpler model given by
Model 1, thus effectively marginalizing Model 4 over the random coefficient effects. By default,
such marginalization is typically carried out with respect to the observed sample, assumed to
be representative of a suitably defined population. Using maximum likelihood, which assumes
Model 1 is correct, researchers can easily show how a standard estimation will provide biased
estimates for the required marginal model.

The issue, however, is not straightforward because we may choose to marginalize with respect
to a different population structure—for example, by standardizing the within-school distribution
of gender to adjust for different proportions of male and female students that are considered
irrelevant when making comparisons. In such a case, we may choose to marginalize with respect to
having equal numbers within each school in an effort to apply equal weights to the male and female
effects for each school. In another example, the coefficient of prior achievement may be varied
randomly across schools, and marginal estimates may be desired for a standard distribution of prior
achievement so that schools could be compared directly after adjusting for prior achievement. To
carry out such marginalizations, for example, using bootstrap methods, we first need to fit the
fully specified model. Thus, alternative methods such as GEE (generalized estimating equation)
(see Hubbard et al. 2010) that fit marginal methods directly, effectively using the observed sample
structure, are generally not appropriate. Ultimately, endogeneity is part of a general concern
associated with model misspecification, rather than a narrower concern associated with biased
estimates for a particular marginal model.

3.6. Measurement Error

Measurement or category misclassification errors are usually present in measures used as both
responses and predictors in models such as Model 1 and more complex models. These errors
are rarely taken into account, although they will typically result in biased parameter estimates if
ignored. A discussion of the effect of measurement errors is given by Ferrão & Goldstein (2012),
who showed that the effects of such errors in one data set can be large if not properly adjusted for.

3.7. Missing Data

A standard procedure for handling missing data is via multiple imputation (Rubin 1987), wherein
missingness is assumed to be random, at least conditionally on the basis of other measured variables.
In essence, the use of multiple imputation relies on the ability of researchers to sample (impute)
from a posterior distribution estimated for the value under consideration. Missing-data values
arise essentially in two ways: First is the usual way when the values of a measurement, such as a
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test score, are unobserved. Second is when an identification, for example, of a teacher or school,
is unknown. The latter example is discussed above for the case of missing teacher identification
wherein an imputed value for the (unknown) teacher may be obtained according to assumptions
regarding the reason for the missing identification (see Section 3.3). Although Hazelkorn (2011,
ch. 13) discussed estimation for such models, this area has been little explored and further empirical
data would be useful.

3.8. Multivariate Models

The extension to multiple outcomes of interest is relatively straightforward, and apart from com-
putational considerations, few new issues occur. Jointly modeling several outcomes at multiple
levels has the advantage that the relationships between different types of institutional effects can
be studied; such study may be important for certain kinds of judgments. Computationally, a new
issue arises when the outcomes are of different types, such as a mixture of binary, normal, and
ordered responses. In such cases, a latent normal model can be fitted for which ordered and binary
variables are treated as deriving from underlying normal variables, extending the simple probit
analysis model. This model can also be extended to unordered categorical variables and count
data (Hazelkorn 2011, ch. 7). These models, therefore, allow the joint modeling of data such as
exam passes, ordered exam grades, and continuously distributed test scores alongside, for example,
attitude ratings (for an example of a simple joint model exploring the results of mathematics and
English examinations, see Goldstein et al. 1993).

3.9. Modeling Where Outcomes Are Measured at Higher Levels

So far, I have described cases where the outcome of interest is measured at the lowest level of
the data hierarchy, such as students in schools. Now consider, for example, the case of policing,
for which the interest lies in comparing police forces or policing areas in terms of crime rates of
different types. Although the rate for an area is essentially an aggregation of individually reported
incidents, often few, if any, measurements at the level of the individual incident are relevant for
adjustment purposes. Thus, if the interest is in how efficiently a police force is tackling burglary,
taking account of the vulnerability of the properties where burglaries were reported may be
relevant because this measurement may differ among areas. Yet, such information may often be
available only in aggregate form at the area level. We may still use aggregate-level variables for
adjustment, but in general, these will be less efficient. In addition, if the number of areas is small,
care will be needed to avoid overfitting as a result of a large number of correlated covariates.

In other cases, data may be defined only at the institutional level. For example, rankings of
reputation for universities are typically based on responses from individuals asked to rate institu-
tions (Baty 2010). In this example, we assume a number of responses to be aggregated for each
institution. Unlike the case of school examination results, however, we do not have independent
responses across institutions because each rater provides a measure for each university, for exam-
ple, on a simple rating scale. Formally, this can be modeled as a cross classification of raters by
institutions, and a simple model, assuming normality, can be written as

y{ j1 j2} = (X β){ j1 j2} + u j1 + u j2 + e{ j1 j2}, 5.

e{ j1 j2} ∼ N (0, σ 2
e ), u j1 ∼ N (0, σ 2

u1), u j2 ∼ N (0, σ 2
u2).

In this model, adjustment variables (X) may be obtained from the raters or measured at the
institutional level. If uncertainty intervals are required for such rankings, then these intervals need
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to account for the data structure as derived from Model 5 and will typically be larger than naive
estimates that treat the responses as independent.

Adjusting for rater characteristics will be especially important because such rankings are often
derived using convenience samples such as those derived from databases of journal authors. Thus,
for example, larger institutions will tend to produce more authors and therefore have greater
representation in the samples used. In this case, careful consideration needs to be given to the
possibility of weighting respondents to obtain what may be considered a representative sample,
the determination of which remains a matter of debate. Additionally, the samples obtained in such
surveys often have response rates as low as approximately 10%, which raises additional concerns
about bias (P. Baty, personal communication).

4. EXAMPLES

I now explore two examples that applied some of the above models and show how the results
are relevant within an educational accountability framework. The first example is a data set on a
cohort of 5,748 students in 66 secondary (high) schools in inner London. The students entered
their secondary schools in 7th grade (ages 11 and 12 years) and took school-leaving examinations in
11th grade (for further details, see Goldstein et al. 1993). Cases with any missing data (35%) were
excluded from this analysis, and the authors report that this did not suggest any serious biases
among those cases with complete data. Ideally, a more efficient analysis would use multilevel
multiple imputation procedures (Goldstein et al. 2009), but for simplicity of illustration, I present
only the complete case analysis.

Because secondary schools differ in the mean academic achievements of incoming students, I
employ a value-added model for which the principal variable used to adjust for intake achievement
is the reading test score provided by the London Reading Test (LRT) taken during the year
before entry. The basic aim of the analysis was to explore the extent to which schools can be held
accountable for the examination results of their students after adjusting for selection factors (prior
achievement scores). The analysis also looked at differences between curriculum subjects. The
response (y) and the LRT score (x1) were both transformed to have standard normal distributions.
Other predictors were student gender (x2 with boys as the reference category), school gender
[girls school (x3), boys school (x4), and mixed-gender school (the reference category)], and school
denomination [Church of England (CE, x5), Roman Catholic (RC, x6), and state maintained (the
reference category)]. In addition, the analysis included the results of a verbal reasoning test that is
taken prior to entry where students are grouped into three categories representing approximately
25%, 50%, and 25% of the distribution: The three categories are VR1 (x7), VR2 (x8), and VR3
as the reference category.

The final fitted model with the normalized examination score as the response is as follows:

yi j = β0 +β1x1i j +β
(2)
1 x2

1i j +β2x2i j +
4∑

k=3

βkxki j +
6∑

k=5

βkxki j +
8∑

k=7

βkxki j +u0 j +u1 j x1i j +u2 j x5i j +ei j ,

⎛
⎜⎝u0 j

u1 j

u2 j

⎞
⎟⎠ ∼ N (0,�u), ei j ∼ N (0, σ 2

0 + σ01x1i j ). 6.

Thus, at the school level we have an overall (intercept) effect that varies across schools. This
effect includes a linear component of the relationship with LRT that varies across schools and a
difference between the VR1 and combined VR2 + VR3 categories that also varies across schools,
and these variables are assumed to have a three-variate joint normal distribution. At the pupil
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Table 1 Analysis of total examination score

Fixed coefficients Estimate (standard error)
β0 −0.53
β1 0.37 (0.02)
β

(2)
1 0.035 (0.008)

β2 0.13 (0.03)
β3 0.07 (0.06)
β4 0.09 (0.07)
β5 −0.04 (0.13)
β6 0.20 (0.06)
β7 0.70 (0.04)
β8 0.31 (0.03)
Between-school variation (�u) (correlation)

u0 u1 u2

u0 0.055
u1 0.012 (0.75) 0.0046
u2 0.013 (0.40) 0.009 (0.97) 0.019
Between-student variation
σ 2

0 0.55
σ01 0.046

level, we assume a normally distributed residual with a variance that is a linear function of the
LRT score. Table 1 gives maximum likelihood estimates for this model (for details, see Goldstein
2011, ch. 2).

As expected for the fixed coefficients, we see large and statistically significant (at the 5% level)
effects for the LRT score with a quadratic relationship indicated; for the VRT category; for gender,
with girls on average scoring higher than boys; and for attendance at a Roman Catholic school. At
level 2, statistically significant variation is associated with the LRT score (χ2

3 = 24.7, P < 0.001)
and the VR1 category (χ2

3 = 11.0, P = 0.008): In each case, the null hypothesis is that the variance
term and two associated covariances are zero. The chi-bar test statistic is used (Goldstein 2011,
ch. 2) because the variance term is constrained to be nonnegative. At level 1, there is a significant
positive relationship of the variance with the LRT score (χ2

1 = 66.0, p < 0.001). Based on these
model estimates, Figure 2 (corresponding to Figure 1 above) shows the residual or school effects
for the reference categories and the mean value (0) of the LRT.

We again see the marked uncertainty associated with comparisons among schools.
Because the school effect is also a function of the LRT score and the VR band, we can estimate

the effect at different values. Thus, we can compare two extreme groups: for example, the low-
achievers at intake with an LRT score of −2 (approximately the lower 2.5 percentile) and in the
VR2 or VR3 category and the high-achievers at intake with an LRT score of 2 (approximately the
upper 97.5 percentile) and in the VR1 category. Figure 3 shows a scatterplot of the values from
these two groups estimated from the model as (u0 j − 2u1 j ) and (u0 j + 2u1 j + u2 j ), respectively.
Despite a moderate correlation between these values, the schools appear to vary in terms of how
different types of students perform.

An additional analysis was undertaken by Goldstein et al. (1993) in which separate examination
scores for English and mathematics were analyzed jointly in a bivariate two-level model. This
allows us to estimate a school effect for both mathematics and English, and Figure 4 shows the
relationship between these estimated residuals. The estimated correlation between the effects of
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Figure 2
Residual estimates with 95% confidence intervals for examination score data.

the mathematics and English scores is only approximately 0.1 (see Figure 4). Together with the
differential effectiveness as a function of intake achievement and the large amounts of uncertainty,
any use of such data in the form of overall (unidimensional) league tables is highly problematic.
Nevertheless, for screening purposes to identify schools that may be performing unexpectedly
poorly or well, the use of such plots may be helpful (for a more detailed discussion, see Foley &
Goldstein 2012, Yang et al. 1999).

The second example further examines school comparisons within the specific context of school
choice: It is a national data set (the National Pupil Database) that contains longitudinal perfor-
mance data on all students within maintained (state-funded) schools in England (for details, see
Leckie & Goldstein 2009, 2011). The students were allocated a unique identification when they
entered the system, and events such as school changes as well as test and exam scores, limited
demographic information, and data on the schools the students had attended were recorded. This
database is used both for research purposes and to produce annual league tables of schools based
on test and examination scores, both unadjusted and adjusted. Within an accountability context,
these tables may be used to assist parents in choosing schools, especially secondary schools, for
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Figure 3
School residual estimates for low versus high achievement at intake.
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Estimated residuals for English and mathematics examination scores.

their children because the rankings process favors the schools that are “good” in terms of how
they promote student achievements. In addition, parents who decide to base their choice of sec-
ondary school, at least in part, on such a school ranking will generally have available, at best,
results that apply to the previous year’s cohort. Their interest, however, is in the school’s future
performance in five or six years’ time when their child will take the equivalent examination. The
problem thus becomes how to predict a future set of school effects using a current set of school
effects. Leckie & Goldstein (2009) utilized General Certificate of Secondary Education (GCSE)
(school-leaving) examination data for two cohorts over a six-year period (2005 and 2010) for which
prior achievement data on both cohorts are available.

The relevant model for the two cohorts of students can be written as

y (1)
i j = β

(1)
0 + β

(1)
1 x(1)

i j + u(1)
j + e (1)

i j ,

y (2)
i j = β

(2)
0 + β

(2)
1 x(2)

i j + u(2)
j + e (2)

i j ,
7.

⎡
⎣u(1)

j

u(2)
j

⎤
⎦ ∼ N (0, �u), �u =

⎡
⎣ σ 2

u1

σu12 σ 2
u2

⎤
⎦ ,

⎡
⎣e (1)

i j

e (2)
i j

⎤
⎦ ∼ N (0,�e ), �e =

[
σ 2

e1

0 σ 2
e2

]
,

where superscripts 1 and 2 denote cohort 1 and cohort 2. Hence, y (1)
i j is the GCSE score for the

ith pupil in the jth school in cohort 1 (2005), and y (2)
i j is the GCSE score for the ith pupil in the jth

school in cohort 2 (2010). In general, the level-2 school residuals will be correlated. The level-1
residuals for the two responses are modeled as independent because a pupil can belong to only
one cohort. Hence, this is a bivariate model where the bivariate structure is at level 2, rather than
in the traditional multivariate multilevel model where it is at both levels.

From this model, having obtained the parameter estimates, we can obtain estimates of the
school effects predicted for cohort 2 as functions of the terms in �u, �e , and y (1)

i j . For school j,

ρu12n(1)
j σ 2

u

(n(1)
j σ 2

u + σ 2
e1)

ỹ (1)
j ,
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Figure 5
Predicted effects for 19 Bristol secondary schools with 95% confidence intervals. Adapted from Leckie &
Goldstein (2011), with permission. Abbreviation: CVA, contextual value added.

where ỹ (1)
j is the mean of the raw residuals for the jth school in cohort 1, with a corresponding

term for the estimated standard error. From this we can construct a caterpillar plot that ranks
the predicted school effects together with interval estimates (illustrated in Figure 5). Based on
the results for 19 secondary schools in Bristol with 95% confidence intervals, the effects shown in
Figure 5 are striking with all intervals overlapping, thus providing no reliable separation.

Leckie & Goldstein (2011) presented school comparisons in terms of probabilities: For any
given set of schools forming a choice set, any particular school will have the largest or smallest
predicted effect. Figure 6 illustrates this result for three chosen schools, none of which has a
better than even chance of being ranked first. Such displays can convey the extensive uncertainty
in ways that are clearly intelligible to nontechnical audiences.
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Figure 6
Probability that schools G, N, and O may rank first, second, or third. Adapted from Leckie & Goldstein (2011), with permission.
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5. CONCLUSIONS

As pointed out in Section 1, I have concentrated on the statistical issues, providing illustrative
examples, and I have not discussed side effects including “perverse incentives” for institutions to
behave in ways that may not serve the best interests of those whom they are meant to serve, be
they students, patients, or the general public. All of these issues, however, are both important and
researchable, and the producers of league tables need to do more to encourage such research (for
a fuller discussion, see Foley & Goldstein 2012). The evidence, where suitable data are available,
indicates that rankings of institutions have large measures of uncertainty attached to them, even
when appropriate adjustments for selection effects have been made. Perhaps the most effective
uses of institutional rankings are as screening instruments that can suggest where problems may
be occurring, rather than diagnoses of what the problems are.

I am not suggesting that league tables should never be published. Quantitative data that bear
on performance are a useful tool for addressing the clear need for accountability from public (and
other) institutions. When such data are reported publicly, however, their quality and reliability
need to be displayed so that users of the data are not misled about what can be inferred. To
withhold information about the uncertainty of rankings is to deprive users of information to
which they are entitled.

Although useful work may need to be done to develop the models described here further, a
more pressing need is to find ways to enhance data quality and, especially, to prevent unrealis-
tic inferences from being drawn from any oversimple presentation of the results. For example,
it is perfectly possible to develop software for sites that host institutional databases to provide
information similar to that shown in Figure 6. This could be done in real time and could dis-
play bespoke comparisons among institutions. By displaying the real uncertainty surrounding
institutional comparisons, such data would help users make properly informed judgments.
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