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Introduction

Biostatistical data often have a hierarchical structure. Typically these

structures are naturally occurring ones: animal populations are characterised

by individuals nested within parents, themselves often nested within groups

or herds which may also be nested within spatial entities. In other cases the

structure may result from research designs, as in multi-centre clinical trials

where patients are nested within clinics. In yet other cases, the data may not

obviously seem to be nested, yet viewing it as such may yield new insights or

more efficient analysis techniques. Examples are repeated measures designs



where measurements are ‘nested’ within individual subjects and multivariate

response data where measurements are ’nested’ within individuals.

In addition to nesting relationships among data units we may also have cross-

classifications. For example, an individual cow may be nested within a herd

of cattle, but also be the offspring of parent stock where any parent may

contribute to several herds: individual cows are thus cross classified by

parents as well as nested within their herds. A further complexity is also

often present whereby individual units at one level of a data hierarchy may be

nested within more than one higher level unit. An example is spatial data,

where each individual person can be classified by the geographical locality

where they live, but will also be influenced in terms, say, of their health or

behaviour, by surrounding localities. In this case we regard them as

belonging to a primary unit plus a number of secondary units.

In the following sections I shall develop a set of models for describing such

data, increasing in complexity as they move from simple hierarchies with

continuously distributed responses, to cross classifications and multivariate

data and to discrete responses. Various extensions and special cases will also

be considered. The emphasis is on model specification rather than estimation,

although there is a brief section on the latter.



The basic multilevel model

For simplicity consider a simple data structure where an outcome is

measured on patients in a number of centres, together with one or more

treatments or covariates. We wish to model a relationship between the

outcome and the explanatory variables, taking into account the possibility

that this relationship may vary across centres. We shall refer to the centres as

higher level units and patients as lower level units. In the present case we just

have two levels with centres as level 2 units and patients as level 1 units. A

simple such model can be written as follows
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where yij  is the response and xij  the value of  a single explanatory variable

for the i-th patient in the j-th centre. The slope coefficient β1  is for the

present assumed to be the same at all the centres while the random variable

uoj  represents the departure of the j-th clinic’s intercept from the overall

population intercept term β 0 . The first two terms on the right hand side of

(1) constitute the fixed part of the model and the last two terms describe the

random variation. We shall develop the model initially assuming that the

random variables have a (multivariate) Normal distribution, and discuss the



non-Normal case later. This model could be viewed as a standard analysis of

covariance if we treated each uoj  as a fixed parameter to be estimated. Such

a model however will often be inappropriate, for the following reasons.

First, we may have a very large number of centres, leading to a very large

number of separate parameters to estimate. Secondly, some of the clinics

may have very few patients, so that their individual departures will be poorly

estimated. Most importantly, we may be interested in treating the centres as a

sample from a population of centres and wish to make general inferences

about the likely behaviour of other centres in this population rather than, or

in addition to, providing separate estimates for each centre in the sample. For

all these reasons it will usually be more appropriate to regard u j0  as random

and to write
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We can also elaborate (1) by allowing the coefficient β1  to vary across

centres and rewrite the model in the more compact form
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This model is often referred to as a ‘random coefficient model’ by virtue of

the fact that the coefficients β 0ij  and β1 j  in the first equation of (2) are



random quantities. It is possible, however, to have random coefficient models

which are only single level (see below), so that we shall drop this term in

order to emphasise the hierarchical data structure.

As more explanatory variables are introduced into the model, so we can

choose to make them random at the centre level thereby introducing

covariances as well as variances at level 2, and this will lead to models with

complex covariance structures. One of the aims of multilevel modelling is to

explore such potential structures and also to attempt to explain them in terms

of further variables. Having fitted such a model we can obtain posterior

estimates for the individual ‘residuals’ (u u ej j ij0 1 0, , ) at either level by

estimating their expected values (or other functions of their distributions),

given the data and model estimates. Thus, for example, we can

estimateE u Yj( | , , )0 β θ where
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The multilevel model is here described in non-Bayesian terms. For a full

Bayesian specification of this model we would need to add prior distribution

assumptions for the parameters in (3). The interested reader is referred, for

example, to Gilks et al [3] for details with examples.

In the next section we shall look at a general formulation and then some

important special cases. A fully detailed treatment of the topics is not

possible here and the reader is referred to Longford [9] and Goldstein [4] for



details of methodology with examples and a discussion of computer

software. A World Wide Web site has been set up which contains

information about current developments, references, etc. at

http://www.ioe.ac.uk/multilevel/ , and it is intended that this will be further

developed.

Cross Classifications

Many data structures are not purely hierarchical, but mixtures of hierarchies

and cross classifications. For example, in a school health survey children may

be assessed by raters each school having just one rater. Thus we have a

structure where children are grouped within cells defined by the cross

classification of  raters by schools and we will wish to model the level 2

variation as a function of both the between-rater and between-school

variation. If the design were changed, so that a separate team of raters visited

each school and each child was measured by a single rater, then the cross

classification would be that of raters by children nested within schools. If,

again, there was a single team of raters who visited every school the cross

classification would be of raters by children across the whole sample. In this

case we have no separable hierarchy and we would wish to model the total

response variation as a function of the between-child, between-school and

between-rater variation.

Rasbash and Goldstein [12] discuss various examples of this kind and set out

the appropriate models together with procedures for efficient estimation.



Corresponding to the first and second examples given above we can write

the following models, using a more general notation for the fixed part of the

model, where i  indexes children, j1  indexes schools, and j2  indexes raters.

We write

y X u u ei j j i j j j j i j j( ) ( ) ( )1 2 1 2 1 2 1 2
= + + +β (4)

for the first model with children nested within the level 2 cross classification

and with the following level 2 covariance structure
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The second model is written as

y X u e ei i j i i j j i j i j( ) ( )1 2 1 2 1 2
= + + +β

(6)

In both (4) and (6) we have assumed an ‘additive’ model for the variance

contributions and the adequacy of this can be tested against a model which

includes an interaction term, for example

y X u e e ei i j i i j j i j i j i i j( ) ( ) ( )1 2 1 2 1 2 1 2
= + + + +β (7)

In addition, we can have further random coefficients and levels of nesting or

crossing.



Multiple unit membership

We have assumed so far that each lower level unit, such as a school student

or patient, belongs to just one higher level unit of a particular kind. In many

cases, however, such units may belong to more than one higher level unit.

For example, in a child growth study children may change schools from one

occasion to the next, and a particular case is that of spatial data where an

individual is influenced by the geographical unit where they live and also

(with differing weights) by neighbouring areas.  We can write a simple 2-

level model of this kind as follows where, for simplicity, we suppose the

maximum number of level 2 units to which a level 1 unit may belong is two.
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As before, we can further elaborate this model by allowing random

coefficients, further hierarchical levels and further crossing factors. For

example, in the example of children changing schools we may cross classify

the schools by the neighbourhoods where the children live with the possibility

of multiple neighbourhood membership in the above sense and across  time.



Repeated measures data and multivariate data

An interesting special case of a 2-level structure is that of repeated measures

models such as the following

y x eij j j ij ij= + +β β0 1 (9)

where the response, say, is the weight of an animal related to a linear

function of age (x) with the intercept and slope varying across animals. See

’Random coefficient repeated measures models’ for further information.

Another important special case is that of multivariate data where the

response is a vector. Consider first  a ‘single level’ multivariate linear model,

with two responses, height and weight, measured on a sample of males and

females.  For the j’th variable (j = 0 for height, j = 1 for weight) measured on

the i’th subject we have the model equation
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A part of the data matrix for this structure might be



Intercepts (z) Gender (x)

Individual Response Height Weight

1 (female) y11 1 0 1

1 y12 0 1 1

2 (male) y21 1 0 0

2 y22 0 1 0

3 (female) y31 1 0 1

so that at level 2 we have  the variances and covariance of height and weight

while there is  no variation at level 1 and the fixed part of the model is

defined using the relevant dummy variables associated with each response.

Notice that in the data matrix, the third individual has no weight

measurement. By specifying the multivariate model as in (10) we can

implicitly fit data where some responses are missing: we simply omit the

relevant level one unit corresponding to the missing observation. The model

can be generalised readily in the ways already discussed, by allowing random

coefficients, cross classifications etc. and further levels of nesting. An

example of a multivariate model analysis will be given later.

Modelling variances

In addition to specifying the average response as modelled in the fixed part

of the model, we have discussed modelling the covariance structure at level 2



(and higher levels) by introducing random coefficients. We may also

introduce random coefficients which vary across level 1 units and this

provides a flexible general procedure for  variance modelling. Consider the

following model
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so that the level 1 contribution to the overall variance is the linear function

σ σe e ijx0
2

012+ .

Note that we have constrained  one of the ‘variances’ at level 1 to be zero in

order to give a linear rather than a quadratic variance function. In fact the

parameters σ σ σe e e0
2

1
2

01, ,  are not to be interpreted as separate variances and

covariances, but simply as parameters defining the variance structure. The

variable (x) may be any kind of explanatory variable. For example, if it were

a dummy variable for gender the model would allow a separate level 1

variance for males and females. In this way it is possible to model the

variance, as well as the mean, as functions of explanatory variables.

Examples are given in Goldstein [4, Chapter 3].

In some circumstances, linear models for a variance such as implied by (11)

are inappropriate because they may predict an overall level 1 variance which

is negative for part of the range. In this case we can consider alternative

models where the level 1 variance has the form



var( ) exp( )* *e xij ij= −β β0 1 (12)

which is non-negative and where we require estimates of the β β0 1
* *, .

Goldstein [4, Appendix 5.1] shows how maximum likelihood estimates for

such models can be obtained.

Nonlinear and generalised linear models

We can write a 2-level generalised linear model in the form

π βij ij jf X= ( ) (13)

where π ij  is the expected value of the response for the ij-th level 1 unit and f

is a nonlinear function of the ‘linear predictor’ Xij jβ  where we can have

random coefficients at level 2. We need to specify a distribution for the

observed response yij ij|π : where the response is a proportion this is typically

taken to be binomial and where the response is a count taken to be Poisson.

Equation (13) is a special case of a nonlinear model which is completed by

specifying a suitable link function f(). Thus, for binary response data we

might have a simple model

logit( )π β βij ij jx u= + +0 1 1 0 (14)

y Binij ij~ ( , )π 1



with a corresponding model for counts using a log link function. The random

part of (14) can be elaborated with further random coefficients, cross

classifications etc.

These models can be extended to multinomial (ordered or unordered)

responses [4, Chapter 7].

Survival models

Survival time data will often have a multilevel structure: for example we may

measure illness durations within centres or waiting times in hospitals with

variation across centres and hospitals. We may also have repeated duration

episodes within individuals for example repeated periods of disease and

remission, where different kinds of episode also may exist. See ‘Survival data

models’ for more information. We briefly mention here three common types

of model and their multilevel specification. Further details are given by

Goldstein [4, Chapter 9].

The first type is the extension of the semiparametric Cox model, often

referred to as a frailty model. When defining risk sets for this model we can

choose to order our failure times across the whole data set or within level 2

units, say hospitals. In the former case the marginal relationship between the

hazard and the covariates is not generally proportional, and in the latter case

it is proportional within level 2 units.



At each failure time  l we define a response variate for each member of the

risk set

y
if i is the observed failure

if notijk l( ) =




1

0

      

  

where i indexes the members of the risk set, and  j,k level 1 and level 2 units.

The response is treated as a Poisson variate with mean function for a simple

variance components model given by

π α βjk l l jk kX u( ) exp( )= + + (15)

where there is a ’blocking factor’ α l  for each failure time.

The second type of model is a ‘log duration’ or ‘accelerated failure time’

model which can be written as

l t X eij ij ij j ij= = +ln( ) β (16)

for the failure times tij . This is in the standard form for a 2-level random

coefficient model. A complication is that we may have (level 1) censored

observations, and this implies that we need a careful specification of the level

1 distribution to incorporate censoring information in the estimation. Some

common choices are the Normal, extreme value and log-gamma

distributions.

The third type of model, which leads to a particularly simple form, is the

discrete time proportional hazards model. For a 2-level model we write



log{ log( )}( ) ( )− − = +1 π β αjk l jk k lX
(17)

where, as before, the α ( )l  are constants to be estimated, one for each time

interval. This leads to a model where the response is a binomial variate,

being the number of deaths divided by the number in the risk set at the start

of the interval. As with the first type, any censored observations in an interval

are excluded from the risk set.

Estimation

The basic model assumes multivariate Normality and standard (as well as

restricted) maximum likelihood methods are available using Fisher scoring,

iterative generalised least squares or the EM algorithm. Bayesian estimation

is available using Gibbs sampling (Gilks et al, [3]) which is also available for

generalised linear models with the appropriate distributional assumptions. An

alternative in this case is to use quasi-likelihood estimation together with

appropriate bias correction procedures (Goldstein and Rasbash, [5]), or the

related  GEE procedure (Liang et al, [8]). For inference, interval estimates

are obtained directly from Gibbs sampling and via large sample deviance

statistics or bootstrapping for likelihood estimation.

An example

To illustrate the flexibility of multilevel models we fit a bivariate 2-level

model where one response is Normal and the other is binary.



The data are part of the ‘Health and Lifestyle Survey’, a sample of 9003

individuals within households nested within 396 electoral wards in Britain

and carried out in 1984/85. For present purposes data on smoking habits is

analysed using information about gender and age. Further details are given by

Duncan et al. [2]. The information about smoking behaviour consists of

whether or not the respondent smoked and if they did how many per day.

Sixty five percent did not smoke  and the mean number smoked for those

who did is 15.2 with a standard deviation of 9.3. The distribution of the

number smoked is positively skewed which suggests a Normalising

transformation. The use of this, however, does not substantially alter the

results and the analysis is presented in terms of the actual number smoked.

One aim of the analysis is to ascertain how the probability of smoking and

the number smoked each relate to the explanatory variables. The other is to

estimate the between-area variation and in particular to see whether areas

where the proportion of non smokers is high are also the areas where

smokers tend to smoke greater numbers of cigarettes. We write the model as
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where u uk k1 2,   respectively refer to the ward level contributions to the

discrete and continuous parts of the model. The e ejk jk1 2,   are similarly

defined for the variation among individuals. This model combines a model for



smokers where the response is the number of cigarettes smoked and a model

with a binary response which is whether or not the subject smoked. Thus,

each smoker will have two responses, a ‘1’ for the binary response variable

and the number smoked for the continuous response. Each non-smoker will

have just one response, a ‘0’ indicating that they are a non-smoker.

This model has been fitted with the MLn software package (Rasbash and

Woodhouse, [13]) using specially written macros. The bivariate structure is

modelled as level 1, where there is no random variation, so that the full

model is 3-level.



Bivariate model for smoking/non-smoking and number smoked. Gender is coded 1

for male and 0 for female: age is measured about the mean of  45.9 years. The level

1 variance is constrained to 1.0 which corresponds to binomial variation.

Parameter: Response

Fixed Binary (s.e.) Continuous (s.e.)

Intercept -0.54 15.7

Gender 0.14 (0.05) 2.82 (0.32)

Age -0.03 (0.03) 1.22 (0.21)

(Age)2 0.0011 (0.0007) -0.02 (0.005)

(Age)3 -0.000012 (0.000005) 0.00009 (0.00003)

Random

Level 2:

Intercept variance 0.17 (0.03) 1.45 (0.81)

covariance 0.40 (0.11)

Level 1:

Intercept 1.0 79.2 (2.1)

At the electoral ward level there is a high correlation (0.81) between the

proportion of smokers and the number smoked. Men are more likely to be

smokers and to smoke more and there is an age effect for the number

smoked, with a maximum among 50 year olds, and declining thereafter. The

relationship is weaker for the probability of smoking. A model which allowed

gender to have a random coefficient at level 2 was fitted but a large sample

test for the extra variance and two covariance terms gave a chi squared value

of 6.8 on 3 degrees of freedom (P=0.08). Attempting to fit the age

coefficient as random at level 2 produces a zero estimated variance. We can



also test the assumption of binomial variation for the smoking response by

fitting extra binomial variation in the form of an estimated rather than a

theoretical unit variance at level 1. This is estimated as 0.98 with a standard

error of 0.015, providing little evidence of extra binomial variation.

Further topics

Finally we mention briefly some further topics, most of which are currently

the subject of methodological research.

The standard meta analysis model can be viewed as a special case of a

general multilevel model. For the j-th study in such an analysis we can define

the standardised effect d j  where this is a dimensionless quantity. It may, for

example, be a correlation coefficient, a standardised regression coefficient,

group difference, or weighted group difference. We can write a simple model

as follows

d v u u vj j j j j j v= + + = =δ σ σ,           var( ) , var( )2 2
                   (19)

where in the usual case σ j
2 is assumed known and is treated as an offset in

the random part of the model, but may also in some circumstances be

estimated. The parameter δ  is the population parameter of interest and σv
2 is

the between study (level 2) variance of the standardised effect. We can add

random coefficients and covariates representing study factors to (19) in an



attempt to explain between-study differences which is a further aim of meta

analysis studies.

As in single level models, diagnostics are important. We can estimate

standardised residuals at any level of a data hierarchy and study these

together with looking for influential units. A detailed discussion is given by

Lewis and Langford [7].

Further important issues are those concerned with missing units and missing

data generally, especially where the missingness is informative, and research

is being conducted in this area. Another topic which is actively being

researched is that of multilevel structural equation modelling (McDonald and

Goldstein, [10], Muthen, [11]).

Software

Some of the major software packages, for example SAS and GENSTAT, can

handle many, although not all of the models described in this article. Several

general purpose software packages have been written; HLM (Bryk and

Raudenbush, [1]), VARCL (Longford, [9]) and MLn (Rasbash and

Woodhouse, [13]). A review of these packages has been carried out by Kreft

et al [6].
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