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Abstract

This paper discusses the use of improved approximations for the estimation of
generalised linear multilevel models where the response is a proportion. Simulation
studies by Rodriguez and Goldman (1995) have shown that in extreme situations large
biases can occur, most notably in the case when the response is binary, the number of
level 1 units per level 2 unit is small and the underlying random parameter values are
large. An improved approximation is introduced which largely eliminates the biases in
the situation described by Rodriguez and Goldman.
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Introduction

Rodriguez and Goldman (1995) point out that existing approximate procedures for
estimating parameters of  generalised linear multilevel models, in particular those with
binary responses, can be seriously biased when the underlying random parameter
values are large. These authors use a set of simulated data with the computer programs
VARCL (Longford, 1988) and ML3 (Prosser et al, 1991) to demonstrate the extent of
these biases. This note describes a procedure which shows a considerable improvement
in estimation and is implemented in currently available software. This work was
stimulated by the work of Rodriguez and Goldman and we are most grateful to them
for helpful discussions and for supplying us with one of their simulated data sets. We
now briefly outline the existing procedure and then describe the extensions.

A 2-level binary response model

A simple model which captures the essence of the problem is one where level 1 units,
for example mothers, are nested within level 2 units, for example communities. The
procedure we describe, however, can be used for any number of hierarchical levels and
random coefficients at these levels. For each mother we have a binary response, for
example whether or not they received adequate prenatal care during a pregnancy and a
set of explanatory variables, measured at either the individual or community level. We
write a logit link function

π β βij ij j ij jf X u X u= + = + − + −{ } { exp( [ ])}1 1 (1)

for the probability that the  i-th individual within the j-th community  received adequate
prenatal care. The term Xijβ  is the ij-th row of the component of the linear predictor

which has fixed coefficients, and uj  represents the random departure for the j-th

community with u Nj u~ ( , )0 2σ . The response yij  for an individual is binary and we

make the usual assumption of independent y Binij ij~ ( , )1 π . In a more general model

some of the coefficients β  may also vary across level 2 units and the following

exposition extends straightforwardly to that case, as it does to models with more than
two levels of nesting and with a response which is a proportion.

Our basic approach to estimating the parameters of (1) is first to linearise the
exponential function so that it assumes the form of a standard 2-level Normal model
and then to apply quasilikelihood estimation using the binomial distribution assumption
to define the level 1 variation. Full details can be found in Goldstein (1991) and
Rodriguez and Goldman (1995).

We use a first order Taylor expansion for the fixed part about the current estimates.
For the second order expansion for the random part we expand about zero, and we
show below how this is modified to obtain improved estimates. We obtain at the (t+1)



th iteration of the iterative generalised least squares (IGLS) algorithm (Goldstein,
1986)
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The term on the right hand side of the first line of (2) updates the fixed part of the
model and in the special case of a single level model provides the updating function
and is equivalent to the standard iteratively reweighted least squares algorithm which
leads to maximum likelihood estimates. The first term on the second line of (2) is the
one suggested by Goldstein (1991) and leads to the first order adjustment which is
used in the software packages VARCL and ML3 and by Rodriguez and Goldman
(1995). The second term provides a further adjustment which is the basis of the present
paper. We note that (2) is essentially a linear model so that procedures for linear
multilevel model estimation can be used.

There  are two choices we can make for Ht , namely

a)  

b)  
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Choice a) uses only the fixed part predictor for the Taylor expansion and so is referred
to as marginal quasilikelihood (MQL) by Breslow and Clayton (1993). Choice b) uses
the Taylor expansion about the current estimated residuals, or posterior means, $ ,ut j ,

that is conditioning on these for each level 2 unit and is referred to as penalised
quasilikelihood (PQL) by Breslow and Clayton, or predictive quasilikelihood since it
uses the predicted residual values. Rodriguez and Goldman also consider MQL with a
second order correction and show that this improves the estimates, but only slightly. In
the remainder of this paper we shall use PQL with the second order term in (2). With
the choice b) we expand about $ ,ut j  for the random part of the model so that the second

line of (2) becomes

r u u f H u u f Hu j j t j j t= − ′ + − ′′( $ ) ( ) ( $ ) ( ) /2 2 (3)

and the expansion for the random part is about the current estimate of the level 2
residual rather than zero. For large values of the uj  this will be expected to provide a

better linear approximation. In Appendix 1 we show how the estimation for this model
is carried out.



Marginal, Population Average and Unit Specific models

Zeger et al (1988) make a distinction between two kinds of models for hierarchically
structured data where there is a non-identity link function such as the logit or log.

The model of the present paper is referred to by them as a ‘subject specific’ model
which derives from their consideration of a repeated measures model where ‘subject’ is
level 2. A more general description is ‘unit specific’ (US) which we shall adopt.
Because terms uj  for the higher level units are explicitly included it leads to a specific

covariance structure for the responses. An alternative specification is to write what is
termed a ‘population average’ (PA) or ‘marginal’ (Diggle et al., 1994) model as

π βij ijX= + − −{ exp( [ ])}*1 1 (4)
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where V can assume particular or general structures, for example an equicorrelation
structure. Specifically, it is not an explicit function of the covariance matrix of the
random coefficients, although its form is sometimes derived from considering a
particular US model and integrating over the random coefficients to obtain the
marginal distribution (see for example Bock and Aitkin, 1981).

The two models in general will differ in their covariance structures and hence will
provide differing estimates of the fixed coefficients for the same data. The PA model
provides no specific information about higher level variation and is therefore useful
only for making inferences about average population effects. Thus, (4) allows us
directly to estimate the change in response probability corresponding to a unit change
in xij  whereas in (1) a unit change in  xij  allows us to estimate a change in the

response probability for any given level 2 unit. Since the link function is nonlinear, this
change will depend on uj .

If we wish to use model (1) to estimate the average population change in probability
for a unit change in xij  we can either use an approximation based on the Normality

assumption (Zeger et al., 1988) or simulate from the fitted model. In the latter case we
would generate a sample of  N  uj ’s assuming Normality, and apply the antilogit

transformation to each one for each relevant value of  xij  . These transformed values

on the probability scale are then averaged to give an estimate of the population mean
for the given xij . By increasing the value of N  we can approximate the population

mean as accurately as desired (Goldstein, 1995, Chapter 5).

One of the suggested advantages of PA models is the direct estimation of population
effects on the probability scale. In view of the fact that these effects are readily
estimated from US models this advantage seems negligible. On the other hand, the
disadvantage of not being able to provide estimates for higher level structure variation



seems in general to be a major disadvantage of PA models. If there really is a
hierarchical structure it seems natural to incorporate it into the model directly. In this
sense PA models are not multilevel models at all since there is no explicit hierarchical
structure specified. For this reason we do not consider them further here.

Results

In Table 1 we compare first order MQL estimates with second order PQL estimates
for the 25 of the simulated data sets used by Rodriguez and Goldman (1995). We have
used only the first 25 data sets of Rodriguez and Goldman (1995) since a preliminary
study indicated that these provided sufficient accuracy for estimating the bias. We have
chosen the most extreme case where the first order MQL estimates perform worst,
namely for a three level variance components model with both the level 2 and level 3
variances set to 1. The model from which the data are simulated is

log ( )

~ ( , ), ~ ( , )

it x x x u u

u N u N

ijk ijk jk k jk k

jk u k u

π β β β β

σ σ

= + + + + +0 1 1 2 2 3 3

2
2

3
20 0    

(7)

where i,j,k  respectively index the level 1, 2 and 3 units and the true values are given in
Table 1. Each data set consists of 2449 level 1 units, 1558 level 2 units and 161 level 3
units with a binary (0,1) response. We have used restricted iterative generalised least
squares (Goldstein, 1989) which in the Normal response case is equivalent to REML
and have incorporated the adjustment to the variance estimates of the residuals (see
Appendix 2). We have used a stringent convergence criterion; namely that for all the
parameter estimates the relative change from one iteration to the next is at most 0.001.



Table 1. Mean values of multilevel logit estimates for first 25 simulated data sets used by
Rodriguez and Goldman. Column A fits the MQL first order model and column B the
second order PQL model. Standard errors of the means are in brackets

A B

Parameter (true value) MQL first order PQL second order

Fixed:

β 0  (0.665) 0.48 (0.03) 0.62 (0.03)

β1  (1.0) 0.76 (0.03) 0.96 (0.04)

β 2  (1.0) 0.76 (0.01) 0.96 (0.02)

β 3  (1.0) 0.74 (0.03) 0.96 (0.04)

Random:

σ u2  (1.0) 0.09 (0.03) 0.73 (0.02)

σ u3  (1.0) 0.73 (0.01) 0.93 (0.02)

It is clear that the second order PQL estimates are a considerable improvement,
especially for the level 2 standard deviation and the fixed parameter estimates are
close to their true values.

In Table 2 we have carried out a further 200 simulations for the same underlying true
model, fitting  the first order MQL and PQL models as well as the second order PQL
model.



Table 2. Mean values of multilevel logit estimates for 200 simulated data sets using Mln for
model given by (7). Column A fits the MQL first order estimates, column B the PQL first
order estimates and column C the PQL second order estimates. Standard errors of the
means are in brackets

A B C

Parameter (true value) MQL first order PQL first order PQL second order

Fixed:

β 0  (0.665) 0.512 (0.010) 0.548 (0.011) 0.660 (0.014)

β1  (1.0) 0.738 (0.012) 0.795 (0.013) 0.965 (0.015)

β 2  (1.0) 0.745 (0.006) 0.805 (0.006) 0.968 (0.008)

β 3  (1.0) 0.767 (0.014) 0.837 (0.015) 1.002 (0.019)

Random:

σ u2  (1.0) 0.119 (0.010) 0.457 (0.006) 0.802 (0.011)

σ u3  (1.0) 0.748 (0.004) 0.800 (0.005) 0.968 (0.007)

Percentage of zero
estimates at level 2.

   54%    9%    0%

The results of these 200 simulations confirm that the only serious bias for the second
order PQL estimates is in the level 2 standard deviation, of the order of 20%
underestimation. Apart from the level 2 standard deviation parameter, the greatest
improvement is in moving from the first order PQL to the second order PQL estimates
and both the PQL procedures eliminate most or all of the zero estimates for the level 2
standard deviation. As in the Rodriguez and Goldman study, the standard error
estimates for all the parameters, for all estimation methods, are almost unbiased.

In a separate study Ayis (1995) has carried out a comparison of the second order PQL
procedure with full maximum likelihood estimation, for a 2-level model with level 2
variances up to the value of 1.0 and with between 24 and 96 level 1 units per level 2
unit. Her study confirms that the second order PQL procedure produces almost
unbiased estimates for the fixed parameters and estimates with biases no greater than
4% for the random parameters.

Discussion

We have demonstrated that in the situation considered by Rodriguez and Goldman the
second order PQL procedure considerably improves the model estimates, with the
greatest improvement occurring with the move from first to second order PQL.
Although we have not given details, as Rodriguez and Goldman (1995) demonstrate, a



second order MQL procedure produces only a modest improvement over a first order
MQL procedure.

The example chosen is based upon large underlying random parameter values. In the
more common case where variances in a variance components model do not exceed
about 0.5 the first order PQL model can be expected to perform well, and for smaller
variances the first order MQL model will often be adequate. It is also possible that in
some circumstances the second order procedure could give worse estimates than the
first order one. To establish this would require extensive further simulations which
have not yet been undertaken. Likewise, the dependence of the bias on the number of
level 1 units within each level 2 unit and the ratio of the number of level 1 to level 2
units requires further study. It does seem, however, that the bias for binary data arises
principally from the relatively small number of level 1 units per level 2 unit.

As an analysis strategy, a first order model can be fitted followed by a second order
one and note taken of the changes in the estimates. The program MLn (Rasbash and
Woodhouse, 1995), which is the successor to ML3, has been used for all these
calculations. The procedures described here have been applied to handle other link
functions and distributions, such as the log-Poisson and logistic-multinomial models.

The principal advantage of the estimation procedures described here is that even for
large data sets and numbers of parameters, the computational burden is modest. Full
maximum likelihood involving numerical integration is feasible for simple models but
becomes intractable when the number of random parameters is moderately large. Gibbs
Sampling is another alternative, but is also computationally intensive. The present
procedures can be combined with bootstrapping for a final stage of bias reduction. A
standard application of a parametric bootstrap (Efron and Tibshirani, 1993) will not
yield sarisfactory estimates of the bias, but Kuk (1995) describes an iterated version of
the bootstrap which does give asymptotically unbiased estimates, although again
computationally intensive.

It would be possible to improve further the approximation given by (2) by considering
subsequent terms in the Taylor expansion. For example, if we include a third order
term we  obtain

r u u f H u u f H u u f H

f H f H H H f H H H

u j j t j j t j j t

t t t t t t t

= − ′ + − ′′ + − ′′′
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2 3

1 2

2 6
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which will lead to further offsets when estimating the random parameters. We can
derive a similar expression for the fourth order term which additionally involves an
offset in the fixed part of the model. When these modifications have been implemented,
however, there has been little improvement.

Finally, Breslow and Lin (1995) have proposed an alternative approximating approach,
but restricted to the 2 level variance components case. We have not compared that
approach with the one described in the present paper.
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Appendix 1
Estimation using second order adjustments.

Referring to equation (3) and assuming Normality we have, omitting subscripts
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where (A1.1)

and the current value of Ht  is used. Goldstein (1995, Appendix 2.2) and Waclawiw

and Liang (1994) derive formulae for σ
$u
2  .

If we replace the second term in the second line of (2) by its expected value and use (3)
we have
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For the modified response π * we now have a standard formulation for the second level
component of a 2-level model with modified fixed part explanatory variable design
matrix Xf Ht′( )  and random part explanatory variable ′f Ht( ) . We complete the
specification by writing the full model for the observed binary response yij  as

y e z X f H u f H e z

z

E e e
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(6)

This definition of the level 1 random variation is based upon the binomial assumption.
If we unconstrain var( )eij  then extra-binomial variation models can be fitted.

Estimation for (6), with the explanatory variables updated at each iteration, follows the
standard procedure as for continuous Normal models, in this case providing
quasilikelihood estimates based upon the expected values and the variance function. In
each cycle of the IGLS algorithm, the random parameters, the variances and
covariances, are first updated and these values used to provide new estimates for the
fixed coefficients using generalised least squares. The procedure for updating the
random parameters also uses generalised least squares and at this stage the second
term in the second line of (4) is used as an offset.



Unless the number of level 2 units is large the estimate of σ
$u
2  required in (A.1.1) will

underestimate the true variance since it takes no account of the sampling variance of
the parameters estimates themselves. One, computationally intensive, solution is to
carry out a bootstrap estimation at each iteration. Alternatively, we can obtain better
estimates using a delta method adjustment which adds a first order or second order
correction to the ‘naive’ estimate. This procedure is described in Appendix 2.



Appendix 2
Delta method estimators for the covariance matrix of residuals

We consider the case of a 2-level Normal model

y X Z u Z eu e= + +β
where we require estimates of the level 2 residuals u . Conditional on the observed
data and model parameters these are given by (Goldstein, 1995)

$

~ ~u Z V y y y Xu u
T= = −−Ω 1 ,      β (A.2.1)

We have, for the comparative variances
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where the terms on the right hand side of  (A.2.2) are regarded as functions of the
model parameters and evaluated at the sample estimates. For the j-th level 2 unit the
first term is given by the usual estimate
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which adjusts for the sampling variation of the fixed parameter estimates.

We shall use the first order approximation derived from the Taylor expansion about

E( $)θ θ= , for the covariance matrix of a function, namely
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In some circumstances we may wish to have a better approximation, in which case,
assuming multivariate Normality, we obtain the additional contribution, evaluated at
the sample estimates
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For $u  as a function of the random parameters θ , we have
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Note that the elements of 
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 are just the elements of the design vector for the
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The row vector dk  has q elements, one for each residual at level 2 with d dk= { } an
t ru x  matrix where t is the total number of random parameters. The  adjustment term
in (A.2.2) is therefore

d dT cov( $ )θ



This procedure for the variance of the estimated residuals is essentially equivalent to
that proposed by Kass and Steffey (1989) who give an alternative derivation using the
Laplace method. These authors also consider the extra adjustment term based upon the
next term in the Taylor expansion as above.
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