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Flexible models for the analysis of growth data with an application to height

prediction

Modéles flexibles pour I'analyse de la croissance. Application a la prévision de la taille

H. GOLDSTEIN

Institute of Education, University of London, 20 Bedford way, London WCIH OAL, UK.

Cet article montre comment les développements récents de la modélisation a niveaux multiples
peuvent s’appliquer a l'analyse des données de croissance et en particulier a la prédiction de la taille
adulte. Cette approche est a la fois efficiente et souple sur le plan statistique.

Courbe de croissance. Prédiction de la aille. Modéle a niveau multiple. Données multivariates.

We show how recent developments in the theory of multilevel statistical modelling can be applied
to the analysis of growth data and in particular to the prediction of adult height. This approach

is both statistically efficient and very flexible.

Growth curve. Height prediction. Multilevel model. Multivariate data.

INTRODUCTION

Recent work on the specification and esti-
mation of so called “hierarchical” or “‘multi-
level” statistical models has provided us with
a powerful new tool for the analysis of longi-
tudinal growth data. In these models it is
supposed that measurements are hierarchi-
cally structured. Thus, for example, students
belong to the lowest level of a hierarchy, the
upper levels of which are classrooms and
schools. Likewise, repeated measurements on
subjects are grouped or clustered within sub-
jects, so that the measuring occasion constitu-
tes the lowest level (1) of the hierarchy and
subjects constitute level 2. In the next section
we introduce a specific statistical model which
captures that structure. First, however, we give
a brief review of growth data analysis.

Much of the literature on the analysis of
longitudinal growth data, especially height,
has dealt with the problem of curve fitting and

increasingly mathematically complex forms
have been developed for this. A discussion of
the usefulness of these is given in Goldstein
[1]. On the other hand, relatively little atten-
tion has been paid to modelling features of
growth in relation to other factors such as
social class, or other developmental measures.

In this paper we present a simple yet po-
werful class of models which not only provide
a flexible characterisation of growth curves
but also easily allow the incorporation of
further explanatory factors which might be
related to growth. In addition we show how
the models can be used to provide an efficient
system for the prediction of adult growth
status which has important advantages over
previous methods [2].

POLYNOMIAL GROWTH CURVES

The idea of fitting simple polynomial cur-
ves to repeated measurements on individual
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subjects was systematically proposed by Wis-
hart [3]. A full expositon of a multivariate
statistical model base on polynomial curve
fitting was given by Rao [4].

Briefly, in the simple case we suppose each
sample individual has a set of p measurements
taken at a fixed set of occasions. For each
subject we fit up to a p-1 order polynomial and
then study the variation of the resulting coeffi-
cients accross subjects. Thus we might find
significant variation in just the intercept and
slope coefficients. This would then give us and
description of growth for the sample, based on
an overall average p-1 order polynomial, with
individual suject variation about this in the
intercept and linear coefficients. In other
words, each individual has his own unique
curve in terms of the intercept and linear
components plus a common higher order
component. In addition there is an about-
curve-within-individual ‘“‘residual” variation.
We can also go on to study group differences
or the dependence of the polynomial coeffi-
cients on further factors.

The major problem with these traditional
models has been their rigidity in requiring,
usually, a fixed set of occasions with no
“missing” measurements. The advantage of
the 2-level model formulation is that it avoids
this rigidity entirely and provides statistically
efficient estimates for any number and spacing
of measurements per individual. Where there
is a fixed set of measurement occasions with
no missing data it coincides with the traditio-
nal model. Furthermore, the models discussed
by Patterson (1950) and Tanner (1951) for so
called “mixed” longitudinal data are special
cases of the general 2-level model.

The flexibility of the 2-level model has
important implications for study design,
freeing us from the need to ensure that all
individuals are measured at the same fixed set
of occasions. An introduction to multilevel
models, and the 2-level model in particular, is
given by Goldstein [5]. The next section sets
out the statistical model and its assumptions.

THE 2-LEVEL GROWTH CURVE MODEL

The basic 2-level polynomial growth curve
model can be written as;
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Yy =20 o+ EBy Xy
Bij=B + U +ey

t=0,...,q [l
t =0,....,9

where X is time or age, and the Z_; are a set
of further explanatory variables or covariates
which may vary from occasion to occasion. In
the simplest case there is a single random
variable at level | (occasions), namely e
representing a constant within-subject va-
riance about the growth curve. We assume :

Cov(umelij) = Cov(ezipetik) =
E(u,) = E(etij) =0

The B,;; are the polynomial coefficients and
the u, are the deviations of each subject’s
coefficient from the mean coefficient for the
population. The independence of the level 1
residuals is a strong assumption in some ap-
plications. For example, growth in height has
a seasonal component, so that where two or
more measurements during a year are made
this will be superimposed on the underlying
growth curve. Failure to model this will result
in dependencies among the level | residuals.
Work on such models is currently being pur-
sued but in the present paper we shall attempt
to avoid this problem by using only yearly
measurements on the subjects. Nevertheless,
as we show below, we can still model, in a
simple fashion, the level 1 variance as a
function of age or other variables.

The u, are random variables at level 2
(subjects), giving rise to g+ 1 variances and
q(g+1)/2 covariances. The coefficients a
may be fixed or random. This model is discus-
sed in detail, for example by Strenio ez al. [6]
and Goldstein [1]. In general, the u, for large
values of t will be set to zero, so that random
between-subject variation is described by the
low order polynomial coefficients.

We can extend model [|] into a new class
of very general models in which we have more
than one response measurement and each has
a separate polynomial regression on age with
its own set of covariates, and where the ran-
dom coefficients are correlated across the
measurements at each level. Thus, for exam-
ple, if height and weight are repeatedly measu-
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red in growing children, the intercept, linear
etc. growth curve coefficients of height, at the
subject level, will be correlated among them-
selves and with those for weight. An advan-
tage of such a multivariate model is that, via
these intercorrelations, it can provide efficient
estimates for measurements with large num-
bers of randomly missing measurements. A
simple bivariate example is given in Goldstein

[11.

In the present paper we consider an
example which essentially is a special case of
such a general model. The first variate is
height, modelled as a function of age and
certain covariates, and the second is adult
height modelled simply as a function of the
overall mean. There are two populations of
subjects which have been sampled.

The model is written as follows;
Yy =;0;Zy; + 0504 Z5;; + 05(X B, X))
+(1 _6ij)Y1+(1 _6ij)a3lzli t=0,..5 [2]

where Z,; is a dummy (0,1) variable indicating
whether the subject belongs to group 1 or 2,
and is thus a measurement made at the subject
level. The variable Z,; is the subject’s bone
age, estimated from a wrist radiograph accor-
ding to Tanner ef al. [2]. The variable §;; is 1
if the response is made during the growth
period and 0 if adult height is measured, and
X, is age, measured about a suitable origin.
The coefficients «,;, a,;, o;; are assumed to be
fixed, and the remaining coefficients are as-
sumed to be random as follows;

Boij=l30+uol+eoij t=0al
Biy=B,+u;+ey
B2 =B, +uy
B3ij =3+ uy;

lij=|3[ t=4,....,5
Yi=Y.t+V;

At the subject level the random variables
U, Uy, Uy, Uy, v, have a S-variate distribution
with a zero mean vector and dispersion matrix
Q,. At level 1, e,; and e; have a bivariate
distribution with a zero mean vector and
dispersion matrix Q,. Thus, at any given age
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during the growth period the variance of Yj;
is given by;
XX, + X, X,

where

T 2, 3
X2T=(laxijaxij »Xjj
X, =(1,x;)

The age range of growth considered in the
example is 11 years to 17 years together with
measurements of adult height, in a sample of
boys. During this period it is well known that
there is a maximum of the velocity of growth
at puberty and a minimum velocity approa-
ched as growth slows down at the approach to
adulthood. There is also a pre-pubertal mini-
mum of the velocity but for nearly all boys this
occurs before the age of 11 years (Goldstein,
[1]. It is also well known that the ages of
occurrence of these zero “‘acceleration” points
vary between subjects.

To capture these growth features we require
at least that growth coefficients up to the cubic
vary randomly between subjects, since the age
of zero acceleration is estimated by setting the
second differential of the growth curve with
respect to age, to zero.

In another paper (Goldstein, [7]) the same
model [2] was fitted to a sample of data for
girls, where it was not possible to fit a random
cubic coefficient because of the relatively
small sample size. The problems raised by this
are discussed in that paper.

ESTIMATION AND PREDICTION

The estimation procedure used is that des-
cribed in Goldstein [8] and [5] namely iterative
generalised least squares (IGLS) which is
maximum likelihood when the random varia-
bles have a multivariate gaussian distribution.
Software written at the London Institute of
Education has been used.

Our interest is primarily in predicting y;, the
adult height for individuals not in the sample.

.The mean vy, is obtained from the model

estimates and we can form a posterior estimate
of v, in the usual manner. This is based on the
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estimated covariance matrix of adult height
and the growth coefficients. Given a set of
observed heights during growth for an indivi-
dual, we can write down the covariance matrix
between these measurements and adult height,
and so derive a linear regression prediction of
the latter given the values of the former. As
typically is done when using such procedures
we ignore the sampling error of the random
parameter estimates when calculating the
standard errors of the predictions. In fact the
sample size of 110 cases appears to be large
enough to justify this. Explicit formulae for
the prediction equations and the standard
errors of the predicted values are given in
Goldstein [5].

DATA ANALYSIS

The data for this example are measure-
ments on two samples of boys measured: from

TABLE 1. — Height related 1o age, bone age, and group.
Boys aged 11-17 years — Taille en relation avec I'dge, 'dge
osseux et le groupe. Gargons dgés de 11 a 17 ans.

A

Fixed coefficients Estimate s.e.
Adult Height 174.5 0.77
Growth curve Intpt 152.8 0.68
Bone age 1.09 0.10
Group (adult) 0.20 0.30
Age 5.72 0.20
Age? —0.49 0.08
Age’ —0.16 0.03
Age’ —0.053 0.013
Age’ 0.0090 0.0015

Random Coefficients
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Just after birth to adulthood. The first sample,
known as the International Children’s Centre
London sample (ICC) consists of 69 boys born
in the early 1950’s in an area of central Lon-
don. The second sample (NCH) consists of 41
boys in a children’s home in Hertfordshire
measured from entry to the home until adul-
thood. In both samples the children were
measured close to their birthdays, and more
frequently during periods of rapid growth. We
have selected the yearly measurements from
the 11th birthday onwards. Further details of
the samples are given in Tanner et al. [2]. At
each measuring occasion height was measured
and bone age assessed according to the Tan-
ner-Whitehouse scale [2].

Table I gives the parameter estimates from
fitting the model [4]. The term for study dif-
ference during growth was very small and has
been omitted.

The ages of maximum and minimum height
velocity are obtained by solving the following
equation;

Bm+3B3X+6B4 X2+ 10B5X3=0 [5]

If we use the estimates for the variance of
B, and By; and their covariance in table I, and
assume that the coefficients have a gaussian
distribution then we can estimate the distri-
bution of x. This is done conveniently by using
simulation, and for each simulated set of
coefficients finding the value of x which gives
a maximum in the age range 11 to 15 years.
Table I1gives estimates for some percentiles of
this distribution.

level 2 covariance matrix (correlations)
Adult height Growth Intpt Age Age’ Age’
Adult height 63.2
Growth Intpt 44.4(0.79) 49.5
Age 2.30(0.27) 2.21(0.29) 1.17
Age? 0.80(0.24) —1.00(—0.33) 0.11(0.24) 0.18
Age’ —0.10(—0.01) —0.02(—0.03) —0.09(—0.96) —0.02(—0.52) 0.008
level 1 variance = 1.14, s.e. = 0.11

Group is coded’ 1 if in 1CC sample, 0 if in NCH sample.

Age is measured about an origin of 13.0 years.
Number of subjects = 110
Number of measurements = 626
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TaBLE II. — Estimated Percentiles of the age of Maximum

Height Velocity. — Percentiles estimés de ['dge du
maximum de croissance.
Percentile Age
5 13.0
10 13.3
50 13.8
90 14.3
95 14.6
mean age = 13.8 years

The mean age of 13.8 years agrees well with
that of 13.9 years found by Tanner et al. [9]
using a sample of the NCH children, including
the measurements made every three months,
by a method based upon smoothing each
individual subject’s curve with a logistic curve.

Further checks on the model can be made
by plotting standardised (shrunken) residuals
at level | and level 2 and examples are given
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in Goldstein [7]. Such plots are not presented
here, and did not indicate any unusual pat-
terns.

In figure I we plot the predictions against
adult height using the subsample of 78 boys
who have a measurement within 0.1 years of
their 13th birthday. In figure 2 we plot the
predictions against adult height using the
subsample of 43 boys who have three measu-
rements, around their 13th, 14th, and 15th
birthdays.

We see clear linear relationships with a
larger scatter of the observed residuals about
their predictions for the age 13 prediction. At
this age the estimated standard error of the
prediction is 5.0 cm, for the set of 3 measure-
ments it is 3.9 cm.

The residual variance of 1.14 is considera-
bly larger than the value of 0.14 quoted by
Tanner et al. [9] and that of 0.23 for the age
range 6-11 years found by Goldstein [1-8]. It
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seems that a model with a random quartic
coefficient may be needed, but the present
sample size is too small to achieve numerical
convergence when we attempt to fit such a
model.

DISCUSSION

The analyses in this paper have demonstra-
ted the feasibility of using a 2-level model for
simultaneously modelling growth and predic-
ting adult height from measurements taken
during the growth period. Clearly, the method
can be extended to other measurements and
we can also consider the multivariate case
where several measurements are modelled
jointly. In addition, the adult measurements to
be predicted need not to be those measured
during growth, and this provides a flexible
approach to the modelling of general repeated
measures data. For routine use, a program can
be written to make predictions with associated

interval estimates, and the prediction can be
updated as further measurements become
available. It should be noted that the adult
height predictions are generally population
dependent. In the present analysis the group
difference is small and non significant, but we
cannot necessarily assume in general that all
population differences will have been taken
into account by conditioning on growth mea-
surements. This will be a matter for empirical
study. Likewise, it will often be necessary to
adjust for a “secular trend” in adult height
which has occurred between the time period
when the data were collected and the period
the results are in use.

We have assumed simple multivariate dis-
tributions among the measurements and the
random parameters. In fact, in the case of
height data there are some constraints which
ought to be included in the model, namely
that, for any individual, the adult height can-
not be less than any of the growth measure-
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ments. Thus, using the models in this paper it
would be possible to predict an adult measu-
rement less than the most recent growth
measurement. This especially will be the case
for growth measures taken towards the end of
the growth period. The problem is one which
affects all height prediction methods and
needs further study.

Two other methods are in use for prediction
of adult height. The one by Tanner et al. [2] is
based upon separate regression predictions of
height at each age, or pair of ages. While this
procedure can in principle produce efficient
predictions, it is not very flexible. Thus, the
accuracy of the prediction equation is limited
by the actual number of subjects at the age
being used, whereas the 2-level model proce-
dure can use efficiently all the data available;
including those cases without an adult height
measurement. Also the fixed-age prediction
method cannot realistically handle more than
two serial measures, whereas the 2-level pro-
cedure can include as many as are available.

The other procedure [10] is similar to the
present one but instead uses a non-linear
model fitted to the whole growth age range
with parameters varying between subjects.

Detailed comparisons of these procedures
have not yet been carried out. The 2-level
polynomial model, however, would seem to be
the most flexible and potentially the most
efficient of these methods. It can handle
multiple measurements easily, it can model
within individual changes in variation, it can
make use of data from individuals with only
very few measurements, and it can handle
measurements other than height, for which
simple non-linear growth models are unavai-
lable.

A further development would be to extend
the number of covariates in the model. Thus,
Tanner et al. [2] effectively include the occur-
rence of menarche as a covariate by presenting
separate predictions for those girls who have
and who have not yet experienced that event.
Likewise, other stages of pubertal develop-
ment could be included. The inclusion of
subject-level variables such as parental height
and birth order might also be useful. In some
cases, it may be preferable to treat a conti-

nuous occasion-related covariate as a res-
ponse. Thus, we could fit a bivariate growth
model to height and bone age, where in a
simple model bone age might be a quadratic
function of age with all the coefficients ran-
dom at the subject level, the intercept and
quadratic coefficients having a mean value of
zero and the linear coefficient having a mean
value of 1.0. The predictor of adult height
would then be a function of the set of height
and bone age residuals. An important advan-
tage of this model is that even where bone age
is not measured at all occasions, all the availa-
ble bone age measurements can be used in the
prediction (Goldstein [7]). This contrasts with
previous models where we must use either all
the occasions without bone age or just those
that contain bone age.

Finally, it should be stressed that large
samples are important to secure stable estima-
tes and to enable higher order fixed and ran-
dom coefficients to be included so that the
model can be properly specified. It would be
convenient, for example, to be able to model
a much wider age range than that considered
here, in order to avoid the problem discussed
at the end of section 3 and that would require
further higher order random coefficients to
cope with at least two more stationary values
of height growth in the prepubertal period.
The optimum combination of overlapping age
ranges is a matter for further empirical study.
Further work is also needed on the modelling
of measurements made close together in time
where serial correlations will be present at
level 1.
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