British Jowywal of Mathematicol aud Statistical Psyehology (1983). 36 167-174  Priated in (reat Britain 167

Efficient estimation for a multiple matrix sample design

Harvey Goldstein and Anthony N. James

A generalized least squares method is proposed for estimation in multiple matrix sampling designs. [t is
shown that this provides efficient estimates. 1s fexible. and makes fewer assumptions than other
procedures.

1. Introduction

Multiple matrix sampling (MMS) was suggested by Lord (1962). among others. in
order to make efficient use of item responses where not all individuals responded to
alt items. Thus a long test, considered as a collection of items. might be split into.
possibly overlapping. subtests and each subject given only one subtest in order to
avoid lengthy administration. More generally. the items may be grouped into
categories: for example a collection of mathematies items may be categovized into
those which are algebra. geometry. number. ete. Thus, each subtest would be made
up of groups of items from some of the categories, and the subtests will also have
items in common. We wish to make separate inferences about each category.

Figure 1 shows a subject by items data matrix with an MMS design for three
overlapping subtests administeved to three groups of subjects, and the items divided
into three categories. IMigure 2. which is more convenient for present purposes, shows
the way in which the subtests incorporate the categories.
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Figure 1. Figure 2.

2. Models for MMS estimation

A model for MM designs is described by Sirotnik & Wellington (1977). who give
detailed computational procedures. ete. Kssentiallv. for a single item pool it is as
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follows
s = H B ) e "
where

z;; 18 the (0. 1) response of the /th subject to the jth iten.
%; 1% a parameter (ability) for the /th subjeet.

B;is a parameter (facility) for the jth item.

(2f);; Is an interaction.

g;; is a random ervor term,

Since in general cach subject responds to each item only once. (2f8);; s confounded
with g;; and so ix not separately estimable. and is subsumed under ;.
The usual assumptions are:
&;; are independent random variables (local independence assumption) with
variance g’
% ff; are random variablex with variance 0, 6,°

(learly (1) can be extended readily to incorporate terms for groups. covariates. and
difterent item pools or categories.

Thus equation (1) is a two-wayv random effects analysis of variance model with a
(0. 1) responge applied to an incomplete data matrix.

Because of the finite range of the dependent response variable. efficient maximum
likelihood estimation based on a binomial error model is problematical. and the usual
procedures are based on equating expected mean sgnares using generahized symmetrie
means. It ix worth noting that if instead of (1) we write

logit (P;) = i+ 2 + 3. (2)

where ;= F(z;) and %" ;" are random variables. then thixis the random effects
version of the so called one-parameter latent trait or “Rasch” model. Thus (1) may be
regarded as a random effects latent trait model which usex an identity rather than a
logit “link function’.

In common with other latent trait models which operate at the item levell (1)
makes certain assumptions. In particular it assumes that the errors are independent
and the hetween-individual space is one-dimensional. The model could in principle be
extended to more than one dimension. although this seems not to have been done.
Likewise there seems to be little work on the consequences of violations of these
assumptions or on the question of efticiency. Furthermore. as pointed ont by
Goldstein (1980). the form of link function will in general affect the parameter
estimates obtained. Finallv. the model implies a random sampling of items. which
will rarely be the ease. although this could be overcome by requiring the f5; to be
fixed effects in which case (2) becomes the mixed effects model studied by Bock &
Aitkin (1981).

The following section introduces an alternative model which makes fewer strong
assumptions than (1) and (2) while providing efficient extimatex.

3. Generalized least squares estimation

Ninee we wish to make inferences at the category level rather than the individual
item level. latent trait models which incorporate item parameters are strietly
unnccessary. Instead. since the basic unit of an MMS design is the set of category
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items= which appear together within subtests, statisties derived from the responses to
these setx of items can form the basis of estimation and inference procedures. In
particular. in what follows we shall ¢choose the “raw score”. or the number of correct
responses if the items ave binary. In order to make inferences about the totality of
item= for each categorv. we shall assume that we can find a simple transformation of
the score for cach set of items {rom a category. which is an unbiased extimator of the
overall category score. In general this overall eategory score will be the mean raw
score for the complete set of items in that category. I this ix the case cach item
should be given the same probability of occurrence within a set. (If. instead. we
wizhed to weight some items differentially then these would be given probabilities of
occurrence proportional to the weights.) Thus, for example. in the simplest case. if
Henmiz to be cquatly weighted are allocated with equal probability at random to sets
with the same number of items per set. then the set raw scorex will cach estimate the
required category score,

Yeferring 1o Tig. 2. denote the score for the set of itemx from category 1 for subtext
ron subject jas (. and the sample mean for subtest 7 and category £ as v({).
where in general (= 1. ... and /=1,

In the extreme caxe each category wounld contain a single item. For the present we
suppose that this is not the case and that cach category contains several items
viclding a “psuedo-continuous” score. which will very often be true in practice. We
shall retuin in the discussion to the case of xingle item categories. We also assume
that individuals are a simple random samyple from a population and subtests
allocated randomly to sample units. The case of complex sample designs will be taken
up in the discussion,

We now need to make a further assumption. Consider a given category. =ay . We
wish to estimate the mean score of the items in category £ and perhaps for different
vroupx of subject=. In the simplest case deseribed above. for each chosen set of
category £ items we would have

E(ely) = 0y, sav.
More generally we can write
E{a, (1) + (1) 2i(0)) = 6(7). (3)

where the o (f) and (1) ave constants! In many applications we mayv be able to
assume () = 0, For example, if the category £ items for a subtest are a random
<ample from a pool. then (1) can be taken as zero and ¢;(0) as inversely propertional
to the number of category £ items in subtest 7. The expectation operator in (3) couid
then be assumed to apply to repeated selections of items for subtests. Tn this case.
bowever. although the following estimation procedures can be used. a model which
incorporates random components reflecting item sampling might be more appropriate
(xec Discussion). More generally. however, items will be selected systematically. and
care will be needed with assumption (3) in any practical application. although in the
case of subgroup comparisons the requirement to prespecity a;((). ¢;(1) precisely can he
relaxed (see Discussion), It should be noted that this assumption is effectively the
usual assumption of congeneric test scores on which a great deal of classical test score
theory is based (Lord & Novick. 1968). A similar assumption is also implicit in the
traditional MMN estimation procedures. although perhaps less easily recognized.
Finallyv. equation (3} assumes that there are no “context effects’. i.eo that E(x(0) s
independent of the particular subtest in which the set of items occeurs. This
assumption ig also made by the traditional MMS estimation procedures and can often
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be verified empirically. Write

.?/ij(f) = ai(t) +ei(t) ay(1):

yilt) = a;(t) F ;1) (1)
We have then

yilt) = 0(t) +,(1).
where ¢; is a random error term. We refer to y,(f) as the elementary estimate for
category f from subtest /. Write

0,7 = var (g(t)) = var (i (0)/ s
where n; is the number of individuals responding to subtest i. ITn general we cannot
assume that 0,2 = ¢,2 for all i. but where such an assumption is reasonable or
verified empirically, then pooled estimates can be used in the following equations.

Thus we have for the design in Fig. 2

Y = UO+E, (4)

where

07 = {0(1).0(2). 0(3)).
E’ {81(1) €1(2).&5(1).¢2(3). £5(2) 53(3)}
[1 0 0
01 0
U 1 Q 0
0 01
01 0
0 0 1]

Thus U is an » x r incidence matrix which associates the appropriate s with the
yill). R

We require an efficient and unbiased estimator 8 of 8. and we obtain immediately
the generalized least squares estimator

0=UTK'U)"'UTK 'Y, (5)
where K = var (E) and
var (@) = (UTK'U) "L (6)
In the present case we have
_ 5 "
011 011,12
2
011,12 012
2
021 021,23
K= ;
021,23 023
2
O3 032,33
2
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where a4y = cov (g, )). &(D)). Tn general K is a block diagonal matrix and here,

-1
ky
where k; is the error covariance matrix for the subtest i elementary estimates. The
variances and covariances g, can be estimated from the within-subtests sample
covariances: Thus, in the present case.
Gi1.12 = cov (y(1).y,(2))/ny.  ete.

It should also be noted that an estimate of the variance of any linear combination of
category parameters can be obtained using (6).

4. Linear modelling
In addition to estimating the population means 0(f) we may also be interested in the
dependence of these on further explanatory variables such as soctal class. sex. ete.
Thus we can specify linear models of the form
Yill) = Pol) wor+ Pl v+ + B aptedl) T=1..q. t=1....r (7)
where, typteallv. wy; = 1 and the 2y, are the independent variable means for subtest /.
Model (4) now becomes

Y = WB+E. (8)
where
U, ® W,/
w=| o
U, ® W, T

U; is the jth row of U. where j indexes the set of items from subtest 7 and
category f.
T _ (o .
W,o = (1o p)
T _ . ,

BY = (fo(1)..... B, (1)..... Bolr)..... Bo(r)).
Generalized least squares can be applied to obtain estimates for thix model. and here
the covariance matrix of errors. for either simple or complex sampling schemes, can
be obtained from the within-subtest regression analyses of y;;(f) on the ;.
Hypotheses about the coefficients B can be tested by standard methods (see. for
example. Bhapkar, 1976).

5. Common items

In the above discussion each set of category items within a subtest has been treated
as a separate entity. In practice. however. these will often have items in cominon and
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this information should be utilized. Suppose that we have two sets. each of which can
be divided into subgets with no items in common. This will give three such subsets.
sayv . where the original sets are composed of w4+ and 4+ items. say. The
analyvsis then proceeds as before hut using the three distinet subsets.

6. Example

The tollowing example uses data collected by the British Assessment of Performance
Unit (APU) (Foxman el al.. 1982) which consist of scores on mathematices test items
administered to 1T-vear-olds in England. Wales and Northern Treland in 1930, The
survey design used 26 subtests each of which contained three sets of hetween 14 and
20 items from three of 13 subcategories of mathematies. For illustration. three
subtests have been used and three categories have been chosen: svmmetry.
transforntation and coordinates (BB). computations of whole numbers and decimals
() and Generalized Arithmetic (M), The data relate to bovs only,

The sampie design involved stratification and clustering and the first stage in the
estimation process was to calculate the elementary extimates. their variances and
covariances taking imto account the sample design. These are shown i Tables T and
2 together with the sample sizes. In fact the off-block diagonal terms in Table 2 are
not zero since the subtests are administered across clusters. These covariances are
relatively small however and assumed zero for purposes of illustration. Since the
items were chosen =o that the average difficulty of items in cach subtest would be
approximately the same. we have assumed a(f) = 0. and (/) ax the inverse of the
number of items.

Table 1. Mean category seores (per item) for subtests
Mmumbers of test items in parentheses)

Category

Text 3 G M Subsamyple size
| 0336 (177 0-H49 (18) 273
2 0496 (16) 428 (208 263
3 060 (18) 0392 (I8} 268

Table 2. Upper triangle covariance matrix of means ( x 107)

[ 0233 0137 0 0 0 8] )
0250 0 il 0 0
0314 018y 0 8]
0-203 @ 0
0396 (-241
| (0224

Table 3 gives the efficient generalized least squares estimates together with their
standard errors and the equivalent estimates derived by forming weighted averages
of the columns of Table 1. using the veciprocals of the variances ax weights, The gain
in efficiency of the generalized least xquares estimates ranges from 18 to 37 per cent.
indicating a worthwhile gain.
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Table 3. Iistimates and standard errors

Generalized

Category least squares () SNimple (NE) Etficiency
B 0512 (0-0107) (319 (0-0116) I-13
1 (561 (0-0116) 0-353 (0-0128) 1-22
M 413 (0-0088) 0411 (0-0103) 1-37

Note. Goodness-of-fit 72 = 19-6. d.f. = 3. P = 0:0002.

A goodness-of-fit test. equivalent to testing jointly the equality of the means of
each pair of item sets. is highly significant. thus providing evidence either for context
effects. or for an incorrect choice of a, (). ¢;(f). Of course. even with careful selection of
subtest items one would not expect the y(f) for a category to have exactly the same
population means. so this goodness-of-fit test should not be taken too literally.

7. Discussion

We have shown how efficient estimates can he obtained. using minimal assumptions,
from a multiple matrix design. Tn the limited example given in the paper the gains in
efficiency are clearly worthwhile and preliminary results from applying the method to
the full APU dataset indicate that gaing of 30—40 per cent are readily obtainable.

An important question ix that of sample design. (learly. for a given total sample
size. the way in which subtests are formed from combinations of elementary item sets
should depend on the within-snbtest covariances and estimates of these can be used to
design efticient schemes. Work on this topie is currently being pursued and will be
the subject of a fortheoming paper.

We have already suggested that care is needed in “standardizing” the ay(#) using
values of a ) and e (). Tn comparative studies. however. we can largely avoid this
problem by incorporating in (8) adjustment terms representing the departure of cach
elementary item =et mean from the category mean. If we make the assumption that
these adjustments are the same for every subgroup. that ix there is no interaction.
then valid suboroup comparisons can be carried out. Of course. this can be done with
the e {f) directly. <o avoiding the need to specify values for a,(t) and ¢, (). Tn this case.
however. the assumption of no interactions may bhe timplausible since subgroup
differences might be expected to depend on the number of items in a set and its
overall difficulty. As well as incorporating adjustment terms in (8). therefore. it
would scem preferable to carry out an initial standardization. using values from other
sources or. as in the example above. from internal considerations. even if these are
only approximations. In cases. such ax our example. where items are designed to
have the same average difficulty for each subtest. this is equivalent to assigning priov
values of e (f) and estimating the «(f). In any case a test for interaction can always
be carried out. If random sampling of items ix assumed then the model (4) would
contain a random component refecting item sampling and the adjustment terms in
(8) likewise would represent a random component. and suitable estimation procedures
should be used.

There ix one important case where this issue does not arise at all. namely where
extimates are required separately for each elementary estimate. which could be a
single item. This would arise for example when the elementary sets of items form
cohexive curriculum elements of interest in their own rvight rather than as part of a
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larger category. This is clearly relevant to so called "profile” reporting of educational
attainments. Another situation is where we have a “battery’ of fixed tests. a subset of
which is administered to any one subject. Tn all these cases we will still need to
recognize possible context effects. although these will often be regarded as of interest
for their own sake rather than merely nuisance factors.

Axin our example. many if not most data arise from complex sampling schenmes.
Where there is stratification and clustering the covariance matrix will no longer be
diagonal and it needs to be estimmated taking into account the sample design.
Estimation details for such samples. together with a program description are given.
for example. by Hidiroglou (1981).
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