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Abstract 

Event history or survival models are applicable to outcomes that are measures of 

duration, for example the length of employment periods or times to death after medical 

treatment. When individuals are grouped within institutions such as firms or clinics the 

resulting multilevel structure also needs to be incorporated into the model. An important 

application is where individuals are the ‘higher level’ units and they experience repeated 

durations, such as lengths of partnerships. In this paper we show how such repeated 

measures data can be modelled using a flexible discrete time event history model that 

incorporates individual level random effects. The model is applied to the analysis of 

partnership episodes for adult members of the National Child Development Study 

followed up between the ages of 16 and 33. The exposition will not assume a detailed 

knowledge of event history modelling. 
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Introduction 

Event history or survival models are applicable to outcomes that are measures of 

duration, for example the length of employment periods or times to death after medical 

treatment. When individuals are grouped within institutions such as firms or clinics the 

resulting multilevel structure also needs to be incorporated into the model. An important 

application is where individuals are the ‘higher level’ units and they experience repeated 

durations, such as lengths of partnerships. To make matters more concrete consider a 

young adult who enters into a partnership, whether or not legalised by marriage, at age 20 

years. Suppose that this partnership lasts for 5.5 years and is followed by a non-

partnership period of 1 year. This is then followed by another partnership of 2.3 years and 

a non-partnership period of 2.7 years, then a final partnership whose end point is 

unknown; either because the person is lost to the study investigator or because at the time 

of analysis they are still in the partnership. Here there are two ‘states’, partnership or non-

partnership, an event is the transition between states and an episode is the period of being 

in a particular state. For this person there is some variation in partnership lengths. There 

is also an apparent difference in the mean time spent in a partnership and the mean time 

spent out of partnership.  

If we now consider a sample of individuals followed up in a similar way we will not only 

have these kinds of ‘within-individual’ variation of partnership durations, we will also 

expect to have a variation ‘between-individuals’ in the mean length of partnership and 

non-partnership. The existence of  both within - and between – individual variation 

constitutes a 2-level structure, in this case akin to a standard repeated measures design 

such as exhibited by individual growth data where body measurements are taken 
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repeatedly on the same individuals (see Goldstein, 2003). In addition we would expect 

average durations to be a function of individual characteristics such as social class and 

educational background.  

A large literature on the modelling of event history data exists and a good introduction is 

the book by Singer and Willett (2003). Nearly all of this, however, deals with single level 

data, typically where each individual has a single event duration. Goldstein (2003) 

discusses various generalisations of the various single level approaches to the multilevel 

case and in this paper we describe just one of these, the so called ‘discrete time event 

history model’ that is flexible and requires only a relatively straightforward adaptation of 

existing methods for handling 2-level data: the data are rearranged so that the ‘response’ 

variable is binary (see below). Note also that in the individual example given above there 

is ‘censoring’ of the final episode where we do not know the actual duration. Censored 

data pose particular problems for event history data and we shall describe how these are 

dealt with later. 

This paper provides an exposition of the use of these models with data from the National 

Child Development Study on partnership durations (Bynner et al., 2002). We are 

interested in the duration of two states – not being in a partnership and belonging to a 

partnership. We have chosen as explanatory variables, age at the start of each duration 

episode (partnership), and social class based upon own occupation since both are known 

to be associated with the age at which partnerships begin and the number that occur 

(Bynner et al., 2002). 
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Methodology 

We begin with a simple 2–level data structure where we have a sample of individuals 

(level 2 units) and episodes (level 1 units) nested within individuals: a ‘repeated 

measures’ design. Because duration length distributions are generally positively skewed 

(negative durations are impossible), we would typically work with the logarithm of the 

duration length (t) as our response.  We denote the response by , where i indexes the 

episode and j the individual. For now we assume also that there is no censoring. 

ijy

We can classify predictor (covariate) variables into two kinds. The first are characteristics 

of an individual such as their gender which do not change over time and for such a 

covariate we use notation of the form ...)2,1( =nxnj

j

since it is the same for each episode 

within an individual. The second are ‘time-varying’ effects that will change over time, 

such as the age at which an episode starts. In this case we will use notation of the form 

 to indicate that the covariate may change its value from episode to episode 

within an individual. The modelling procedure will handle both kinds. In addition, as in a 

standard multilevel framework, each individual will have their own ‘random effect’ (or 

set of ‘effects’). These can be thought of as describing the mean duration lengths for each 

individual and they are typically assumed to have a Normal distribution across 

individuals. We will use the notation u  for these and they are described in more detail 

below. For modelling purposes we assume that, given individual characteristics, any 

time-varying effects, and the individual level random effects, then the durations for each 

state are independently distributed. We denote these by e ; they are also termed the level 

1 residuals. In other words, within any given individual, once we have described in our 

...)2,1( =nxnij

ij
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model the average duration length for a particular state, these represent the random 

variation about that mean value and the successive duration lengths are independently 

distributed according to some suitable distribution. Before we describe how the data are 

organised into a suitable form for analysis, we look at the specification of a simple model 

based on the above assumptions. 

Such a  simple 2-level repeated measures model can be written as 

),0(~   ),,0(~    ),log( 22

110

eijujijij

ijjijij

NeNuty

euxy

σσ

ββ

=

+++=
      (1) 

where 0β  is the overall intercept term,  respectively refer to the between-

individual and between-episode variance, and where we have a single covariate such as 

age at the start of an episode, . For some situations model (1) is perfectly adequate, 

but problems occur when there is censoring since then the distributional assumption of 

Normality for the  is important and different assumptions will lead to different 

estimates. In many cases it will not be easy to establish the most appropriate functional 

form and for this reason most of the models used for event history data attempt to avoid 

the use of  such strong distributional assumptions. The procedure we now describe does 

avoid the use of strong distributional assumptions as well as allowing us to incorporate a 

full multilevel structure.  

22  , eu σσ

ijx1

ije

In discrete time models, instead of modelling the episode duration directly, we divide the 

time scale into short time intervals: in the case of the partnership data these are 3-months 

long. We assume that the interval is short enough so that at most one state transition takes 

place within the interval. The basic data record, which now becomes the lowest level unit 
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in the multilevel structure, is this time interval and the response is the binary event of 

whether a transition takes place (=1) or not (=0). The aim of the model, described below, 

is to predict the probability of a transition as a function of elapsed time from the start of 

the episode, covariates and random effects. We shall show how this allows us fully to 

characterise event duration data and to obtain estimates and inferences about covariate 

effects on duration lengths etc. We refer to the short time intervals as modelled time 

intervals  and we discuss below how these are used in the model to account for the 

elapsed time. To illustrate this structure, data for individual 1 might look as follows: 

Individual Actual time interval 

(episode) 

Modelled time interval Response Event state (start 

of time interval) 

1 1 1 0 no partnership 

1 2 2 0 no partnership 

1 3 3 1 no partnership 

1 4 1 0 partnership 

1 5 2 0 partnership 

1 6 3 0 partnership 

1 7 4 1 partnership 

1 8 1 0 no partnership 

1 9 2 0 no partnership 

1 10 3 0 no partnership 
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Thus, starting in a state of 'no partnership', individual 1 moves in time interval 3 to state 

'partnership' and in real time interval 7 and modelled time interval 4 for the partnership 

episode, to state 'no partnership'. The response variable takes the value zero if no move 

takes place during an interval and one if a change in partnership status occurs during the 

interval.  

We now set up a model for the probability of moving from one state to another during 

any given interval. We shall suppose that this depends upon the state that the individual 

currently is in, the length of time that individual has been in that state, any covariates, and 

an individual random effect equivalent to the individual random effect term in (1). This 

probability (π ) is usually referred to as the ‘hazard’ and we write the probability of 

moving at modelled time interval t, that is the probability that the response is a 1, as 

)0|1()( )1()( === −tijktijk yyPtijkπ  

where k indexes individual, j indexes episode and i indexes the state. The states 

(partnership, non-partnership) are modelled by a dummy predictor variable and a simple 

model for this probability would be 

jkktijktijk
tijk

tijk eutfx ++++==










−
)()(logit
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π

π
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As is conventional for binary responses we use a ‘logit’ link function for the probability. 

That is, we work with the natural logarithm of the ratio of the odds that there is a state 

change, i.e. the ratio of the probability of changing states to the probability of not 

changing states. The right hand side of (2) has the same standard structure as for a linear 

multilevel model. The actual binary response ( ), which is 1 if there is a state change )(tijky
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and 0 if not, is assumed to have a binomial distribution with denominator 1 (a Bernoulli 

distribution) which we write ),1(~ )()( tijktijk Binomialy π . 

)(tf

0β

jkk e+

....

The terms  refer to the individual and episode levels respectively,  is the 

dummy variable for the state and  is a function of  the time spent in the current state. 

In standard multilevel terminology, the component 

jkk eu   , )(1 tijkx

)()(11 tfx tijk ++ β  is known as the 

fixed part of the model and the component u  as the random part.  

Clearly, as the time spent in the state increases so the probability of leaving that state 

increases also. Since time here is measured in terms of discrete (3-monthly) intervals, for 

 we could use a set of dummy variables, known as ‘blocking factors’, for intervals 

1,2,….n  where n  is the maximum number of intervals observed for any state. The 

estimated coefficients of these dummy variables would then provide a full prediction of 

the probability of leaving any current state. One difficulty of such a characterisation is 

that there may be a small number of very long episodes necessitating a large number of 

dummy variables, some of which would be poorly estimated. Instead we will usually be 

able to describe  by a polynomial function of time, for example by writing  as, 

say,  This is the approach we shall adopt but for completeness 

we first present the full specification using dummy variables for the modelled time 

intervals. 

)(tf

f

)(tf

1 +t αα

)(tf

)( 2
20 ++= tt α

 Formally then we have a 3-level binary response model where, as we have assumed, the 

(conditional) responses within episodes within individuals are independent. Level 3 is the 

individual, level 2 represents variation between repeated episodes within individuals and 

level 1 refers to the modelled time interval within repeated episodes. Level 2, the episode 
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level, corresponds to the lowest level of the 2-level repeated measures model originally 

specified in (1). The model has now become a 3-level one by dividing each episode into a 

set of lower level units, the modelled time intervals.  

Using the conventional logit link function this model can be written in a more general 

form than (2) as 

),1(~

)logit(

)()(

1 1

)(
)(

**
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tijktijk
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i
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= =

++++=
  (3) 

where  is the dummy variable for the modelled interval at time t and  the 

covariates, including the dummy variable for partnership state. The level 3 term u  is 

the random effect for individual k for state i and the level 2 term e  is the random effect 

associated with the j-th episode for the k-th individual. The level 1 random variation is 

binomial, as described in the second line of (3). In fact, for the present data described in 

detail in the next section, we can detect no variation at level 2 so that, for simplicity we 

shall assume just a 2-level model in the following exposition; that is we omit the term 

. The reason for the absence of the within-individual variation is partly explained by 

the fact that there are relatively few individuals with more than one partnership or non-

partnership episode, but may also reflect a true high degree of homogeneity of durations 

within individuals. Thus the model becomes 

*
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It is worth noting that at each level in general there can be both random effects such as 

 and covariates defined at that level, such as gender. We can also have just a random 

effect on its own or just covariates without a random effect. Hence, although there is no 

episode level random effect in the partnership data we retain the subscript j in the 

covariate expression to allow for the possibility of episode-level covariates such as age at 

the start of the episode. As suggested above we use a polynomial of time to approximate 

the fitting of the full set of dummy variables, one for each modelled time interval. The 

order of this polynomial is typically 4 or 5 and it describes the underlying hazard. Thus, 

for a fourth order polynomial (4) becomes 

ju
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where the polynomial in time, , replaces the dummy variable function . 

An alternative is to group the blocking factors into a small number of relatively 

homogeneous longer intervals but we shall not pursue this.  

∑
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As with other multilevel structures we may have, at the individual level, several random 

effects, for example a separate one for each state so that each individual is characterised 

by a partnership random effect and a separate one for a non-partnership state. These two 

random variables will both vary and covary across individuals. We shall fit such a model 

below.  

As already pointed out, model (4) is a 2-level model with random variation at the level of 

the individual and the modelled time interval. The covariates we shall use are age at the 

start of episode and social class.  The response is binary with a logit link function. As 
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such this model can be fitted by a number of statistical packages including SAS 

(http://www.sas.com/), STATA (http://www.stata.com/) , and MLwiN (http://mlwin.com) 

and the last of these is used in the present study. An introductory account of such 

multilevel models can be found in Snijders and Bosker (1999). These packages will 

provide estimates for the parameters of the model and also estimates of the individual 

random effects . ku

One of the interests in event history models is the estimation of duration length. That is, 

we wish to estimate the probability ( of the duration being equal to t. In survival 

time modelling this will be the probability of survival to the end of time interval for 

which the duration time is t.  This is therefore the product of the probabilities of not 

making a transition before the end of this interval. Thus, for state i, the probability of 

surviving until the end of the interval is  

)( jtS

∏
=

−=
t

h

H

h
tijktS

1
)( )1()( π

 

where h indexes the modelled time interval,  is the duration length at the end of interval 

h, and  is the value of h corresponding to duration length t. Thus, if we have 3-month 

intervals and time is measured in years then 

ht

1

tH

4=H , etc. 

By substituting particular covariate values (and states) into (4) we can obtain the 

corresponding predicted probabilities and hence duration estimates. Since we can also 

obtain estimates for the individual random effects we can estimate individual duration 

estimates as a function of time. Hence, using (4) without including the random effects 
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gives us population predictions, whereas incorporating theu , say, we obtain predictions 

for each individual in the sample. 

j

Data 

The National Child Development Study (NCDS) is a longitudinal study which takes as its 

subjects all those living in Great Britain who were born between 3 and 9 March, 1958. 

The fifth follow-up of the National Child Development Study (NCDS5) took place in 

1991 when the cohort members were age 33. 'Your Life Since 1974' was a self-

completion questionnaire posted to the cohort members during the course of NCDS5 

which asked for retrospective information on relationships, children, jobs and housing 

from the age of 16 until the time of the 1991 survey. Altogether, 11178 persons filled in 

either all or some of this section of the survey. In addition the 'Cohort Member Interview' 

of NCDS5, carried out by trained interviewers, also contained a retrospective partnership 

history. The final cleaned partnership histories (Bynner et al., 2002) are used to derive the 

three-monthly duration data for the study.  

All but 39 of the cohort members had no more than four partnerships by the age of 33. 

Partnership involves cohabitation or marriage. Very few cohort members (61) had gone 

back to partners with whom they had lived before. The present analysis uses only a subset 

of the variables available. These are the 'start age', the episode level covariate which is 

the age of the cohort member at the start of the current episode; the social class of their 

father when the cohort member was aged 11 years (manual or non-manual – 2% had 

missing data or other codes), which is the individual level covariate coded 1 for non-
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manual and 0 for manual, and whether the episode is a partnership (=0) or non-

partnership (=1). 

The data are for cohort males only and we carry out two analyses using the formulation in 

(5). The first ignores the initial time to establish a partnership, so that the first state is 

always a partnership. In this model we have two random effects for each individual. The 

first is their effect for non-partnerships, which represents the mean duration for that 

person of their non-partnership episodes: the second is the random effect for their 

partnership durations. We allow these to be correlated, since for example individuals with 

short non-partnership intervals may tend to have long partnership intervals, or vice-versa. 

Thus in (5) we have the two random effects: which is the effect for individual k 

contributing to the response probability when in a partnership, and u  which is the 

effect for individual k contributing to the response probability when in a non-partnership. 

Since these random effects vary and covary across individuals, and assuming that they 

have a bivariate Normal distribution we can write formally 
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The second analysis treats the time to first partnership separately, so that we now have 

covariates associated with partnership and no partnership states as before and an 

additional set of covariates associated with the first partnership only.  At the individual 

level we therefore will have three random effects, one for the first episode, one for 

partnership and one for non-partnership durations. In this analysis the start age is omitted 

as an explanatory variable since, for the first partnership, it is effectively confounded 
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with the time to first partnership response. The total number of 3-month periods is 

140420 with 3737 male cohort members who had partnership histories. 

Results 

A fifth-order polynomial was used to smooth the time dependency for the hazard, 

replacing the blocking factors. Main effects for the above factors are fitted, together with 

interactions between the partnership status dummy variable and all the others, including 

the polynomial terms. Since the polynomial coefficients are essentially nuisance 

parameters used only to define the time dependent hazard, we do not interpret them, 

although they are used in the construction of the survivor or duration length functions. 

We have retained several ‘non significant’ polynomial coefficients in order to ensure that 

the underlying hazard is sufficiently accurately estimated; the order was chosen by noting 

when the predicted probabilities changed only negligibly when a further polynomial term 

was added. 

Table 1 shows the estimates for a variance components model fitted using both 

quasilikelihood estimation (PQL1, see Goldstein, 2003 Chapter 4) and Markov Chain 

Monte Carlo (MCMC, see Browne and Draper, 2000). The MCMC model uses a gamma 

prior (see Rasbash et al, 2000) and was run for 10,000 iterations with a burn-in of 1000. It 

gives somewhat different estimates from PQL1, which can happen with binary response 

data. It is known that PQL1 procedures can lead to biased estimates for binary responses 

and therefore in subsequent tables we quote only the MCMC estimates. The coefficient 

estimate for non-partnership (defined as a dummy variable taking the value 1 for non-

partnership and 0 for partnership states) is 1.71 and highly significant when compared 

with its standard error. The inference is that the probability of exiting a non-partnership 
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episode, for any given time, is greater than exiting a partnership, that is non-partnership 

durations tend to be shorter. 

The coefficient ‘manual’ is for a dummy variable set to 1 if manual and zero if not and 

hence the coefficient estimate refers to the manual – non manual difference. From the 

MCMC analysis this difference does not quite reach the 5% significance level. The 

corresponding difference for partnerships is obtained by adding the estimate 

corresponding to the interaction between partnership and social class to give 

0.113+0.142= -0.029 for non-partnerships, which again is not significant. The later the 

starting age the longer the duration for partnerships but there is only a small (-

0.041+0.026=-0.015) and non significant relationship for non-partnership durations. 

There is also a relationship with start age where for partnerships the greater the start age 

the longer the duration tends to be, with a similar relationship for non-partnerships (-

0.041+0.026 = -0.087). The between individual standard deviation is 0.61 ( 377.0 ) so 

that, assuming Normality, the range for approximately 95% of individuals is 2.44 . This is 

large compared to the other effects suggesting that while there are average effects of 

interest most variability occurs between individuals. 

To include two random effects for each individual, one for partnership durations and one 

for non-partnership durations as explained above, we define two (0,1) dummy variables, 

one equal to 1 for partnership and the other equal to 1 for non-partnership durations. Thus 

we have two random effects, each varying across individuals and covarying. Table 2 

introduces these random coefficients. The covariate coefficient estimates are close to 

those in table 1 and there is more variation between individuals for partnership durations 

(1.145) than for non-partnership durations (0.400). We also note that there is a small 
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negative correlation of -0.16 ( 145.1*400.0/119.0− ). between partnership and non-

partnership episodes indicating that long partnerships tend to be weakly associated with 

short non-partnerships and vice-versa. Thus individuals can, tentatively, be classified on 

this basis as either long partnership/short non-partnership or long non-partnership/short 

partnership individuals.  

Finally we can look at the duration length distributions. Figures 1, and 2 plot the 

‘survivor function’, i.e. the probability of remaining in a state, for different combinations, 

derived from the estimates in Table 2. This is the median population estimate derived 

from the model using the fixed part predictor, i.e. at the mean of the random effect 

distributions. It will be seen from Figure 1 that starting at age 16 years there is a slow 

decline in the probability of remaining outside a partnership for five years followed by a 

steep decline and then a tendency to level off at around the age of 30 (14 years after the 

start age of 16 years), with a fairly constant probability of remaining ‘single’ once that 

age is reached. For those who have already been in a partnership there is a very steep 

decline over time in the probability of remaining single but having remained single for 

ten years or so the probability of remaining single does not decline much with time. If we 

look at an individual’s position starting at 25 years (figure 2) we have a steep decline for 

the first ten years for the non-partnership probabilities with a levelling off after that. For 

the partnerships there is a steady decline in the probability of remaining in a partnership 

over 15 years.  

Table 3 introduces the time to first partnership as a further response. This response is at 

the individual level, and may covary with the partnership and non-partnership durations. 

We find, however, that the variance for the first episode duration is small and poorly 
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estimated with a large standard error. We have therefore omitted it from the analysis so 

that the random part of the model is the same as in Table 2. We now see that being in a 

manual occupation greatly increases the probability of  leaving the first episode compared 

to being in a non-manual occupation, the effect associated with this difference being 

0.326–0.044=0.282. This reflects the common finding that those in non-manual 

occupations acquire partners earlier. In figure 3 we plot the median survival probability 

of remaining in a non-partnership situation after age 16 separately for each social class. 

Which shows a slight increase in the social class difference over time, with non-manual 

individuals having an increasing higher probability of remaining single.  

Discussion 

We have shown how longitudinal event history data involving repeated episodes for 

individuals can be modelled as a standard 2-level structure using readily available 

software. This allows between-individual variation in duration to be estimated and the 

model can deal with multiple states, although in the present case we have used only two, 

partnership and non-partnership. In addition to providing an estimate for the between-

individual random effect variance for each state, it also allows a correlation to be 

estimated between the individual level random effects for the different states. While we 

have only fitted age and social class as explanatory variables in the present case, we can 

readily extend this to more variables. Education level achieved and parent’s partnership 

status would be some of the most obvious candidates.  

An early age of first partnership is associated with having a manual social class. There is 

a suggestion that for non-partnership episodes, other than the very first, those in the 

manual social class also have shorter durations, but the coefficient is non-significant. The 
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earlier the age the partnership starts the shorter the partnership duration, but for non-

partnership episodes there is little relationship between age of starting and duration.  

The models used in this paper can be extended in a number of directions. For example we 

can model different kinds of transitions from an episode state, so that partnerships may 

end in separation, divorce, death etc. We can also fit multivariate models that study the 

simultaneous durations of different kinds of states such as partnership and employment. 

Steele et al., (2003) describe how such models can be specified and fitted.  

In practice care will be needed in defining the time intervals to be used. If these are too 

short this can result in extensive data sets, but they should not be long so that more than 

one transition takes place within an interval. Sometimes the exact durations are unknown 

and then it will be useful to carry out more than one analysis, varying the time intervals. 
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Table 1 Repeated measures models for partnership and non-partnership episodes: 

starting from first partnership. 

Parameter Estimate (s.e.).  PQL1 Estimate (s.e.) MCMC 
Fixed 
intercept 
z 
z2 
z3 
z4 
z5 
start age 
manual 
 
np(non-partnership) 
np*z 
np*z2 
np* z3 
np* z4 

np* z5 
np*start age 
np*manual 
 
 
Random 

2
0vσ  

 
-3.936 
-0.289(0.063)*10-1 

 0.132(0.070)*10-2 
-0.510(2.283)*10-5 
-0.167(0.160)*10-5 
 0.347(0.357)*10-7 
-0.039(0.010) 
-0.113(0.065) 
  
 1.612(0.396) 
 0.578(0.164)*10-1 
-0.224(0.135)*10-2 
-0.145(0.096)*10-3 
 0.695(0.332)*10-6 
 0.112(0.132)*10-6 
 0.027(0.016) 
 0.131(0.105) 
 
 
 
 0.289 (0.045) 
 

 
-4.065 
-0.283 (0.064) * 10-1 

0.160 (0.078) * 10-2 

-0.584 (2.331) * 10-5 

0.230 (0.181) * 10-5 

0.451 (0.410) * 10-7 

-0.041 (0.011) 
-0.113 (0.072) 
 
1.710 (0.377) 
0.616 (0.182) *10-1 
-0.249 (0.147) *10-2 
-0.151 (0.113) *10-3 

0.754 (0.383) *10-6 

0.090 (0.165) *10-6 

0.026 (0.016) 
0.142 (0.255) 
 
 
 
0.377 (0.064) 

Note that z indicates the time interval (1,2…) and is centred at 20. In all tables the 

dummy variable for non-partnership combines with  the hazard polynomial, age and 

social class variables to form interaction terms. Thus, for example the manual – non 

manual difference coefficient for non-partnerships is given from the second column  as –

0.113+0.142=0.029. Social class is coded Manual=1, non manual =0.  
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Table 2. Random coefficient model for partnership and outside partnership. MCMC 

estimates: starting from first partnership. 

 

Parameter Estimate (s.e.) 
 

Fixed 
intercept 
z 
z2 
z3 
z4 
z5 
start age 
manual 
 
np(non-partnership) 
np*z 
np*z2 
np* z3 
np* z4 

np* z5 
np*start age 
np*manual 
 
Random 

2
0vσ (non-partnership) 

01vσ  
2
1vσ (partnership) 

 

 
-3.709 
-0.244(0.067)*10-1 

 0.076(0.053)*10-2 
-0.140(0.240)*10-4 
-0.089(0.114)*10-5 
 0.093(0.264)*10-7 
-0.063(0.010) 
-0.116(0.075) 
  
 1.753(0.469) 
 0.499(0.208)*10-1 
-0.181(0.134)*10-2 
-0.112(0.114)*10-3 
 0.024(0.332)*10-5 
 0.055(0.158)*10-6 
 0.049(0.017) 
 0.152(0.118) 
 
 
 0.400(0.211) 

 -0.119(0.118) 

 1.145(0.171 
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Table 3. Random coefficient model for first partnership, partnership and outside 

partnership. MCMC estimates. 

 

Parameter Estimate (s.e.) 
 

Fixed 
intercept 
z 
z2 
z3 
z4 
z5 
manual 
 
np(non-partnership) 
np*z 
np*z2 
np* z3 
np* z4 

np* z5 
np*manual 
 
fp (time to first partnership) 
fp*z 
fp*z2 
fp* z3 
fp* z4 

fp* z5 
fp*manual 
 
Random 

2
0vσ (non-partnership) 

01vσ  
2
1vσ (partnership) 

 

 
-5.227 
-0.316 (0.036)*10-1 

0.119 (0.021)*10-2 
0.067 (0.083)*10-4 
-0.155 (0.025)*10-5 
0.270 (0.070)*10-7 
-0.044 (0.064) 
 
2.746 (0.150) 
0.682 (0.141)*10-1 
-0.232 (0.144)*10-2 
-0.134 (0.078)*10-3 
0.041 (0.344)*10-5 
0.850 (1.180)*10-7 
0.103 (0.120) 
 
1.453 (0.067) 
0.144 (0.005) 
-0.625 (0.034)*10-2 
0.233 (0.129)*10-4 
0.479 (0.074)*10-5 
-0.830 (0.130)*10-7 
0.326 (0.071) 
 
 
0.462 (0.061) 

-0.313 (0.095) 

0.773 (0.141) 
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Figure 1. 

Survival probability of remaining outside a 
partnership by year after start for non-manual
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Figure 2. 

Survival probability by year after start for episodes 
starting at 25 years (manual)
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Figure 3. 

Survival probability of remaining outside a partnership 
by year after start; beginning at 16 years

0

0.2

0.4

0.6

0.8

1

0 5 10 15

Year

Pr
ob

ab
ili

ty

Non Manual

Manual

 
 


	A flexible procedure for analysing longitudinal event histories using a multilevel model.
	Abstract
	Keywords
	Acknowledgements
	Introduction
	Methodology
	Data
	Discussion



