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Summary

Repeated measures data can be modelled as a two-level model where occasions (level
one units) are grouped by individuals (level two units).  Goldstein et al (1994)
proposed a multilevel time series model  when  the response variable follows a
Normal distribution and the measurements are taken with unequal time intervals. This
paper extends the methodology to discrete response variables. The models are applied
to British Election Study data consisting of repeated measures of voting intention.
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Introduction

Repeated measures data can be modelled as a two-level structure where measurement
occasions are  level one units and individual subjects are level two units. Consider a
data set consisting of repeated measurements of the heights of a random sample of
children. Thus, for linear growth we can write a simple model as

y x eij j j ij ij= + +β β0 1 (1)

This model assumes that height (Y ) is linearly related to age ( X ) with each subject
having their own intercept and slope so that, assuming Normality, we have
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There is no restriction on the number or spacing of ages, so that we can fit a single
model to subjects who may have one or several measurements. We can clearly extend
(1) to include further explanatory variables, measured either at the occasion level,
such as time of year or state of health, or at the subject level such as birthweight or
gender.

For measurements such as growth the specification of the level 2 variation serves to
model a separate curve, typically a polynomial, for each individual. We can think of
each curve as a smooth summary of growth with small random departures at each
measurement occasion. If, however, measurements on an individual are obtained very
close together in time, consecutive measurements will have a similar departure from
that individual’s underlying growth curve. This implies that the level 1 residuals will
be positively correlated; there will be ’autocorrelation’ between them. Examples occur
in other areas, such as economics, where successive measurements on each unit, for
example an enterprise or economic system, exhibit an autocorrelation structure and
where the parameters of the separate time series will vary across units at level 2.

A detailed discussion of multilevel time series models is given by Goldstein et al
(1994) who provide maximum likelihood estimates for multivariate Normal models.
They discuss both the discrete time case, where  the  measurements are made at the
same set of equal intervals for all level 2 units, and the continuous time case where the
time intervals can vary. We are concerned here with the more general continuous time
model and its extension to discrete responses.

To simplify the presentation, we shall drop the level 1 and 2 subscripts and write a
general model for the level 1 residual covariance structure as follows

cov( ) ( )e e f st t s e− = σ2 (2)

This states that the covariance between two measurements s units in time apart,
depends on the level 1 variance (σ e

2 , which in a more general model could also be a
function of age and other covariates) and a function involving the time difference. The



latter function is conveniently described by a negative exponential together with the
common assumption that with increasing time difference the covariance will tend to a
fixed value, ασe

2 . We have

f s h z s( ) exp( ( , , ))= + −α β (3)

where β  is a vector of parameters for further explanatory variables z. The choice of h
should be parsimonious and depend on the context.  Goldstein (1995) presents a table
with several possible functions and we explore some of these below.

Discrete response multilevel Models

There are many situations where the response variable is not Normally distributed, for
example where the response is a proportion or count.  For such generalised linear
models we can write  a 2-level generalisation (Goldstein, 1995) as

π βij ij jf X= ( )

where π ij  is the expected value of the response for the ij-th level 1 unit and f is a

nonlinear function of the ‘linear predictor’ Xij jβ . Note that we can have random

coefficients at level 2. The model is completed by specifying a distribution for the
observed response yij ij|π . Where the response is a proportion this is typically taken to

be binomial and where the response is a count taken to be Poisson. It remains for us to
specify the nonlinear ‘link’ function  f. In the remainder of this paper we shall be
concerned with responses which are binary or proportions, the most common link
function for which is the logit so that we write

π β βij ij jx u= + − + + −{ exp( [ ])}1 0 1 1 0
1

(4)

The observed responses yij  are proportions with the standard assumption that they are

binomially distributed, namely

y Bin nij ij ij~ ( , )π (5)

where nij  is the denominator for the proportion and

var( | ) ( ) /y nij ij ij ij ijπ π π= −1            (6)

Following Goldstein (1995) we fit this into a standard multilevel framework by
writing

( )y e z z nij ij ij ij ij ij ij ij e= + = − =π π π σ,     ,    1 12/ (7)

and we use the mean and variance properties as specified in (4) and (6) to produce
quasilikelihood estimates of the model parameters (McCullagh and Nelder, 1989). To
carry this out we need to linearise (4) and this leads to ‘marginal (MQL) or predictive
(penalised) (PQL) estimates. Details can be found in Goldstein and Rasbash (1996).



Discrete Multilevel Models  for repeated measures longitudinal data

Since repeated measures data have a 2-level structure it may seem that we can just
apply a 2-level model which is the discrete response analogue of the continuous
response model (1) (Diggle et al., 1994). For some kinds of data this will be
reasonable, but in other cases the assumption in (4) and (5) that we have level 1
binomially distributed responses which are independent, conditionally on the
covariates and random effects, is untenable. We shall be considering the particular
case of repeated measurements of voting intentions where a proportion of the
population have the same response at each occasion; their probabilities are therefore
either zero or one and this implies that the linear predictor in (4) is infinite. Other
examples will occur in repeated measures of  attitudes, disease states etc.

Yang et al.(1998) discuss this issue in detail for the case where there is a small
number of fixed occasions. Their data consist of responses to the question ’do you
vote Conservative?’ in each of 3 years, 1983, 1986, 1987 using the British Election
Study data (Heath et al., 1985). They set up a multivariate binary response model
where each occasion (year) is treated as a variate with binomial variation between
individuals at each occasion and covariances across occasions (variates) which are
estimated from the data. Thus the repetition at level 1 (indicated by t ) is nested
within individuals (indicated by i ), while individuals are nested within constituency
j . Let zt  be the vector of indicator variables for t = 1 2 3, ,  or 1983, 1986 and 1987

respectively,
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 and 0 otherwise.

Since year is level 1 the notation reflects this with t being the index for the first
subscript. The term tijS   denotes the measurement of time (1,2,3) as a continuous

variable. For simplicity we ignore covariates and write a variance components model,
fitting only an intercept in the fixed part of the model for the probability of a positive
response π tij
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The vtj  are the constituency level random effects. At the subject level the variance

terms in Ωu  reflect the binomial assumption and the σ ut t1 2
 terms represent the ‘point

biserial’ correlations between occasions which are to be estimated.

We wish to generalise this to the case of unequal time intervals where we can no
longer model a multivariate (fixed occasion) structure for the between-subject
variation. At each occasion we retain the assumption of binomial variation and we
write the covariance  as

π π π π
α β

tij tij t s ij t s ij f s

f s h z s

( ) ( ) ( )

( ) exp( ( , , ))

( ) ( )1 1− −

= + −
+ +     

(9)

The estimation procedure follows that for continuously distributed responses
explained in Appendix  II of Goldstein et al(1994), operating on the linearised version
of the model as described above. Macros were written in MLwiN  (Rasbash et al.,
1999) to carry out the computations.

An application to voting  measurements

The data for the following examples consist of vote/vote intention  measurements on a
panel of voters per constituency area as used by Yang et al (1998) and described
above. On first occasion respondents were interviewed immediately after the general
election, second occasions measures were taken in the autumn of 1986, and the third
immediately after the general election of 1987. There are 112 constituencies, 1633
voters, and 3434 outcomes about vote or vote intention. For the purpose of this paper
the  response variable is whether or not they voted or intended to vote Conservative.
There are also measures of voters’ fundamental  values related to party policies on
nuclear defence, unemployment (versus inflation), tax cuts (versus government
spending) and privatisation (versus nationalisation) which were analysed by Yang et
al., but we do not consider these here.

A three level model was fitted with occasions as level 1 units, voters as level 2 units
and constituencies as level 3 units. The following results are second order PQL
estimates  (Goldstein, 1995). Initially three variance components models were fitted.
The results are presented in tables 1  and 2. At level 1 we can fit a scale parameter for
the binomial variance to estimate an under/over-dispersion parameter and as a check
on the binomial assumption.

Three models presented in each table are:

A) A standard 3-level version of (4)-(5) which assumes independence across
occasions;

B) A time series model with autocorrelation function  f s s( ) exp( )= −β

C) A time series model with autocorrelation function f s s s( ) exp[ ( )]= − + −β β0 1
1



The natural extension to model B) would seem to use the function
f s s( ) exp[ ( )]= − +β β0 1 , but it was not possible to obtain convergence with this

function.

Since there are only three correlation parameters to be estimated, fitting a model with
three (non-dependent) parameters defining the autocorrelation function is equivalent
to fitting the full multivariate model. The aim of these analyses is to see how well a
time series formulation approximates the full multivariate model.

The autocorrelation function f s s( ) exp( )= −β  is equivalent to an AR(1) model for
equally spaced measures. To begin with, for simplicity, we do not fit the full model
for the between-constituency variation as in (8), nor do we fit the covariates. Table 1
fits the above three models with the corresponding multivariate model fitted in Table
2. An extra binomial parameter is estimated in all cases. The simple model in column
A shows a large amount of under-dispersion as expected and overestimates the
between-constituency and between-respondent variation. The second column with the
autocorrelation function f s s( ) exp( )= −β  demonstrates too rapid a decay and the
model in column C provides the best fit and corresponds closely to the estimates
obtained from the full multivariate model for the between-year correlations. The extra
binomial parameters for B, C and the multivariate model are close to 1.

(Tables 1 and 2 here)

Discussion

This paper extends to discrete response variables the methodology proposed by
Goldstein et al (1994) for  normally  distributed responses. It shows that for the data
set considered the standard repeated measures assumptions are untenable and lead to
biases. The bias is assumed to arise from the existence of a mixture distribution
whereby some individuals have a constant response and others have responses which
vary from occasion to occasion. Such a model might be characterised as a mover-
stayer model with a proportion always voting Conservative and a proportion never
voting Conservative. There are, however, two problems with such a characterisation.

First, the proportion of true ‘stayers’ may in fact be very small, with a proportion
having a small but non-zero probability of switching in certain circumstances, for
example to engage in ‘tactical voting’. Such a group could not be adequately
modelled along with the ‘movers’ unless a suitable covariate was available which
correlated strongly with their propensity to change their vote. Secondly, while it is
possible to carry out the estimation of a mover-stayer model, at least for a 2-level
model, where there are covariates and random coefficients the estimation becomes
more complicated with the model involving the sum of three non-linear components.
The proposed method provides a feasible computing procedure. Results from
simulations of the PQL2 estimation procedure for univariate logistic response models
suggest that for moderate amounts of higher level variation and large numbers of level
1 units per level 2 unit, the estimates show little bias. In other cases the bias can be
eliminated using an iterated bootstrap procedure (Goldstein and Rasbash, 1996).



The approach we have used for data which are binary or proportions can be used with
minor modifications for count data and can, in principle, be extended to multinomial
ordered or unordered data. Further work is planned along these lines.

We would expect data from other applications to exhibit similar properties to our
voting intention responses. Longitudinal data on attitudes will often contain
individuals whose attitudes do not change; the same may be found in medical studies
of response to treatment and in other areas. It will therefore be useful when fitting
models to such data to estimate extra-distributional parameters to check the model
assumptions.
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Table 1. Voting intentions in 1983, 1986 and 1987 with different
covariance structures.

(A) (B) (C)

Fixed
Estimate (se) Estimate (se) Estimate (se)

1983 -0.55 (0.12) -0.42 (0.08) -0.42 (0.08)

1986 -1.57 (0.13) -0.85 (0.09) -0.85 (0.08)

1987 -0.36 (0.13) -0.33 (0.99) -0.32 (0.08)

Random

Level 3 0.71 (0.19) 0.37 (0.08) 0.33 (0.08)

Level 2 6.99 (0.37) - -

Extra-binomial 0.37 (0.01) 0.99 (0.03) 0.97 (0.03)

β - 0.35 (0.02) -

β 0 - - 0.12 (0.01)

β1 - - 0.42 (0.03)

correlations

s=1

s=2

s=3

---

---

---

0.70

0.50

0.35

0.58

0.64

0.61



Table 2. Basic multivariate model for 1983, 1986,
and 1987.

Fixed Estimate (se)

1983 -0.39 (0.07)

1986 -0.78 (0.08)

1987 -0.31 (0.08)

Random

Level 3 0.29 (0.07)

Level 2:

σ u1
2 0.92 (0.03)

σ u2
2 0.96 (0.04)

σ u3
2 0.95 (0.05)

σ u12
0.56

σ u13
0.63

 σ u23
0.61

The σ ut
2  terms are extra binomial parameters and the

σ ut t1 2
 terms are correlations estimated using these.


