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CURRENT DEVELOPMENTS IN THE DESIGN AND ANALYSIS OF GROWTH STUDIES

H. Goldstein

Department of Mathematics, Statistics and Computing
Institute of Education, London, U.K.

INTRODUCTION .

In a book published three years ago (Goldstein, 1979), an at-
tempt was made to summarise the state of technical knowledge on the
efficient design and analysis of longitudinal studies. In this paper
we intend to review work which has been done since that boek was
written, indicating current areas of interest with an emphasis on
those aspects of the subject which look most fruitful, and in parti-
cular where current practice appears to be weak.

SAMPLING

In a recent review, Mednick & Baert (1981) list nearly 70 Euro-
pean studies. While this is testimony to the popularity of such stu-
dies (despite the curious omission of most of the International
Children's Centre Studies), a careful inspection of the list shows
that not many studies have truly representative samples of well de-
fined populations. In fact only 26 really qualify, and of these
only 3, the 1946, 1958 and 1970 British Birth Cohorts are represeu-
tative of a mational child population. In North America the situa-
tion is perhaps somewhat better, but we have to go to Cuba to find
the best current examples (Jordan et al., 1975).

0f course, it is usually more expensive to select and maintain
a representative longitudinal sample than, for example, a local
area or hospital based group. Nevertheless there is still a large
apparent lack of interest, and even concern, over the use of non-
representative samples. This partly may be due to a feeling that
any resulting biases will not be serious when studying change over
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734 H. GOLDSTEIN

time. Such a view 1s erroneous however, and it is easy to demonstrate
that serious biases can arise (Bailer, 1975). In fact there is now
sufficient experience with representative longitudinal studies for'
us to expect their adoption as a matter of routinme. Certainly in
countries with near universal school enrolments, the selection and
follow—up of representative samples does not present insurmountable
problems. For pre-school children modern techniques for household
surveys are quite feasible, and not necessarily very expensive. The
Cuban Growth Study (Jordan et al., 1975) is a good example of the
effective use of a multistage area household sample in order to ob-
tain good population data. Roma and Altman (1977) describe the use
of a complex sampling strategy to select schools within which chil-
dren are further sampled. Likewise, births can be selected and fol-
lowed, with sampling being based on maternity institutions and house-
holds. It is also worth pointing out, in view of the popularity of
birth "cohort' studies, that while a group born at the same time )
makes some of the administration easier, it will often be better to
sample over a longer time period, say a year, so that seasonal ef-
fects can be studied. f
{

Where a complex sampling scheme is used involving stratifica-
tion and clustering, it is important to take the sample design into
account when carrying out analyses. Thus if there is a lot of clus- i
tering the standard errors of average measurements will usually be '
larger than those from a simple random sample of equal size. These
‘design effects' (Kish, 1965) will also affect model-based analyses
such as multiple regression or log linear models for contingency
tables and failure to take them into account can lead to misleading
inferences s+ There has been recent thecretical work into this problem
(Hold et al., 1980 a, b) and there exist computer programs to carry
out correct analyses (see for example Hidiroglou, 1981).

NON RESPONSE

Biases from non response in surveys can be large and hence a
serious threat to the validity of findings. The typical remedy is
to make strenuos efforts to contact and obtain information from as
many non-respondents as pessible. By 'nmon-respondent' we exclude
those who have refused to take part and include those who are still
eligible for inclusion in the sample but have been missed, for ex—
ample because they were away, i1ll, etc. Such individuals may have
different characteristics from the remainder and it is important to
ascertain how different they may be - for example they may be less
healthy. )

There is now a good deal of evidence that given sufficent re-
sources and effort, non-response and failure to trace subjects in
a longitudinal study can be kept to a mipnimum. It has been sugges-
ted for example, that money paid tc subjects can be very effective
and a study by Kerachsky and Mallor (1980) found that $ 5 per inter-
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view improved the response rate in a longitudinal study of disad-
vantaged youth and also helped in subsequent tracing. These authors
even suggest that such expenditure at the outset may save money
since it would lead to less expenditure on tracing, etc.

Where it is necessary to make further efforts to sample non-
respondents, then in a longitudinal study those who are included in
this way have to be followed—up in order to see whether estimates
of change are the same for this group as for those who responded
initially. The proportion of non-responders who should be chased—up
will depend on the cost of the operation and Lessler et al. (1978)
discuss various strategies. A good general introduction to the prac~
ticalities of surveys is the book by Hoinville and Jowell (1978).

PLANNING AND DATA PROCESSING

Not very much work of a systematic kind has been done on the
problems of planning longitudinal studies, although a paper by Pel-
letier and Nolte (1978) describes a computerised data management
system which keeps track of subjects, updates files, etc. Clearly,
in a longitudinal study, such matters as good documentation, filing
systems, etc., are rather more important than in a short term cross-
sectional study and computerised systems have a lot to offer. Even
with a good computer system, however, there are many detailed deci-
sions which are made for which a practical account would be helpful.
One interesting attempt to do this has been the creation of a video
tape on which the three directors of the major British birth cohort
studies, James Douglas, Mia Kellmer Pringle and Neville Butler, are
interviewed by Jim Tanner and Michael Healy about the problems they
faced and their general views on longitudinal studies (Three Genera-
tions of Children, 1982).

For the efficient and rapid processing of results good compu-
ting facilities are essential. There is now a choice of so called
'data base management systems' which will handle complex files of
longitudinal data efficiently and easily and are capable of carry-
ing out standard statistical analyses and interfacing with standard
packages for further processing. S.I.R. (Robinson et al., 1977) is
one of these. Some standard survey packages can also be used and
Fendt et al. (1979) show how longitudinal data files can be manipu-
lated with the S.A.S. package. Initial expenditure on a system with
powerful facilities for manipulating longitudinal data is well
worth while for a medium or large scale study.

It is also important to have good data editing facilities
which can detect 'suspect' values and present them graphically.
Such facilities will be extremely useful in interactive systems,
which are now becoming widespread, where editing is on-line. One
example of a graphical procedure for use with growth data is given
by Goldstein (1981).
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Fig. 1. Shape outline of a three year-old.

SHAPE GROWTH

For a long time auxologists have been concerned with the pro-
blem of measuring the shape as well as the size of individuals.
For the most part however growth in size has been studied and there
is extremely little work on growth in shape. This in some part secems
to be due to the difficulty of actually defining shape and the com~
plex statistical procedures needed. An outline of various approaches
is given in Goldstein (1979). Since then one significant new deve-
lopment has occurred with the work of Bookstein (1978).. Before des-
cribing this it will be useful to mention briefly the traditional
methods. I shall deal with 2-dimensional shapes, obtained for exam—

ple from photographs, and the move to three dimensions involves no
new principles.

All methods begin with the identification of 'landmarks' on
the shape image. Fig. 1. for example shows the shape outline of a
3 1/2 year old girl (Goldstein & Johnston, 1978) formed by joining
landmarks such as the 'cormer' of the shoulder.

In allometry, the ratios of distances between the points are
used to define shape. The general procedure with more than two such
distances is to deal with ratios of measurements by using additive
functions of the logarithms of the measurements. Overall size is
most conveniently defined as the average of the transformed measure~
ments zud the deviaticns rom the average are used to study shape -
typically by the methods of factor analysis or principal component
analysis. A recent application of this method to adults is given
by Healy and Tanner (1981).
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Fig. 2. Transformation grid.
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Fig. 3. Outline of human head and graphical representation.
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e The other main approach has been that indicated by D'Arcy
Thompson with his method of transformation grids.

Fig. 2. adapted from Thompson (1961) shows a porcupine fish
transformed into a sunfish by deforming the rectangular grid of the
former so that landmarks are mapped onto corresponding landmarks.
If such a transformation can be described by a relatively simple
mathematical equation we clearly have a powerful method of descri-
bing shape change.

Bookstein (1978) develops his methods with particular reference
to cephalometrics rather than body shape, so that some of his re-
marks have less force in the latter case. For example, he rightly
points out that many so-called landmarks in cephalometrics, such as
the 'Frankfurt Plane' are in fact defined in terms of relative
lengths and hence dependent on shape itself and so not admissible
in order to define it. When studying body shape however, this will
generally be less of a problem.

Bookstein offers two major contributions. In the first he gives
a method of describing the shape outline between landmarks, based on
measuring the direction of travel and the distance travelled of a
point as it moves along the outline curve. For closed curves he
shows that this contains all the information necessary to describe
shape. In particular it is a simple matter to adjust for size dif-
ferences and the orientation of the figure is irrelevant.

Fig. 3. shows a side view of a human head together with a plot
of the direction of travel against distance travelled (scaled to
unity). Clearly, such plots can be averaged and compared in several
different ways, for example by measuring discrepancies between in-
dividuals or groups. Bookstein shows how the smooth curves between
landmarks can be drawn automatically using a digitizer to record
co~ordinates and conic splines to join them up. This method seems
to have a great deal of potential, but as yet little empirical ex-
ploitation.

Bookstein's other contribution is to develop Thompson's work
on transformation grids. He suggests that for two shapes, all pairs
of grid lines drawn through corresponding points should intersect
at right angles, although curving in different ways and having dif-
ferent lengths between points.

Fig. 4. illustrates for a simple case such a 'biorthogonal'’
pair of grids. The relative stretching of grid lines is given by
the numbers. One line tends to be relatively squashed and the other
extended at the ends, but meeting at 90° in both cases. Bookstein
goes on to apply this procedure to some of Thomson's examples, ty-
pically obtaining different pictures of how the transformations
work. He does not apply his method to developmental sequences in
children, which would constitute a more stringent validation of the
method than comparing evolutionary specimens.
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Fig. 4. Biorthogonal grid pair. Numbers show stretching from
left to right figure.

Finally, it is worth noting that Bookstein's two methods can
be put together to form a composite description of shape. Each ba-
sic feature, for example the eyes on a human body image, can be
described as a shape outline. Each outline can then be used to de-
fine characteristic points and these then used as the basis for
constructing grid lines. In this way a hierarchy of shapes can be
produced. At each stage other than the first an outline would con-
tain several smaller shapes with their own description and linked
via a transformation grid.

MODELS FOR ANALYSIS

Categorical Data

Developments during the last 15 years have produced a number
of models for handling categorical data in ways which are analgous
to those for continuous data. These are described in Goldstein
(1979), and briefly fall into two types. The one, path-analysis
type of model, concerns relationships between occasions and the
other resembles growth curve type models where e.g. a proportion
is related to age. In the latter case, a methodology described by
Koch et al. (1977) gives a particularly flexible model for analyz-
ing all kinds of categorical data. In particular it can be applied
to data derived from complex samples which the more common maximum
: likelihood log-linear models do not deal with properly. A computer
R 1; program (Landis et al., 1976) is available for these models. Johnson

et al. (1981) shows how this methodology can be applied to longitu-
dinal data from finite populations. It is perhaps not readily ap-
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preciated that models where the dependent variable is categorical
can involve continuous variables as predictors. This may be parti~
cularly relevant to growth data where categorical variables may be
specific events, such as the occurrence of menarche which we may
wish to relate to continuous variables such as height and weight,
To illustrate, consider a model which could be used to study the
controversial so called critical weight' hypothesis (Frish and
Revelle, 1971; Billewicz et al., 1976) which suggested that menar-
che tended to be triggered when girls reached a certain weight. The
following model will be kept relatively simple, although it could
be elaborated by including further occasions or variables.

Suppose we have a sequence of yearly measurements at birthdays
of weight on a sample of girls before and during asolescence and
that we also record the presence or absence of menarche. The model
relates the probability of menarche at any given measurement occa-
sion, for those for whom menarche has not yet occurred at the pre-~
vious occasion, to the weight at the previous occasion. Our basic
hypothesis is that there is a strong positive relationship to this
weight which is independent of the age at measurement.

The model is:
Pit
log = =a, + B x._, =2, ....T (1

where Pi__is the probability of menarche having occurred by occasion
t for sugject i, x__, is the weight at occasion t~] and Qs 8,

are constantg. Our hypothesis is 8¢t = 8 # 0., The coefficients are
estimated separately at each occasion and many standard program
packages such as GLIM (Baker & Nelder, 1978) exist for this. The 8,
estimates may then be tested for equality using their estimated
standard errors, and their mean tested against zero. Alternatively
the sum of the separate goodness of fit statistics for each equa-
tion (1) can be compared with that obtained from fitting a model
for all occasions simultaneously with a constant value 8., Model (1)
can clearly be extended by including weight for more distant occa-
sions, other variables such as height, bone age, etc. A detailed
model of this type applied to a clinical trial is described by Wu
and Ware (1979).

There are other topics in the analysis of categorical data for
which there is insufficient space here. For example an important
set of models is concerned with the study of sequences of categoric
or state changes from one occasion to the next ~ for example in be-
haviour, attitudes or medical states. Plewis (1981) applies Markov
models to the analysis of teacher ratings of children's behaviours,
Korn and Whittemore (1979) give a medical example which incorpo-
rates covariates, and Altham (1981) discusses the analysis of long
sequences of interactive behaviours between individuals.
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Continuous Data: Individual Growth Curves

In fitting growth curves, usually of height, to sets of indi-
vidual measurements there are two broad issues. The first is con-
cerned with providing a useful summary of growth and the second re-
lated issue is in making comparisons between individuals and groups
of individuals. I shall deal with the fitting of polynomial growth
curves in the mext section, here I will discuss the fitting of non-
linear curves - a tradition which goes back to the beginning of
this Century. :

There appears still to be a misconception about the status of
such curves as the logistic Jenns-Bayley, etc. These are sometimes
referred to as having direct 'biological' interpretability as op-
posed to say polynomials (See e.g. Berkey, 1982). In fact, the bio-
logical justification is typically no more than a statement of how
growth rate is related to growth achieved, with no more than a
crude physical justification for these relationships, which are
anyway chosen to represent the known shape of growth curves. Curves
based on specific physiological models have been proposed (e.g.
Weiss and Kavanu, 1957) but have had little success. Moreover we
should expect useful 'biological' information only when we have
other biological measurements available as well, e.g. hormone
levels. Thus the usefulness of the curves ought to be judged on
whether they provide adequate summaries of particular growth events,
such as adult size, peak velocity, etc., as well as being good
'fits' in the statistical sense of minimising residual variation.

A particular problem of non-linear growth curves is that they
tend to impose iInflexible constraints on growth events. For example
the logistic curve often fitted to adolescent growth in height con-
strains the ratio of height at peak height velocity (PHV) to be
just half the adult height measurement from the height at the start
of adolescent growth, whereas empirical results suggest a range of
0.35 - 0.45 (Goldstein, 1979). Thus Thissen et al. (1976) fit a
double logistic model to height growth from ! to 18 years. By care-
ful comparison with the observed heights their results indicate
that the estimates of adult height and final prepubertal height are
good ones. This is to be expected and is one way in which these
models are superior to polynomial ones. They do not however carry
out such a comparison for their PHV estimates which one might ex-
pect to yield poorer results. These authors also compare different
groups and in particular show how the above height estimates do
provide useful summaries. More recently Bock and Thissen (1980) and
in a paper to this conference Bock (1982) have elaborated this model
by introducing a procedure for studying the correlations between the
within-subject residual values predicted by the curves and by for-
mally using information about the variation of the parameters be-
tween individuals to improve the efficiency of the individual esti-
mates. Sandland and McGilchrist (1979) and Glaseby (1979) also pro-
pose models which incorporate a correlation structure for the resi-
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duals. While such procedures are statistically interesting, espe-
cially in that they can give more precise estimates for indivuduals
with relatively few observations, they raise no new substantive
issues.

The alternative apprcoach of fitting gemeral flexible curves
which describe growth locally is exemplified by Stutzle et al.
(1980) . They assume no particular form of curve, but effectively
allow the data to determine the local shape. There are two basic
steps in this process. The first involves 'standardizing' each in-
dividual's growth curve and here since they assume two components
of growth, each component curve is standardized. Thus for each com~
ponent we work with the standardized ages.

where the b1i, b2i, cii, c2i are to be estimated and the b's repre-
sent here the ages of maximum velocity and the c¢'s its duration.
This notion of an individualized developmental scale is not new,
but seems not to have been incorporated previously in a formal
model. Rather than work with growth achieved, observed velocities
are modelled. The following 'switch off' model is found to perform
well, for the jth velocity,

vixs) = a8 () T (E)) + 2y 8,00 + ey, (2)

where ajj, apy are constants to be estimated, Sy, Sy are the growth
curves, T is a function which decreases to zero, thus inhibiting
the expression of Sy as Sz increases. The residuals ejj have a co-
variance structure which is known if certain simple assumptions
about the independence and homoscedasticity of residuals for the
corresponding distances are assumed.

The second step is to determine the functions S; and Sy empi-
rically by fitting to the pooled data spline curves which are local
polynomials with smooth join points. The data are pooled using the
standardized ages. Thus initial estimates of S| and S; are obtained
(using logistic functions) from which each subjects parameters are
estimated, and hence standardized ages. The pooled residuals from
the curves, using these standardized ages then determine the spline
adjustments to the initial curves to produce new estimates of §)
and S7 and so on until the process converges.

While there are still questions to be settled with the choice
of model forms and particularly in the form of age standardization
to be used, especially pre-puberty, this procedure, because of its
ability smoothly to fit growth data locally using information from l
the entire sample would seem to have considerable potential for
identifying subtle features of growth. Stutzle et al. (1980) for E
example seem to detect clearly a prepubertal midspurt. ‘
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Continuous Data: Polynomial Growth Curves

The other major approach to the analysis of growth curves has
been to fit polynomial functions to a sample of individuals all
measured at the same occasions. This can be viewed (Goldstein, 1979)
as first fitting polynomials to each individual subject and then
studying the resulting set of polynomial ccefficients with a view
to determining the order of polynomial necessary. We can compare
groups, for example boys and girls, while the coefficients have
straightforward interpretations in terms of growth rates, accelera-
tions, etc. These curves do not tend to perform well when growth
levels off, for example at adulthood. Nor do they incorporate an
age standardization as described above, although polynomials could
perhaps be used as the starting curves Sj, S7. On the other hand,
they do allow straigthforward application of well known multivariate
techniques which can readily incorporate covariates and group dif-
ferences and make no particular assumptions about the covariances
of residuals.

The basic model is very general in the sense that it allows
for any pattern of correlations between the measurements across oc-—
casions, or alternatively between polynomial coefficients. If some
simplifying assumptions could be introduced to make these correla-
tions dependent on a smaller number of parameters there would be a
gain in precision of estimation and significance testing. This will
be particularly useful in growth studies with small numbers of in-
dividuals. Rao (1965) suggests a reasonable model in which the con-
stant, linear, etc. parameters of the polynomial growth curves are
assumed to be random variables distributed independently of the re-
sidual error. This model is generalized by Reinsel (1982) to the
case where there is more than one measurement and subjects are
classified by independent variables such as sex, social class, etc.
These models allow us to make sensible inferences about the beha-
viour of individuals' growth curves, recognizing for example that
these may be of higher degree than the average curves. Unfortunately,
large samples are required to see how far, in terms of low order poly-
nomials, such a simplifying model is justified and there seem to be
few substantial empirical investigations which attempt to do this
(but see Ware & Wu, 1981). This seems to be another example where
the theory, elegant as it may be, has somewhat outrun the practice.

Continuous Data: Nonparametric Models

Where it seems unreasonable to assume normal distributions for
growth measurements or their transforms, for example when dealing
with a rating scale, non-parametric techniques can be used to com-
pare the growth of groups of individuals. For example, polynomial
curves can be calculated for each individual in the usual way and
then each of the overall, linear, etc. coefficients can be ranked
and mean rankings compared between groups for each coefficient se-
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parately, or perhaps jointly (Goldstein, 1979). In many cases it is
not reasonable to fit polynomial curves - growth in skinfold is a
case in point where there is generally no steady progression with
age. If some other function can be found to represent such growth
then a ranking analysis could be carried out on the corresponding
individual coefficients. In general, however, we may simply wish to
make an overall comparison and this may be done by ranking all the
measurements separately at each occasion and calculating the mean
ranks for each group. A joint test for equality of these means over
all occasions can then be carried out (Koziol et al., 1981).

Finally, while on this point it seems worth remarking that
nearly all the auxological applications of growth curve models have
used height. We therefore know relatively little about how to deal
with less regular measurements such as weight or skinfold, or even
other linear measurements such as biocromial width. It would seem
time we began developing models useful with these other measure-
ments.

Continuous Data: Between-Occasion Models

As mentioned under categoric data, the other general class of
longitudinal models is that for relating measurements between occa-
sions. While not always to be recommended, these models do possess
distinct advantages over time-related models in terms of scale in-
variance and an orientation towards causal interpretation (See
Goldstein, 1979). In general, however, in growth studies there is
relatively little work with these although they are rather popular
in the social sciences. Two exceptions are models for predicting
adult height from previous measurements (Tanner et al., 1975) and
conditional growth standards (Cameron, 1980). I shall discuss
growth standards below, and there is work in progress on improving
height prediction methods (Tanner, personal communication). It is
worth mentioning that the use of fitted growth curves to predict
adult height is based on a time related model. It has been sugges-
ted by some authors (e.g. Ware and Wu, 1981) that growth curves
fitted to a set of measurements can be used to predict later ones
such as adult height, by utilising the summary of growth provided
by these curves rather than the full set of original measurements.
This is certainly an interesting suggestion, but there has been
little attempt to compare such predictions with those from more
straightforward multiple regression analysis.

Continuous Data: Growth Stability

It is often desired to estimate the regularity or stability
of a growth curve for an individual or group of individuals. Gold-
stein (1981) applies two different measures to a sample of indivi-
duals. One method measures the relative constancy of growth by es-
timating an individual's variation about his or her average growth
and the second measures growth separation by counting the number
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of times an individual's growth curve crosses other individual's
growth curves. Provisional norms are provided for each index. These
indices should prove useful in identifying individuals or groups
with abnormal growth patterns.

POPULATION NORMS AND STANDARDS

The construction of growth norms or standards and their period-
ic updating is a common activity. For a sample of measurements over
a wide age range there are problems of allocating measurements to
age groups and producing smoothed percentile estimates. The former
question can be answered for cross sectional norms by allocating
the number of measurements proportional to the growth rate. In order
to produce smoothed percentile lines the following procedure seems
to work well (Goldstein, 1979). First, a smoothed estimate of the
50th percentile is obtained. This may be done in a number of ways.
For example a regression line, possibly non linear is fitted within
narrow age groups and the estimates at the centre of the group noted.
The age groups are then all shifted one quarter of an age interval
and the process repeated and so on. These overlapping estimates are
finally joined together smoothly by eye or using splines. The next
stage is to estimate the other percentiles. This can of course be
carried out in similar fashion, using the residuals from the fitted
50th percentile curve within each age group to estimate the percen-
tiles. This procedure should work well if the data are extensive,
but it has a weakness; the more extreme percentiles, which are ac-
tually of more importance, are less precisely estimated. If we are
prepared to assume a normal distribution of measurements then this
can be used to improve precision but this will usually not be wise,
especially for the extreme percentiles, so an alternative is needed.
One possibility is to plot the residuals on probability paper and
estimate percentiles from the plot, but this still effectively only
uses measurements near to the estimated percentile. Instead we could
set up a general relationship between the percentiles we want to es-
timate and the 50th.

Write, for every age group,

Pj(t) - Pso(t) = ajO + ajlt (3

This states that the difference between the jth and 50th percentile
is a simple linear function of age within the age group, and the
constants ajQ, aj] are to be estimated for every percentile. It is
now possible to estimate the parameters ajqg, a;| for all j so that
the proportion of observations beyond each percentile correspond as
closely as possible to the theoretical proportions. Note that the
coefficients in equation (3) are the same for every age group, thus
ensuring that since P5g(t) is smooth over the whole age range the
the other percentiles are also. Furthermore, all the percentiles
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are smoothly related to each other via (3) which makes efficient use
of all the data. Furthermore, (3) can be extended by adding a quad=-
ratic term if required. It is straightforward to obtain estimates

of the ajj using weighted least quares (See Angers, 1979). It is
also possible to carry out the estimation using weights for the re-
siduals which reflect measurement accuracy, but for most growth

data such a refinement should be unnecessary.

This method can also be adapted to the situation where old
norms are being updated with new data. If we assume, for each per-
centile, that the relationships between the old values and the new
ones are smooth then we can obtain the deviation of each new meas-
urement from the old 50th percentile and use the residuals to esti=-
mate the new 50th percentile and other percentiles as before. Since
the old 50th percentile is used as an 'anchor' we will also require
fewer measurements to obtain the same accuracy as before. In addi-
tion we may be able to make further simplifying assumptions about
the relationships between the old and new percentiles. For example,
if we assume that the spacing between percentiles remains the same
with only an overall change then in the estimation procedure the
constants in (3) for all the percentiles except the 50th are set to
known values. Alternatively, we may suppose that an overall increase
in spread has occurred so that we have for the new values,

1
a,. = ka,.
ji ji
and we will need to estimate, iteratively, the parameter k. The
reasonableness of such assumptions would have to be tested om a
real data set.

We often require separate norms for population subgroups, for
example boys and girls. Normally, these are estimated separately
but we can adapt the above method to give efficient estimates in
this case. If we assume that the percentiles differ smoothly, then
we first estimate the joint smooth 50th percentile and then for
each group we can estimate the 50th and other percentiles as above.
In this case, simplifying assumptions will involve relationships
between the aji for different groups. For example if we have two
sex groups with coefficients a1ji, az4i then we might assume, as
before, having estimated the 50th percentile, that

3131 T ka5

Finally, it is worth pointing out that these procedurs can be auto-
mated, thus saving much of the tedium of hand plotting, etc. as
well as providing more efficient estimates.
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LONGITUDINAL AND BIVARIATE NORMS

Cameron's (1980) conditional standards of height seem to be
the first development of longitudinal standards since the introduc-
tion of velocity standards. He calculates the percentile distribu-
tion of height at one age for each possible value of height at the
age one year previously, this being done using simple regression
techniques. For a variable like height where the year to year cor-
relations are very high, this allows very precise judgement of
'typicality'. In fact, with such high correlatiomns, there is little
practical advantage over using simple velocities, but this will not
be the case with other variables like weight where the correlations
are lower. Unlike simple velocity standards the method can be extem
ded to standards conditional on two or more preceeding occasions.

Conditional standards, of course, are not new. Standards of
birthweight for gestation length or weight for height are ubiquitous.
While all these are indeed useful they also have to be interpreted
with care. Thus a child may not have an extreme weight for his
height, yet may be below the first percentile for height on its own
and so require attention. Likewise in industrialized countries, a
2000g baby at 36 weeks would be above the 5th percentile of birth-
weight for gestation length, yet his risk of dying in the perinatal
period would be more than five times the average (Hellier & Gold-
stein, 1979). This example illustrates neatly the need to take ac-—
count of both variables in such situations, or in other words to
consider a bivariate standard rather than a single univariate stan-—
dard whether a simple or a conditional one. In the birthweight-ges-
tation case Hellier and Goldstein (1979) show how these two factors
act jointly to determine perinatal mortality and are able to con-
struct ‘contours' of equal mortality which can be used as a screen-
ing device as in Fig. 5.

In cases such as this, where an appropriate 'outcome' variable
is available, there is no difficulty in principle in providing use-
ful bivariate standards. More generally, however, we have no ready
outcome variable and, as with univariate standards, we have to
choose an 'atypical' region on other grounds. Of course with uni-
variate standards it is fairly clear that the atypical region should
certain those measurements farthest away from the average. With a
pair of bivariate measurements the usual procedure for normally dis-—
tributed variables has been to draw 'equiprobability' ellipses, so
that for example the 97th percentile ellipse is such that 977 of
measurements lie inside it and the probability of a randomly chosen
individual having a measurement anywhere inside the ellipse is
greater than the probability of having a measurement anywhere out-
side the ellipse.

Fig. 6. shows the 957 ellipse based on sitting height (x) and
lower limb (y) measurements from data of Harrison and Marshall (1970)
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on adult women. In addition the rectangle gives the separate symmet-
rical univariate percentiles such that it encloses 95% of the meas-
urements and the parallelogram gives the symmetrical y on x and x

on y conditional standards such that it also encloses 95% of meas-—
urements.* Indeed, this figure could be regarded as a 'shape' norm
for these two measurements.

The point is that in each case a different 5% of measurements
is classified as atypical. The cross for example is a measurement
which would be judged atypical by the ellipse and parallelogram but
not by the rectangle, while the small circle would be judged atypi-
cal by the parallelgoram and rectangle but not by the ellipse.
There are of course an infinity of shapes which enclose 95% of the
measurements and the problem is which one to choose. My own view is
that both the rectangle and the parallelogram are reasonable choices
since they are direct extensions of univariate standards and atypi-
cal measurements can readily be interpreted. The circle for example
is an individual with an extremely short lower limb. The ellipse on
the other hand seems to have no particular justification, other
than a certain mathematical elegance perhaps, and seems to allow no
sensible interpretation to be placed on atypical measurements,
since it pays no attention to the direction of atypicality.

In Fig. 6. the rectangle and parallelogram have been drawn so
that the same percentage lie beyond the boundaries for each measure-
ment. In general however we can choose to give more weight to one
measurement rather than another. Thus in height and weight standards
we might decide to make the boundary lines for height exclude more
individuals than those for weight, consistent with a given overall
pertentage excluded, so that a measurement would need to be relati-
vely more extreme for weight to be beyond that boundary line. In
the case of weight and height we might also choose to have simple
(non-conditional) boundaries for height together with conditional
weight for height ones. This would then be exactly equivalent to
first judging whether an individual was atypical for height in which
case he i1s followed up. If he is typical then we judge the typical-
ity of his wieght for height. Such a procedure seems a reasonable
one to adopt in practice and the above discussion provides a formal
framework for doing so. It can also, of course, readily be extended
to the multivariate case.

CONCLUSIONS

In this necessarily brief summary of recent developments we
have not attempted to cover every published contribution. Rather we
have concentrated on certain contributions which we believe address
themselves to the existing practicalities of growth studies, and
which if followed should improve their effectiveness.

*The calculations have been carried out assuming a bivariate normal
distribution.
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