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SUMMARY

For small group sizes, the multilevel iterative generalised least squares
(IGLS) estimator is biased and inconsistent where the random effects are
correlated with the fixed predictors. By exploiting the iterative nature of
the IGLS algorithm we show how unbiased and consistent estimates can be
obtained without conditioning on dummy variables or measuring fixed
predictors as deviations from group means. The method proposed provides
consistent estimation of the regression parameters of interest whilst
retaining the properties of random effects models via efficient estimation

and full exploration of residual heterogeneity.
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1. INTRODUCTION

This paper considers an extension to the iterative generalised least squares estimator
(IGLS) proposed by Goldstein (Goldstein (1995)) to produce consistent estimates of fixed
predictor parameters for multilevel models where the random effects are correlated with
the fixed predictors and group sample sizes are small. The motivation for this work draws
heavily on the econometrics literature on panel data estimators and the debate surrounding
the use of fixed versus random effects. The general class of multilevel models can be seen
as an extension of panel data models to the case where there are any number of levels in
the data hierarchy and the variance function is complex (see Goldstein (1995) for full
description). We begin by presenting the issues as they have been discussed in the panel
data literature and extend these to the general case of multilevel models in section 3. More
complex multilevel models are considered in section 4. Sections 5 and 6 present some
simulations and examples.

2. PANEL DATA ESTIMATORS

There has been much debate in the literature on panel data estimators, between the two
alternative specifications of fixed and random effects (see for example, Judge et al (1980),
Hsiao (1986) and Baltagi (1995)). In its simplest form a variance components or time
series cross-sectional model can be specified in the following manner:

Ve =(BxX), + 1, t+e, i=1..,N; t=1....,T D

where X is a K X1 vector of exogenous variables with X, representing the irth
observation on the K variables, and B, isa K X1 vector of constants. The error term e,
is independently identically distributed (i.i.d.) over i and t, with zero mean and constant
variance, ¢ 2. Unobserved or unobservable individual specific effects are represented by
i, which are assumed time invariant. In this formulation, there are 7" observations per

individual and a total of NT observations across all individuals. In model (1) the
parameters of interest are typically those associated with the fixed predictors 3, . The

specification of the quantities W, and e, are central to the debate concerning the relative
merits of fixed and random effect models.

In the fixed effects model individual effects, W ,, are treated as fixed but unknown to the

observer. Such models allow the investigator to make inference conditional on the effects
that are contained within the sample. In contrast, a random effects specification may be
viewed as providing marginal or unconditional inference with respect to the population of
all effects. It treats p; as being random draws from an i.i.d distribution, typically

n, ~N@O,0c i) . The choice of specification may, in certain circumstances, be clear to the

analyst and depend on the manner in which the data were sampled and the context of the
investigation. For example, see discussions by Hausman (1978) and Goldstein (1995).



However, as Hausman (1978) shows, estimates derived from fixed and random effects
specifications may lead to vastly different estimates of the 'parameters of the explanatory
variables. Hausman compares the two competing specifications when estimating a wage
equation using a sample of 629 high school graduates followed over a six year period.
Comparisons of the two sets of parameter estimates (relative to standard errors) obtained
for explanatory variables of interest showed a marked difference. One case where such
differences arise is where the individual specific effects are correlated with one or more
components of the explanatory variables X, and within group sample sizes T are small.

Mundlak (1978) argues that the conflicts between random and fixed effects formulations is
essentially erroneous, and that the issue is really one of model specification. He considers
a random effects specification of model (1) and represents the joint distribution of the
explanatory variables X, and the effects pn, by approximating E(p,;1X,) by an auxiliary

linear regression based on within group means (.Y ; ):
w=Xn+w, X:iz—;—-:zxit’ w, ~N(0,6,) (2)

Here, Mundlak assumes that the individual effects are a linear function of the averages of
all the explantory variables across time and that these effects are uncorrelated with
explanatory variables if and only if 1} = 0. Substituting (2) into (1) gives:

Yu = Bx X + Xin+w, +e, i=LooN; t=1.,T (3
021 +021, l-=il,
where E(e, +w,)=0, E(e, +w,)e, +w;) = ()e T y
> 1#1,

and I,, J, are respectively the identity matrix and the square matrix of ones, of order T.

Mundlak shows that the generalised least squares (GLS) estimator of the B, in (3) is
identical to the fixed effects estimator achieved by applying OLS to the model

N-1
Ve =By X)y + 2 0d, +e; i=1..,N; t=1...,T (4
i=]

where {d,.}is a set of N-1 dummy variable indicators representing individual effects

(chosing one as a ‘base’). By using this formulation, Mundlak maintains that the difference
between the fixed and random effects approach is based on incorrect specification and that
only when the assumption that corr(X,, ;) =0 holds, does (3) reduce to (1) such that

GLS estimation of B, in (1) is equivalent to OLS estimation of B, in (4). Hausman and



Taylor (1981) consider a generalisation of the model proposed by Mundlak and partition
X into those variables which are correlated with W, and those which are not.

In practical situations, consideration of possible correlations between the set of
explanatory variables X, and the individual effects may be compromised in order to

preserve degrees of freedom. For fixed T, random effects estimation of B, by GLS ( BGLS )
is asymptotlcally efficient whilst the least squares dummy variable (LSDV) fixed effects

estimator (B =) 1S unbiased and consistent (consistent estimation of the dummy variable

coefficients is only obtained for T — o). However, LSDV will be expensive in terms of
the loss of degrees of freedom where the number of individuals, N, is large compared to
the total number of observations NT . The trade off between efficiency and consistency
may well be a deciding factor in the practical choice between specifications.

Hausman (1978) proposes testing the assumption of independence of W, and X, by
considering the contrast between the two estimators, §= BAFE - BAGLS. When y, and
‘X _ are orthogonal, § will be near zero. Therefore, whilst [fGLs is a weighted average of

BAFE , when the specification is correct, the two estimators should approximate to the same.
This is equivalent to testing the hypothesis, H,:1 = 0in model (3).

In this paper, we add to the debate on the relative merits of fixed and random effects by
considering the general case of multilevel models. We describe an extension to the
iterative generalised least squares estimator (IGLS (Goldstein (1995)) that provides
consistent and efficient estimation of explanatory variable parameters in situations where
some or all of the explanatory variables are correlated with the random effects and within
group sample sizes are small. The procedure is general and may be extended to include
variables measured at the group level, more than two levels of the data hierarchy as well as
random-coefficients and variable within group sample sizes.

3. MULTILEVEL MODELS

. 3.1. Variance components model
Model (1) above can be regarded as a simple case of the general multilevel model
proposed by Goldstein (1986) and may be termed a two-level variance components
multilevel model. To maintain consistency with the literature on multilevel models we
change the notation used in model (1) to the following:

¥y =(ByX), +u, +e, i=looN; j=l..M (5

Again, X isa K x1vector of exogenous variables, and B, a K X1 vector of constants.

We assume here that there are M level 2 units or groups (analogous to individuals in
model (1)) and N observations in total (and hence a total of N level 1 observations).



Group sample sizes n; are not required to be constant across the M groups. The
components u; and e; are residuals at level 2 and level 1 respectively, assumed to be

i.i.d. with zero mean and constant variance:

cov(u;, u,)=covie;, e,) =0,

i’
cov(uj,e,.j) =0,
E(u;)=E(e;) =0,
var(u; ) =02,

2
var(e;) =0,.

- The quantities of interest in (5) are the estimated parameters B, (termed the fixed part
parameters) and the estimated random components 62 and 62 (termed the random part
parameters). .

In the absence of correlation between the components of X and the level 2 random effects
u;, the iterative GLS estimator of (5) produces both efficient and consistent estimates of

the fixed and random part parameters for fixed n; (Goldstein, 1986). However, as
discussed above where correlations between the level 2 random effects u i and

components of X exist, although IGLS estimation is efficient it is inconsistent as M — oo
when group sample sizes n;are small (for example, see Blundell and Windmeijer (1997)

for a full discussion relating to multilevel models).

3.2. Consistent estimation
‘As noted earlier, consistent estimation of B, in (5) can be achieved by specifying the

model as a fixed effects model analogous to (4) and estimating by OLS. Alternatively, if
we pre-multiply (4) (whilst retaining the multilevel notation) by the idempotent matrix

o={g,} ¢=1,-J, /n (6)

where { }denotes a matrix, and I,,j, J, are respectively the identity matrix and the square

matrix of ones, of order n;, we have (in matrix notation):

QY =QXB , +QE" 0)

Applying OLS to (7) leads to consistent estimates of . The estimator

(XTQX)'(X"QY)is known as the within groups or covariance estimator (CV) (for
example, see Hsiao (1995)).



We now consider the following alternative conditioned iterative estimation procedure
* (CIGLS). IGLS estimation may be viewed as a two step procedure for each iteration. In
the first step we re-express model (5) in matrix notation as:

Y=XB, +SP, +E

=ZB,+E . ®
where E = {e }and
* ny
S={Sj}, ST =(s1,.05m), s,—s,x1,,, si=)w; In, ©)
i=1

={b 1= - XB5 |
where 1, is a vector of ones of length n,, B is the current estimate of B, and S, is
LY ) J
M
obtained by stacking the vectors s, to s,, and is of length Zn ; =N . In other words, the
j=

vector S consists of the group means of the estimated residuals from the previous
iteration. Once S is constructed, updated estimates of B, are then obtained through GLS

estimation of (8).

In the second step, we condition on BAX and form the matrix ¥ =WW’. By stacking the

columns of Y these are regressed on the random parameter design matrix and GLS
estimation produces the parameters of interest; 6~ and 6 (for a variance components
model, the random parameter design matrix is the block diagonal matrix leading to the
covariance matrix V with elements 6.1, +0,J, for each group or block (for a full

discussion, see Goldstein, 1995)).
Suitable starting values for ﬁx may be obtained by OLS estimation of (5). Iteration of the

two steps proceeds to convergence defined by a pre-assigned tolerence for ([3 X = ﬁ;{) .

3.3. Convergence
We can re-express Sin (8) as

S=(I-Q)\Y - XB}) (10)

where Q is defined in (6) and [ is the identity matrix. It then follows directly form (8) that

Y=XB, +((I- QY- XB})B; +E (11)



If at convergence we have fix = ﬁ} and fi s =10, (8) reduces to
gy = QXB xtE (12)
which is equivalent to the within groups specification (7) with E=E Q..

It follows immediately therefore that the GLS estimator for the full set of fixed coefficients

B, =[E "] in (9), namely (Z7V;'Z)(Z"V;'Y), where V, is the block diagonal

N

.7
u n;

{ofl,,j +02J , i=i,

covariance matrix [: ] provides both the efficient and

0, ‘ i#i’,

consistent (maximum likelihood under Normality) estimator of B , .

Note, that in comparison to the GLS estimator, the OLS estimator ignores the lack of
independence induced by premultiplying Ein the equivalent multilevel fixed effects

specification of (4) or (8) by Q. Also, if at convergence we obtain a value of B s

substantially different from 1.0 this may indicate misspecification in either the fixed or
random parts of the model and could form a basis for diagnostic specification checks.

4. EXTENSIONS

4.1. Group level predictors
An obvious extension to (5) is to consider predictor variables measured at the group level,
such that we have:

¥; =BxX); +(BeG), +u; +e; i=l..,N; j=l..,M (13)

In the formulation adopted in model (1), G would represent a matrix of time invariant
regressors. The corresponding re-expression of (13), substituting dummy variable fixed
effects for the random components u; cannot be estimated using LSDV because of

perfect multicollinearity between the group level predictors and the fixed effects. Without
imposing restrictions on the parameter estimates, consistent estimation is not feasible.
Similarly, applying a covariance estimator leads to a lack of identification of the parameter

estimates B since calculating deviations from group means will transform variables G to
zZero.



*

If model (13) is true and group level variables G are orthogonal to u; , estimation using
CIGLS proceeds in a straight forward manner and we construct S as in (9), except now

*

W= {ﬁzu }= Y-(X [3 x+G ﬁ c)» Where ﬁ x and ﬁc represent current estimates. Where

correlations between group level variables G and u i exist, estimation using CIGLS will

result’ in" biased-and inconsistent estimates of B ; this being an obvious extension of

omitted \)ariable bias. In such instances, variables that will purge G and u j of such

correlation should be sought and included in the model specification.

4.2. Group level effects and their interpretation

Suits (1984) and Kennedy (1986) discuss the difficulties in interpreting model (4) based on
the LSDV approach since identification often involves constraining one of the dummy
variable coefficients to zero (in the presence of a constant term) and estimating the effects
of other group membership relative to this ‘baseline’ group. Suits (1984) suggests-that to
aid interpretation of the coefficient estimates derived they should first be transformed such
that estimates attached to all dummy variable groups are shown together with the
corresponding adjustment to the constant regression term, f,. In the case where all

groups have equivalent populations, B, may be interpreted as the population average.
Where within group population sizes differ, B, represents a weighted population average
(Kennedy (1986)).

The estimation of S in (8) above does not rely on identification restrictions and as such S
consists of group effect estimates for all groups, not M —1 as for the LSDV estimator.
The corresponding estimate of the ‘intercept’ term, P, represents a weighted average

across all groups (weighted proportional to the within group sample sizes n;). As argued

by Suits and Kennedy this representation of group effects lends itself more readily to
interpretation.

4.3. Random coefficient models

4.3.1. Complex level 1 variation
The first extension is to consider complex level 1 variation (for a discussion, see Goldstein
(1995), chapter. 3). The specification of random coefficients at this levei can be viewed as
explicitly modelling heteroskedasticity but may also be of substantive importance to the
analyst. The basic results outlined above still hold, but now we no longer have the
equivalence between OLS and GLS in the case where the variables are measured from
their group means, and OLS may be much less efficient than GLS.



4.3.2. Random coefficients at level 2
Where we have random coefficients at level 2 the algogithm is modified as follows. As

before, calculate the quantities W={ﬁ/,.j}and regress these on the level 2 random part
explanatory variables. Thus, if we have an ‘intercept’ (S,) and a ‘slope’ (S,) at level 2,
such that in model (5); u; =v, +x;A;, where effects v, represent the intercept and A

the slope, then we estimate the coefficients in the following OLS model for each level 2
unit (or combining into a single OLS analysis with dummy variables for the groups).

W, =S, +8x, +e; (14)

Once we have obtained the estimates §, and s, for each group j, we can construct the
vectors S, and S, by multiplying the vectors 1, by §, and §, and stacking the resulting

vectors. We then carry out GLS estimation for the model
Y=XBX+S0BSO+S1BS,+E" (15)

where S; is the N x 1 vector: xS, .

If we re-express (14) as an OLS regression across all groups we have:
M M -

Wy =20ud, + D B+ (16)
Jj=l Jj=l

where y ; =x;d; and {d j}is a set of M dummy variables. We can retrieve the

constructed vector S, by multiplying the vectors L, by the estimated coefficients o ; and

stacking the resulting vectors. S, can be retrieved in a similar way by stacking the vectors
obtained by multiplying the vectors 1, by the set of coefficients €.

In matrix form (and using the multilevel notation) the equivalent model formed by
combining equation (16) with the set of fixed part predictor variables of interest may be
written as:

Y=XB, + Do+ D’E+E” (17)

where Y5> Nx1, X5 NxK, B—oKx1l, D->NxM, a->Mxl, &—Mx],
and E” -5 Nx1. D’ isan NxM matrix formed by multiplying the dummy variable
matrix D by the random coefficient vector X" .

Model (17) is overidentified and cannot be estimated in a single step. In the presence of a
constant term, the usual restriction is to re-specify D and D’ to be matrices of order
N x(M —1). The resulting (consistent) estimator is then LSDV.



If some of the level 2 random coefficients are uncorrelated with any of the explanatory
variables, then these may be taken out and estimated in the usual way. To do this (14) will
- need to be modified to include only the correlated random coefficients and a GLS
regression carried out for each level 2 unit, with the appropriate random coefficient
contributing to the variance structure.

4.4. Higher levels
IGLS is not restricted to the simple case of a two level hierachy and similarly, this
procedure can be extended to any number of levels but not to the case where a level 1

random effect (e;) is correlated with an explanatory variable. The reason for this is

essentially the same as the case discussed in 4.1. and applies'generally where explanatory
variables are correlated with residuals (random effects) at the same level.

5. SIMULATIONS

5.1. Simulation 1: variance components model
We simulate a multilevel model and estimate its parameters using the consistent
covariance estimator (CV), the multilevel GLS estimator (IGLS) and the conditioned
multilevel GLS estimator described above (CIGLS). The following model was simulated

yi =1+1x;; +15x,; +u; +e;

where
nj=5 vj, j=1...,30

x,; ~N@©,1), x,; “N(©,1), u; ~N(0,1), e; ~N(0,15)
=075 o . =0

T

=0, © =0, ©

XX X1 Mj X2ijMj
The results of 500 simulations of the above are presented in Table 1. We describe the
distribution of the estimated parameters (including random effects) by the mean, standard
deviation and mean squared error. The results show equivalence of CV and CIGLS

estimates of B, and improved estimates of B, and 6 ? using CIGLS compared to IGLS.
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5.2.- Simulation 2: group level variable
We simulated two models that include a predictor varigble measured at the group level

(x2 j). Both have the following specification, but different assumptions concerning the

correlation between the group level predictor variable and the group speéific effects u;.

yy =1+1x,+15x;; +u; +e

where
n; =5 Vj, j=1...,30
Xy~ N, D, Xy ~ N(O, D), u; ~ N0, 1), e; ~ N(0,1.5)
syry =0 Oy, =075 o . =0, p =075
and
X4y =Y,
2. © =0.25,

X244

Table 2 presents the results of simulating the above model with the assumption;
c =0. As expected, both IGLS and CIGLS produce unbiased estimates of the

X2
par;n;leter attached to x,; ($,); however, CIGLS also produces unbiased estimates of
=0.25 are given in Table3. Although CIGLS
produces improved estimates for B, (corresponding to CV estimates and those given in-
Table 2) as expected a biased estimate, equivalent to IGLS, of |‘32 is obtained.

B,. Results of the simulation setting &, ,

5.3. Simulation 3: random coefficient model
We now consider the simualtion of a random coefficient at level 2, such that:

yy =l+1x, +15x,; +v;, +A x,; +e;

where
n; =35 vj, j=1...30

Xy ~ N, 1), x,; ~N@©,1), v, ~N(@O1), A, ~N(@O125), e, ~N(©,L5)

=0, 6, , =075 o, , =0, =0, o, , =0671, o, =0563

X1y X3 {I'Ad] *241,¥) ey,
The results of simulating the above model are presented in Table 3. Again we obtain
improved estimates using CIGLS over IGLS, particularly for B, which corresponds to the
LSDV estimate. The difference between the estimated constant and B, derived through
LSDV and CIGLS is due to the different assumptions concerning the ‘baseline group’

adopted. For CIGLS the constant represents a weighted average over all level 2 units, as

11



does the estimate for B,. In contrast, LSDV estimates are made relative to a chosen
~ ‘baseline group’ and as such can only be interpreted respective to a particular level 2 unit.
6. EXAMPLES

6.1. Example 1

We take as an example the following gasoline demand equation considered by Baltagi and
Griffin (1983) and reproduced in Baltagi (1995):

P
ln(__GasJ =constant+[3,1n(1) +B, In| < +B31n(ﬂr-) +u;+e; (18)
Car /; N J; FPepr i ’ N J; '

Gas/Car represents gasoline consumption per car, Y/N is real per capita income,
Py [ Pspp 1is real price of gasoline and Car/N is the stock of cars per capita.The data

consists of a panel of observations across 18 OECD countries, during the period 1960-
1978. Years are indexed i, and countries j.

Various regression results for this model are reported in Baltagi (1995). Table 5 presents
the results of an OLS specification of (18) together with a fixed effects model (LSDV
estimator), IGLS and CIGLS. Clearly the parameter estimates derived from IGLS are not
consistent (a Hausman test of fixed versus random effects specification (Hausman 1978)
indicates that fixed effects are appropriate (2 =306, p<0.01). The explanatory

parameter estimates produced by CIGLS are the same as the LSDV estimates but the
standard errors indicate the improved efficiency of CIGLS.

6.2. Example 2
In this example we - consider a a multilevel analysis of school examination results described
by Goldstein et. al. (1992). The data consist of General Certificate of Secondary
Examination (GCSE) results from 5748 students in 66 schools in six Inner London
Education Authorities. A full description of the examination data and the scoring system
used is given in Nuttal et. al. (1989).

Students had scores on a common reading test taken at age 11 years; the London Reading
Test (LRT) and were graded into three categories on the basis of a verbal reasoning (VR)
test (VR1; band 1 (top 25%), VR2; band 2 (middle 50%), VR3; band 3 (bottom 25%)).
Data on gender were also available. The response variable was transformed using normal
scoring and the predictor variable LRT was standardised prior to fitting the following
random coefficient model:

Score; = constant+ [, LRT, +|3 LRT;? +Z[3 VR, +B; Gende 19)

+u, +7&,LRT+ijR+e,.j

12
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In model (19) the parameters of interest are the estimated coefficients; [3, - [35 , together
with the estimated variance components representing the within school variance: 62, and
the between school variance terms: G2, G 74y, Giyrg), together with the respective

between school covariance terms: G (;zr )5 O (vrg.uy> O (L&T. vR) -

The results obtained from applying IGLS and CIGLS are presented in Table 6 In this

example, CIGLS has little effect over IGLS which is not surprising given that the group

sample sizes are relatively large (range 29 to 219). However, the method illustrates the use
of CIGLS in the presence of random coefficients (note that the lack of change in the
random structure is a direct consequence of lack of change in the estimates of the fixed
predictors).

7. CONCLUSION

The iterative generalised least squares estimator conditioning on the mean level 2 effects
(CIGLS) provides both efficient and consistent estimates of B, when the random effects

are correlated with one or more of the fixed predictors and group sample sizes, n;, are

small. Modifications to the standard IGLS estimation routine ‘are trivial and
computationally undemanding in the case where variance components models are
considered. More elaborate estimation is required where a random coefficient is also
correlated with a fixed predictor, but again this can be handled adequately using existing
software (MLn, Rasbash, J. et al (1995)). In all cases, the procedure avoids the use of
dummy variables (as in the standard LSDV estimator) and hence the associated loss in
degrees of freedom, and the requirement to transform data to represent deviations from
group means.

13
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OLS Multilevel Multilevel
CvV IGLS CIGLS
Mean SD MSE Mean SD MSE Mean SD MSE

Random effects
Level 2 - gf, 0947 0.344. 0.121 0.974 0.348 0.121
Levell -'¢o f 1.484 0.195 0.038 1493 0.196 0.038 1.460 0.190 0.038
Fixed predictors
Constant 0.996 0.213 0.038 0.996 0218 0.040
B, 1.005 0.116 1003 1.005 0.113 1002 1005 0.116 1.003
B, 1494 0.111 2281 1.588 0.113 2,006 1494 0.111 2.281
Table 1. Simulation 1: Variance components model.

OLS Multilevel Multilevel

CvV IGLS CIGLS

Mean SD MSE Mean SD MSE Mean SD MSE

Random effects
Level 2 - o-i 0960 0349 0.123 1.024 0.363 0.132
Levell - o f 1.510 0.195 0.038 1.492 0.194 0.038 1.484 0.192 0.037
Fixed predictors
Constant 1.007° 0.204 1.055 1.007 0.208 1.058
B, 1.005 0.116 0003 1.095 0.118 0.832 1.005 0.116 1.003
B, 1.498 0.214 2302 1.498 0.219 2.304

Table 2. Simulation 2a: Group level predictor; 6, , =0.
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OLS Muttilevel Multilevel
cv IGLS CIGLS
Mean SD MSE Mean SD MSE Mean SD MSE

Random effects ) _ : '

" Level2-02" | 0.894 0.346 0.121 0.961 0.346 0.121
Level 1 - 6> 1.510 0.195 0.038 1493 0.195 0.038 1484 0.192 0.037
Fixed predictors ‘
Constant | 1.007 0.198 1.052 1.007 0.202 1.055
B, 1.005 0.116 0.003 1.100 0.118 0.824 1.005 0.116 1.003
B, , 1.748 0.208 1.612 1.748 0214 1.614
Table 3. Simulation 2b: Group level predictor; o, , =0.25.

OLS Multilevel Multilevel
LSDV IGLS CIGLS
Mean SD MSE Mean SD MSE Mean SD MSE

Random effects '

o2 0966 0373 0.140 1.029 0.389 0.152

Level2- G2  1.243 0448 0266 1253 0449 0.262

Cpoy ° 0.537 0304 0.380 0.564 0312 0415

Level 1 - ¢ .

¢ 2251 0342 0.180 1502 0.227 0299 1494 0225 0.307

Fixed predictors -

Constant 1.026 1297 5575 1002 0211 4.035 1.003 0215 4.035
B, 1.007 0.133 1.004 1.093 0.129 0.839 1.007 0.133 1.003
B, 1.494 1.567 4719 1.507 0235 2285 1.506 0.234 2285

Table 4. Simulation 3: Random coefficient model.
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[,

Dependent OLS LSDV Multilevel Multilevel
Ln(Gas/Car) IGLS CIGLS °*
Coef SE Coef SE Coef SE Coef SE

Random components
c? 0.009 . 0.009 0.001 0.009 06.001
S 0.094 0.031 0.123 0.041
Fixed predictors
Constant 2391 0.117 2403 0225 2152 0209 2403 0224
Ln(Y/N) 0.889 0.036 0662 0.073 0592 0.065 0.662 0.068
Ln(Pme/Popp) -0.891 0.030 -0.322 0.044 -0.374 0.041 -0.322 0.043
Ln(Car/N) -0.763 0.019 -0.641 0.030 -0.618 0.027 -0.641 0.028
S 1 0.251
Table 5

Note: Data reported in Baltagi (1995), Appendix 6.
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' Dependent Multilevel Multilevel

Pupil examination IGLS' CIGLS
score - '
Coef SE Coef SE
Random components
_Pupil level - ’ .
o2 _ 0.519 0.010 0.519 0.010
School level
o’ 0.069 0.014 0.070 0.014
O (LxT.4) 0.013 0.004 0013  0.004
O {ixry 0003 0002 0003 0002
G (vrg.u) 0.005 0.010 0.005 0.010
G (vre, L&T) 0.007  -0.004 0.007 0.004
2
O (vao) 0.024 0.013 0.024 0.013
Fixed predictors
Constant -0.454 0.046 -0.448 0.045
LRT 0.359 0.016 0.360 0.016
LRT Squared 0.043 0.007 0.043 0.007
VRQ2: 0702 0047 0700  0.047
VRQ3 0.332 0.031 0.329 0.031
Gender (Female) 0.134 0.026 0.125 0.026
So; : 1 0.109
Siem - 1 0.101
S,
VRO 1 0.116
Table 6

Note: S ‘Baseline - VRQI.
T Likelihood ratio test statistics for random part parameters:

I Joint test of significance of VRQ: © fVRQ) +O (vrg.u)* © (VOR, LAT) > %3 =9.01, p=0.029.
I1. Joint test of significance of LRT: G (zum +O (a4 O (LAT.VRQ)> %3 =15.67, p=0.001
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