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ABSTRACT 

 

For small group sizes, the multilevel iterative generalised least squares 
(IGLS) estimator is biased and inconsistent where the random effects 
are correlated with the fixed predictors. Consistent estimates of the 
parameters of endogenous variables may be obtained using 
instrumental variables or conditioning on group level effects. In this 
paper we review various approaches to ensure consistency in panel 
data models and extend these to the general class of multilevel models. 
Further, by exploiting the iterative nature of the IGLS algorithm we 
derive an unbiased and  consistent estimator based on conditioning on 
estimated group effects. The method proposed provides consistent 
estimation of the endogenous regression parameters of interest whilst 
retaining the properties of multilevel models via efficient estimation 
and full exploration of residual heterogeneity. The proposed estimator 
is termed conditioned iterative generalised least squares (CIGLS). 
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1.   INTRODUCTION 

 

For small group sizes, the multilevel iterative generalised least squares (IGLS) 

estimator is biased and inconsistent where the random effects are correlated with one 

or more fixed predictors. Such fixed predictor variables are termed endogenous and 

consistent estimators have been proposed in the literature on panel data models by, 

for example, taking deviations from group means, or employing instrumental 

variables estimators. Multilevel models are extensions of the random effects panel 

data models to the case where there are any number of levels in the data hierarchy 

and the residual variance function is complex and includes random coefficients at 

any level of the data hierarchy. In this paper we review consistent estimators 

proposed for use with panel data and show how these may be extended to the general 

class of multilevel model. Further, by exploiting the iterative nature of the IGLS 

algorithm we derive a  consistent estimator based on conditioning on estimated group 

effects. The method proposed provides unbiased and consistent estimation of group-

varying endogenous regression parameters as well as variance and covariance 

parameters associated with random coefficients. The proposed estimator, termed 

CIGLS, is compared with various alternative estimators in an analysis of the income 

returns to schooling experience first considered by Cornwell and Rupert (1988) and 

subsequently by Baltagi and Khanti-Akom (1990). The potential efficiency gains are 

shown. The finite sample biases of these methods are also discussed.  

 

 

2.  MULTILEVEL MODELS 

 

2.1. Two level variance components model 

Consider the following two-level variance components multilevel model: 

 

 

y X Z u e i N j Mij ij
T

j
T

j ij= + + + = =β γ , , , ;1 1… …, , ,

)

  (1) 

 

where i indexes an individual observation (level 1) and j group membership (level 2). 

is a (  (level 1) vector of explanatory variables varying over both i and j; X ij P × 1
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Z j is a ( vector of group level explanatory variables (invariant within groups); )G × 1

β and γ are comformably dimensioned parameter vectors. We assume  

and similarly . Model (1) can be regarded as a simple case of the 

general class of multilevel models described by Goldstein (1995). We assume here 

that there are M level 2 units or groups and N observations in total (and hence a total 

of N level 1 observations). Group sample sizes  may vary across the M groups. The 

components  and  are disturbances at level 2 and level 1 respectively with;  

and  The quantities of interest in (1) 

are the estimated fixed parameters  and 

u Nj u~ ( ,0 2σ )

)e Nij e~ ( ,0 2σ

eij

cov( , )e eij i j′ ′= = 0

n j

= 0

u j

, )u uj jcov( , cov( , ) .u ej ij

�β �γ and the estimated random components 

 and . �σ u
2 �σ e

2

Z
W E

= +
= +

y X E+β γ
δ

E Zu Ze

( N × 1) Z N ×1

( )P

( )− −
W V W1

N ×

v

)N G×

( )W= cov | δ

, coδ = W V YT T1

E= )

( )= W V WT� δ −1

δ

( )∗ −D V DT 1�ϑ =
− ∗ − ∗D V YT1 1

 
2.2 IGLS Estimation 

Combining all N observations we can re-express (1) in matrix notation: 
 

        (2) 

 

where is a block-diagonal error term such that  where  and   

denote  dimensioned  vectors. The dimensions of 

E Z u Zu= +

y , X , and  are ( ) , 

and (  respectively. 

ee

 

For known V Y , estimation of (2) proceeds via the usual 

generalized least squares (GLS) estimators: 

cov(

 

( )�−1     (3) −1

 

If is known but V is unknown, then we can obtain estimators  of the parameters 

of V using GLS as 

�ϑ

 

       (4) 
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here Y ∗ is a vector of the upper triangle elements of ( ) , that is, the 

squares and products of the residuals rearranged by stacking one column on top of the 

other, termed ve

(Y W Y W T− −δ )δ

( )c YY T~ ~ .  is the covariance matrix of V ∗ (vec YY T )~ ~ ; assuming 

normality, this is  where ⊗ is the kronecker product. represents the 

design matrix linking 

( )V2 V − ⊗1 −1 D

Y ∗ to V in the regression of Y ∗ on . D

 

The estimation procedure commences from an initial estimate of V  which is used to 

obtain estimates , from which an updated estimate of V is obtained. This procedure 

is repeated iteratively until convergence is achieved (defined by a suitable choice of 

tolerance); hence the estimator is iterative GLS or IGLS. An initial consistent 

estimator of is obtained via OLS assuming V . Assuming the existence of 

finite moments up to the forth moment, at convergence we obtain consistent 

estimators  and , which are asymptotically efficient (see Goldstein (1986) for full 

discussion). Efficient computational procedures for the estimation of the parameters 

in the general class of multilevel models are provided by Goldstein and Rasbash 

(1992). 

�δ

�ϑ

�δ I= σ 2

�δ

 

Under multivariate normality the above estimates are maximum likelihood estimates. 

Goldstein (1989) shows how unbiased estimates, equivalent to restricted maximum 

likelihood estimates under multivariate normality, can be obtained using what is 

termed restricted iterative generalised least squares estimation. 

 

2.3 Extensions 

Model (1) specifies a simple two-level variance components model representing the 

most basic form of a multilevel model. Extensions to this model include the addition 

of further levels in the data hierarchy, random coefficient models as well as cross-

classified hierarchical structures. All rely on the same principles of estimation 

iterating between (3) and (4) above. For example, for a three-level multilevel model, 

the design matrix, , in (4) will contain an additional term representing the third 

level in the data hierarchy. Similarly, although, V  will retain a block diagonal 

structure, within each block representing the third level will be nested further block 

diagonal sub-matrices representing the clustering of level-1 units with level-2 units.  

D
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Random coefficients at any level of the hierarchy may be incorporated as follows. 

Thus at level 2 we may have: 

 

y X Z u u x e i N j Mij ij
T T

j j ij ij= + + + + = =β γ 0 1 1 1 1, , , ;… …, , ,  (5) 

 

where represents a random intercept to be estimated by , and a random 

slope with variance, , and a covariance parameter (between slope and intercept) 

u j0 σu0
2 u j1

σu1
2

σu01 . In matrix notation, defining the matrix Ω1 as the covariance matrix for the set of 

level 1 random coefficients, and Ω2 as the corresponding matrix for the level 2 

random coefficients, the covariance matrix of responses for model (5) can be defined 

as: 

 

X X T
1 2 1 1Ω Ω+  

 

where, for example, for two level 1 units in each level 2 unit, we have: 
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u u
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e
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σ σ
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Goldstein (1995) describes fully the estimation of more complex multilevel models. 

 

 

3.  FIXED VERSUS RANDOM EFFECTS 

 

Assuming, for the time being, that variables measured at a particular level are 

uncorrelated with the residuals at the same level, then in the absence of correlations 

between the p  components of X  and the level 2 random effects , that is 

,  the IGLS estimator of (1) is an efficient and consistent 

estimator of the fixed and random part parameters for fixed (Goldstein, 1986). 

However, where correlations between the level 2 random effects  and components 

u j

( )E X u ppij j = ∀0,

n j

u j
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of X  are non-zero for some p, although IGLS estimation is efficient it is inconsistent 

for β  as M → ∞  when group sample sizes are small (for example, see Blundell 

and Windmeijer (1997) for a full discussion relating to multilevel models). The 

inconsistency of the estimated parameters , will also be reflected in the IGLS 

estimator of the random parameters used to construct V . Given that the majority of 

applied analyses using multilevel models concentrates heavily on the random 

quantities, the biases introduced here may be of more concern. Throughout this paper, 

we regard correlated effects biases in both the fixed and random part of the multilevel 

model as misspecification biases due to the exclusion of relevant terms on the right-

hand-side of the regression model.  

nj

�β

�

(β σp u, , )

 

In static panel data models the standard procedure used to assess misspecification 

biases of this sort is to apply the Hausman test (Hausman (1978)). This is based on a 

straight-forward comparison between the estimated parameters from a fixed effects 

regression (using the least squares dummy variable estimator (LSDV) or the 

covariance estimator (CV) and assuming correct model specification) and those 

obtained through GLS. Significant differences suggest that misspecification biases are 

present in the GLS estimation and that a fixed effects specification should be used. 

The same test can be applied directly to the multilevel model depicted as (1). We now 

discuss these estimators in detail. 

 

 

4.  CONSISTENT ESTIMATION OF MULTILEVEL MODELS USING FIXED 

EFFECTS 

 

4.1. LSDV estimator 

For model (1) if  for all, or some ( )E X upij j ≠ 0, p , GLS estimation yields biased and 

inconsistent estimates of the parameters . Consistent estimation of σe
22 βp  in 

(1) (as either N or M → ∞)  can be achieved by re-specifying (1) and (2) as a fixed 

effects model, removing group variables and specifying dummy variables for group 

membership and estimating by OLS: 
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Y X U E= + + ∗β α         (6) 

 

where U is a ( dimensioned matrix of dummy variables. However, LSDV 

estimation of 

)N M×

β is not without problems; group level variables cannot be estimated 

since they are not now identifiable and estimation is not fully efficient compared to a 

random effects model. 

 

4.2. Within groups (CV) estimator 

Alternatively, for any matrix , define the projection matrix  to be the projection 

onto the column space of  such that  (  is of full column rank). 

Also define Q I  to be the projection onto the space orthogonal to . Let 

be an ( matrix of group level dummy variables, so that converts an 

 vector such as y into a vector of group means, while converts it into a 

vector of deviations from group means. If we pre-multiply (6) by the idempotent 

matrix Q , we have: 

A PA

A

A

( )P A A A AA
T=

−1 T A

PA = −

)N M×

A

U

N

Pu

( ×1) Qu

u

 

Q Y Q X Q Eu u u= + ∗β         (7) 

 

Applying OLS to (7) provides a consistent estimator of β , termed . The estimator 

is known as the within groups or covariance estimator (CV). 

�βW

( ) (X Q X X Q YT
u

T
u

−1 )

 

As noted, both the LSDV and within estimator are consistent estimators of β . For 

both estimators group level coefficients, γ , are not identifiable. However, these may 

be retrieved in a two-step process. For example, Hausman and Taylor (1981) consider 

the estimation of a two-level variance components model using as a first step the 

within estimator from (7). From this, they compute residuals: 

 

� �
. .d Y Xj j j= − βW         (8) 
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and regress these on the group level variables: 

 

�d Z uj = +γ j          (9) 

 

where  is a mean zero disturbances. If all elements of uj Z are uncorrelated with , 

OLS will be consistent for 

uj

γ . If, however, columns of Z are correlated with , 

instruments may be found for 

uj

Z , and estimation of (9) can proceed through two stage 

least squares (2SLS). If we have consistent estimates of β and γ then we can obtain 

consistent estimates of the variance components and . However, since in (9) 

is calculated from the residuals from a within regression, suggests that if the 

parameters  are not fully efficient, then nor are the parameters 

σu
2 σe

2 �d j

�βW
�γ , unless a 

weighted estimation is performed. 

 

 

5. CONSISTENT ESTIMATION OF MULTILEVEL MODELS USING 

INSTRUMENTAL VARIABLES 

 

5.1. Instrumental variables estimators for two-level variance components model 

For random effects models where correlations with group level effects are known to 

exist, a commonly adopted approach to ensure consistent estimation of  and �β �γ is  

IV estimation of (1) or (2).  This involves finding suitable instruments for those 

columns of X and Z which are correlated with u and applying the IV estimators 

which have the following general form: 

j

 

[ ]
( ) ( )

�

cov �

δ

δ

=

=

− −
−

− −

− −
−

W V P V W W V P V y

W V P V W

T
A

T
A

T
A

1
2

1
2

1 1
2

1
2

1
2

1
2

1      (10) 

 

where  is the orthogonal projection operator onto the column space of the 

instrument set. In general though, it may be difficult to find appropriate instruments 

legitimately excluded from equation (1) which are good predictors of the endogenous 

PA
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columns of X and Z, but uncorrelated with . However, because u , the component 

of the error term assumed correlated with the columns of X and Z is invariant within 

groups, any vector which is orthogonal to it can be used as a potential instrument. In 

this respect the within estimator (7) can be represented as an IV estimator of

uj j

β , 

calculated by projecting (6) onto the null space of U by the matrix Q  (that is defining 

the instrument set as . Unfortunately, is orthogonal not only with U but 

with all group level variables Z. Consequently, in the absence of further information 

concerning the relationships between the columns of X and Z and u , the parameters 

u

j

(Q Xu ) Qu

γ are not identifiable. 

uj

2

1

X, ,1 Z1

Qu1 2

P X ,

 

Given prior information on which columns of  X and Z are uncorrelated with  

(denoted ) and which columns are correlated with (denoted ), (or 

by investigation - using the Hausman test for example), various instrumental variable 

estimators based on (10) have been proposed which are potentially more efficient that 

the within estimator.  

( X Z1 1, )

) )

uj ( )X Z2 ,

 

Instrumental variable estimators for variance components panel data models have 

been proposed by Hausman and Taylor (1981) (HT), Amemiya and MacCurdy (1986) 

and Breusch, Mizon and Schmidt (1986) (BMS). A general framework for such 

estimators is provided by Arellano and Bover (1995). Cornwell and Rupert (1988) 

and Baltagi and Khanti-Akom (1990) provide comparisons of the relative efficiency 

gains of IV estimators applied to a returns to schooling example. Below, we 

summarise briefly these estimators adopting the notation used by Cornwell and 

Rupert (1988). 

 

HT propose estimation of (10) where the list of instruments for the set of endogenous 

variables ( is defined as , which BMS show to be equivalent 

to the following instrument sets; , or 

 (they span the same column space as A). When the 

parameters of (1) are identified by means of this set of instruments, the HT estimator 

X Z2 2,

( X Qu u,

(A Qu=

)1

( )A Q X X X ZHT u= 1, , ,

A Q X ZHT u= 1 2 1,
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provides a consistent and asymptotically efficient estimator for (  (see HT for 

details). 

)

2

�

β γ,

( )A j
TZ Z

−1

X u

( )Xp , ,…

X1

X 2

 

Identification of the HT estimator relies on the relative number of exogenous within 

group varying variables ; and the number of endogenous group level (therefore 

invariant within groups) variables . If the model is just-identified ( ), then 

, and  (note that 

k1

g2

�

k g1 =

�β β∗ = W � �γ γ∗ = W γW  is defined by  where 

are residuals from a within regression (see equation (9)). If the model is over-

identified ( ), then more efficient estimates  may be obtained. 

�γW j
TZ P=

( ), �β γ∗ ∗

�
j A jP d

�d j

k g1 2> �

 

Assuming a balanced design ( , AM define a potentially more 

efficient estimator than HT defining the instrument set . 

Here is an 

)
1

n n n j lj l= = ∀ ≠,

( )A Q Q X X ZAM u= ∗
1 2 1, , ,

X1
∗ N nK×

Q Xu

matrix where each column contains values of for each 

within-group observation. For example, for the pth observation within each group, the 

constructed column is given by . Whilst HT 

use each variable as two instruments, AM use each of these variables as 

instruments . For identification, . 

X ij1

Xp M Mp11 1 1, ,… …

pk g1 2≥

X Xp p1 11
∗ = , ,

)X1
∗

X

X1

( p +1) ( and1 ,

 

The exogeneity assumptions for the AM estimator are stronger than those for the HT 

estimator. Whilst the HT estimator only requires the means of the variables to be 

uncorrelated with the effects, the AM estimator requires uncorrelatedness for each 

individual observation.  

 

In a direct extension of AM’s treatment of the variables, to the  variables, BMS 

derive a potentially more efficient estimator by defining the following instrument set: 

. The potential efficiency gain 

from the BMS procedure depends on whether the ( are legitimate instruments. 

X 1

)X 2( ) (( )A Q X Q X P X Q X Q ZBMS u u u u u=
∗ ∗

1 2 1 1, , , , , 1

)Q Xu 2

∗
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They are valid if the variables in are correlated with the effects only through a 

within-groups component which would be removed by the transformation . 

X 2

Q Xu 2

I

k

u, 2

L…

Z

(X Z, X

 

Therefore, for known V , the application of asymptotically efficient estimators is 

straightforward. For unknown V , variance components can by obtained through some 

consistent estimator, for example, the approach adopted by Hausman and Taylor 

(1981) described above. 

 

5.2. Instrumental variables estimators for a general class of multilevel models 

The IV methods described above can readily be extended to the general class of 

multilevel models. For a two-level variance components model, the generalisation of 

the methods is trivial and consistent estimation of both the fixed predictors and the 

random components can be achieved through iterating between (10) and (4). Starting 

values may be obtained from IV estimation of (10) assuming V . For random 

coefficient models, where a parameter of an explanatory variable is assumed to vary 

randomly at, say, level 2, application of IV will depend on whether the variable 

assumed random is exogenously defined. If it is, then IV of (10) can be performed 

followed by estimation of V  by (4), by imposing an appropriate design matrix linking 

= σ 2

Y ∗ to V . Where the random coefficient is endogenous, iterative IV of both (10) and 

(4) (again after imposing an appropriate design matrix) will be necessary. 

 

The panel data IV approaches proposed by HT, AMS and BMS are easily extended to 

variance components multilevel models where there are more than two levels in the 

data hierarchy. For example, consider the following three-level multilevel model: 

 

y X Z v u eijk ijk
T

jk
T

k jk i= + ′ + + +β γ  ,   (11) i N j M k= = =1 1 1, , ; , , ; , ,… …j

) )v

 

where, the terms  and represent residuals at level 1, 2 and 3 respectively, 

with , , and . Following Hausman and 

Taylor we can partition both 

e uijk jk, ,

( )e, 2σ jk

vk

(0e Nijk ~ 0 u N~ σ (v Nk ~ ,0 2σ

X and  into columns uncorrelated with these random 

effects; these can be denoted . We can also define columns of 1 1 and Z  )
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correlated with  by ( , and those correlated with  by ( )  

Generalising the HT instrument set to this example, we can define the following set of 

instruments: .  Again, by defining 

as the projection matrix onto the column space of the instrument set IV, estimation 

proceeds through iterating between (10) and (4). Potentially more efficient estimation 

could be obtained by applying the principles of AM and BMS to IV of model (11). 

ujk

=

)X Zu u
2 2,

Q X Qu u
u

1 2, ,

vk X Zv v
2 2, .

( )IV Q X X Q X Q Z X Zv v
v

v
v

1 2 2 1 1, , , ,

Xij

PA

µj

E( | Xj ij )µ

jw+ X
nj

j i
= ∑1

Xij w N~ (0

eij+ij

E e wij j( +
j+ =

≠
( )+ = 0

 

 

6. CONSISTENT ESTIMATION OF MULTILEVEL MODELS BY 

CONDITIONING ON GROUP VARIABLES 

 

6.1. Mundlak’s formulation 

Mundlak (1978) considers a random effects specification of model (1) and represents 

the joint distribution of the explanatory variables  and the effects  by 

approximating  by an auxiliary linear regression based on within group 

means ( ) : X j

 

µ ηj j
TX= ,               ,                    (12) j w, 2σ )

 

Here, Mundlak assumes that the group or level 2 effects are a linear function of the 

averages of all the explanatory variables across each level 2 unit. Substituting (12) 

into (1) gives: 

 

y X X wij
T

j
T

j= + +β η   i N j M= =1 1, , ; , ,… …

j

  (13) 

 

where  E e w e w
I J j

j jij j ij j
T e n w nj j, )( )

, ,

,
+ =

′

′





0

2 2σ σ

and  are respectively the identity matrix and the square matrix of ones, of 

order . 

I Jn jj
,

nj
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Mundlak shows that the generalized least squares (GLS) estimator of the β  in (13) is 

identical to the fixed effects estimator (6). By using this formulation, Mundlak 

maintains that the difference between the fixed and random effects approach is based 

on incorrect specification and that only when the assumption that corr j )Xij( , µ = 0 , 

leading to η = 0 , does (13) reduce to (1) such that GLS estimation of β  in (1) is 

equivalent to OLS estimation of β  in (6).  

 

7. CONSISTENT ESTIMATION OF MULTILEVEL MODELS BY 

CONDITIONING ON GROUP EFFECTS 

 

7.1. Conditioned iterative generalized least squares (CIGLS)  

As noted earlier, consistent estimation of β  can be achieved by specifying the model 

as a fixed effects model (6) and estimating by OLS. By conditioning on group 

variables, estimation is purged of correlation between explanatory variables and group 

effects. By exploiting the iterative nature of the IGLS estimator, we now show how a 

constructed variable, representing group level effects can be used to condition on 

whilst estimating the parameters, β . By including this constructed variable in the 

estimation of the fixed part parameters using (3), but removing it from the estimation 

of random parameters using (4), we derive an estimator which is both consistent and 

asymptotically efficient and has the advantage of being readily generalizable to the 

general class of multilevel models. 

 

Consider re-expressing (1) excluding group level variables: 

 

y X u eij ij
T

j= + +β ij     i N j M= =1 1, , ; , ,… …  (14) 

 

or in matrix notation: 

 

Y X E= +β          (15) 
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where, once again, where E is a block-diagonal error term such that  

with the dimensions of the vectors  and  being ( . We now consider an 

alternative estimation procedure based upon a conditioned version of IGLS 

estimation, and term this CIGLS. For each iteration, IGLS estimation may be viewed 

as a two step procedure estimating the fixed and random parameters through (3) and 

(4) respectively. In the first step we re-express model (6) in matrix notation as: 

E Z u Zu e= + e

)Zu Ze N ×1

 

Y X S EX= + +β         (16) 

where  and { }E eij=

{ }
{ }

S S S s s s s s y n

Y y Y X

j j
T

M j j n j ij j
i

n

ij X

j

j

= = = × =

= = −

∗ ∗

=

∗

∑, ( , , ), , � / ,

� � �

1
1

… ι

β

  (17) 

where ι n j
 is a vector of ones of length n ,  is the current estimate of j

�β X
∗ βX  and  is 

obtained by stacking the vectors  to  and is of length . In other words, 

the vector S consists of the group means of the estimated raw residuals from the 

previous iteration. Once S is constructed, updated estimates of 

Sj

s1 sM n Nj
j

M

=
∑ =

1

βX  are then obtained 

through GLS estimation using (3). Note that this is equivalent to treating S as an 

offset in (16) such that the transformed response is ( ) . Y S−

 

In the second step, we condition on  and form the matrix �βX Y ∗ , the upper trianglular 

elements of ( ) . By stacking the columns of (Y X Y XX

T
− −�β β )X

� Y ∗  these are regressed 

on the random parameter design matrix and applying GLS in (4), estimates of the 

random parameters,   and , can be obtained. σe
2 σu

2

 

Suitable starting values for  may be obtained by OLS or IGLS estimation of (14). 

Iteration of the two steps proceeds to convergence defined by a pre-assigned tolerance 

for . 

�β X
∗

( � � )β βX X− ∗

 

7.2.   Equivalence of CIGLS and CV estimation 
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We can re-express in (16) as S

 

S I Q Y Xu= − − ∗( )( � )βX         (18) 

 

where  is defined in section 4.2 and Qu I is the identity matrix. It then follows directly 

from (16) that 

 

Y X I Q Y X EX u X= + − − +∗β (( )( � ))β

X

+

      (19) 

 

If at convergence we have ,  (16) reduces to � �β βX = ∗

 

Q Y Q X Eu u X= β         (20) 

 

which is equivalent to the within groups or CV specification (7) with  E Q Eu= ∗

 

It follows immediately therefore that the GLS estimator of the parameters of (16), 

namely , where V  is the block diagonal covariance matrix, 

provides both an efficient and consistent (maximum likelihood under Normality) 

estimator of 

( ) (X V X X V YT
E

T
E

− − −1 1 1 ) E

β X .  

 

Note, that in comparison to the GLS estimator, the OLS estimator ignores the lack of 

independence induced by premultiplying E in the equivalent multilevel fixed effects 

specification of (6) or (16) by Q .  u

 

7.3.   Extensions using CIGLS 

 

7.3.1. Group level variables 

An obvious extension to (14) is to consider explanatory variables measured at the 

group level, such as model (1). Where model (1) is true and group level variables Z  

are orthogonal to , estimation using CIGLS proceeds in a straightforward manner 

and we construct S as in (17), except now Y y , where  

uj
∗

{ }� � ( � � )Y X Zij X Z= = − +∗β β ∗ �βX
∗
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and  represent current estimates. Where correlations between group level variables 

Z and   exist, estimation using CIGLS will result in biased and inconsistent 

estimates of 

�βZ
∗

uj
∗

βZ . This is an example of omitted variable bias and IV estimation 

techniques will be required. Section 8 of this paper considers an example of the 

income returns to schooling where the response of interest is a measure of wage rate 

and the data consist of a panel of repeated yearly observations on individuals. A 

problem with this analysis is that individual ability and years spent in education are 

thought, a priori, to be correlated with one another and also with wage rates. This 

leads to a potential problem of correlation between a group level variable (educational 

achievement) and the group level error term (individual specific variability) described 

above. The solution offered is to instrument for educational achievement.   

β0

 

7.3.2. Group level effects and their interpretation 

Suits (1984) and Kennedy (1986) discuss the difficulties in interpreting model (6) 

based on the LSDV approach since identification often involves constraining one of 

the dummy variable coefficients to zero (in the presence of a constant term) and 

estimating the effects of other group membership relative to this ‘baseline’ group. 

Suits (1984) suggests that to aid interpretation of the coefficient estimates derived 

they should first be transformed such that estimates attached to all dummy variable 

groups are shown together with the corresponding adjustment to the constant 

regression term, β0 . In the case where all groups have equivalent populations, β0  

may be interpreted as the population average. Where within group population sizes 

differ,  represents a weighted population average (Kennedy (1986)). The estimation 

of S in (16) above does not rely on identification restrictions and as such S consists of 

group effect estimates for all groups, not M − 1 as for the LSDV estimator. 

 

7.3.3. Random coefficient models 
The first extension is to consider complex level 1 variation (for a discussion, see 

Goldstein (1995), chapter. 3). The specification of random coefficients at this level 

can be viewed as explicitly modelling heteroskedasticity which may be of substantive 

importance to the analyst. The basic results outlined above still hold, but now we no 
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longer have the equivalence between OLS and GLS in the case where the variables 

are measured from their group means, and OLS may be much less efficient than GLS.  

 

The second extension is where we have random coefficients at level 2 and the 

algorithm is modified as follows. As before, we calculate the quantities W and 

regress these on the level 2 random part explanatory variables. Thus, if we have an 

‘intercept’ (  and a ‘slope’ (  at level 2, such that in model (14); u v

{ wij= �

xj j= +

}

j)S0 )S1 ij λ , 

where effects v  represent an intercept parameter and j λ j  a slope parameter, then we 

estimate the coefficients in the following OLS model for each level 2 unit (or 

combining into a single OLS analysis with dummy variables for the groups): 

 

�w s s x eij ij ij= + + ∗∗
0 1          (21) 

 

Once we have obtained the estimates  and  for each group j, we can construct the 

vectors  and  by multiplying the vectors 

�s0 �s1

S0 S1 ι n j
 by s  and  and stacking the 

resulting vectors. We then carry out GLS estimation for the model 

�0 �s1

 

Y X S S EX= + + +∗β 0 1
∗ ∗

e

       (22) 

 

where  is the  vector . S1
∗ N ×1 x Sij 1

 

If we re-express (21) as an OLS regression across all groups we have: 

 

� **w dij j j
j

M

j j ij
j

M

= + +
= =
∑ ∑α ξ ψ

1 1

      (23) 

 

where ψ j ijx d= j  and { is a set of }d j M  dummy variables. The corresponding 

coefficients are represented by ξ j . We can retrieve the constructed vector  by 

multiplying the vectors 

S0

ι n j
 by the estimated coefficients α j  and stacking the resulting 

vectors.  can be retrieved in a similar way by stacking the vectors obtained by S1
∗
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multiplying the vectors ι n j
 by the set of coefficients ξ j . The equivalent LSDV 

estimator is obtained as follows. 

E+ **

( N ×

( ×

D

 

In matrix form (and using the multilevel notation) the equivalent model formed by 

combining equation (23) with the set of fixed part predictor variables of interest may 

be written as: 

 

Y X D DX= + + ∗β α ξ        (24) 

 

where Y  and E ∗∗  are dimensioned vectors, 1 β  is a (  vector and both )P × 1

α and ξ  are vectors of dimension ( . )M × 1 X  and  are (  and ( )  

dimensioned matrices respectively, and   is an  matrix formed by 

multiplying the dummy variable matrix D by the random coefficient vector 

D )N ×

)N M

P N M×

D∗

X T , that 

is D X DT∗ = .  

)

 

Model (24) is overidentified and cannot be estimated in a single step. In the presence 

of a constant term, the usual restriction is to re-specify  and  to be matrices of 

order . The resulting (consistent) estimator is then LSDV.  

D∗

N M× −( 1)

 

If some of the level 2 random coefficients are uncorrelated with any of the 

explanatory variables, then these may be taken out and estimated in the usual way. To 

do this (21) will need to be modified to include only the correlated random 

coefficients and a GLS regression carried out for each level 2 unit, with the 

appropriate random coefficient contributing to the variance structure. 

 

7.3.4.    Higher levels 

CIGLS is not restricted to the simple case of a two level hierarchy and the procedure 

can be extended to any number of levels but not to the case where a level 1 random 

effect  is correlated with an explanatory variable. The reason for this is 

essentially the same as the case discussed in 4.1. and applies generally where 

explanatory variables are correlated with residuals (random effects) at the same level. 

( )eij
∗
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8. EXAMPLE 

 

8.1. Two-level variance components model:  

Returns to schooling example of Cornwell and Rupert (1988). 

The following example is based on data used by Cornwell and Rupert (1988) and 

Baltagi and Khanti-Akom (1990) in their respective analyses of future income returns 

to schooling and represents a subset of the Panel Study of Income Dynamics (PSID) 

consisting of a panel of 595 individuals observed over the years 1976 to 1982.  

 

The analyses of Cornwell and Rupert and Baltagi and Khanti-Akom were primarily 

concerned with an investigation into the relationship between income returns from 

employment and schooling experience where the response was a measure of wage 

rate. Whilst some of the potential predictors of income were time varying, others were 

not and a random effects specification was adopted. As the authors highlight, a 

potential problem with such an analysis is that individual ability or achievement and 

years spent in education are likely to be highly correlated with one another and ability 

may also be highly correlated with wage rates. If conditioning on years spent in 

education does not remove the relationship between ability and wage rates then we 

may obtain an inconsistent estimator of the years spent in education coefficient. By 

instrumenting for this variable, and applying the estimators described in section 5, the 

authors were able to obtain consistent parameter estimates and assess the relative 

efficiency gains of the AM and BMS estimators over the HT estimator. Although 

primary interest was with the estimated parameter of the years spent in education 

variable, various time varying variables were also specified as endogenous and 

instrumental variables applied accordingly.    

 

Full details of the data used can be found in Cornwell and Rupert. The response 

variable is log wage and the set of explanatory variables are as follows: years spent in 

education (ED); years of full-time work (EXP); weeks worked (WKS); occupation 

(OCC = 1, if blue collar occupation,  = 0 otherwise); industry (IND = 1, if individual 

works in manufactoring industry, = 0 otherwise); residence (SOUTH = 1, SMSA = 1, 
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if individual resides in the south or metropolitan areas respectively, = 0 otherwise); 

marital status (MS = 1 if individual is married, = 0 otherwise); union coverage 

(UNION = 1,if wage is set by union contract, = 0 otherwise); gender (FEM = 1 if 

female; 0 otherwise); race (BLK = 1 if black ethnic origin, = 0  otherwise). FEM, 

BLK and ED are time invariant, all other variables are time varying.  

 

We adopt the model specification of Baltagi and Khanti-Akom such that OCC, 

SOUTH, SMSA and IND are assumed exogenous time varying regressors and FEM 

and BLK are assumed exogenous time-invariant regressors. To estimate the proposed 

models we apply the multilevel IGLS estimator, the within estimator, the HT, AM and 

BMS instrument set applied to the IGLS estimator,  the CIGLS estimator and the HT 

instrument set for the endogenous ED variable applied to the CIGLS estimator. All 

models included time dummies to capture productivity and price level effects (the 

corresponding parameter estimates are not shown). Mundlak’s specification was not 

included since aggregating the time dummies would lead to collinearity. 

 

The results for the above estimators are given in Table 1. The IGLS estimates differ 

from the GLS results reported by Baltagi and Khanti-Akom. This is due to differences 

in estimated variance components. Baltagi and Khanti-Akom use , and 

 throughout. We estimate both the fixed part parameters and the variance 

components iteratively and the inconsistency of the fixed part parameter estimates 

will be fed into the estimates of the variance components. The main differences are 

observed in the estimates for OCC, SOUTH, SMSA, and MS. These are respectively, 

1.5, 1.7, 5.3 and 0.6 times the size reported by Baltagi and Khanti-Akom.  

� .σε
3 0 023=

� .σv
3 0 256=

 

The estimates of the endogenous education variable ED change quite dramatically 

moving across the results of Table 1. The inconsistent IGLS estimator of ED is 

0.0663, the HT-IGLS estimate is 0.2241, the AM-IGLS estimate is 0.1472 and the 

BMS-IGLS estimate is 0.0878. The corresponding standard errors also decrease 

sharply moving from HT-IGLS to BMS-IGLS. The CIGLS estimates coincide with 

the Within estimates but the efficiency gains are apparent from the decreased standard 

errors. The increased efficiency of CIGLS over the instrumental variables estimators 

are also notable for the coefficient of EXP. CIGLS is a consistent estimator of the 
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time-varying variables, but remains an inconsistent estimator of the time-invariant ED 

variable.  

 

The final three models of Table 1 combine the IV estimators of HT, AM and BMS 

with CIGLS by instrumenting for ED alone and conditioning on group level effects 

using CIGLS. The time-varying parameter estimates of the HT-CIGLS, AM-CIGLS 

and BMS-CIGLS estimators coincide with those obtained using CIGLS, however, in 

general, there are slight efficiency gains moving from HT-CIGLS to BMS-CIGLS 

albeit very modest. The instrumental variable estimates of ED are 0.0973, 0.09316 

and 0.0742 respectively. For HT and AM, these differ from the results of HT-IGLS 

and AM-IGLS and are closer to the results obtained by CIGLS. Again, gains in 

efficiency can be observed moving from HT-CIGLS to BMS-CIGLS. These gains are 

also observed comparing IGLS with instrumental variables and the corresponding 

CIGLS with instrumental variables. As observed by Baltagi and Khanti-Akom the 

gains in efficiency are not limited to the ED variable, but can also be seen in the EXP 

estimate, although this trend does not persist beyond CIGLS. 

 

Cornwell and Rupert and Hausman and Taylor (1981) note that the estimated 

schooling coefficient increases when using instruments over the estimate obtained 

when not controlling for the correlation between the explanatory variables and the 

individual effects. This is also true here, where all IV estimators using IGLS provide 

larger coefficient estimates for ED, and similarly IV with CIGLS provides increased 

estimates over CIGLS alone. CIGLS also produces larger estimates than IGLS.  

 

 

9.  DISCUSSION 

In this paper we have shown how consistent estimation of the coefficients of 

endogenous variables can be obtained for a general class of multilevel models. 

Standard methods for random effects panel data models rely heavily on instrumental 

variables techniques and their application to multilevel models are also described. By 

conditioning on estimated group means, a conditioned estimator of parameters 

(CIGLS) is derived. The efficiency gains and finite sample biases of these approaches 

are compared in an example of the income returns to schooling analysed by Cornwell 
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and Rupert (1988) and subsequently Baltagi and Khanti-Akom (1990). The efficiency 

gains using CIGLS are not limited to the estimated coefficients of the group-invariant 

variables, but are also present in group-varying parameter estimates. Efficiency gains 

are also noted using CIGLS estimation over instrumental variables estimation. For 

group-varying variables, CIGLS estimates coincide with the parameter estimates 

obtained using the Within estimator. The methods described are applicable to the full 

range of multilevel models, including many levels in the data hierarchy and complex 

residual heterogeneity. Macros enabling CIGLS estimation within software 

specifically designed for multilevel modelling (MLwiN: Rasbash, J., Browne, W., 

Goldstein, H., Yang, M., et al. (1999)) are available from the authors. At present the 

method is only applicable to models with linear link functions, although research into 

the applicability of the procedures to non-linear models is underway.  

 22
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