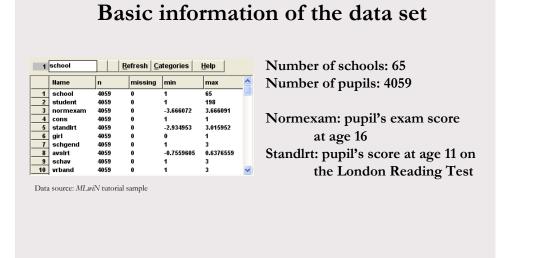
Introduction to Multilevel Modelling and the software *MLwiN*

Lecture at China National Institute for Educational Research, China 7 March 2008

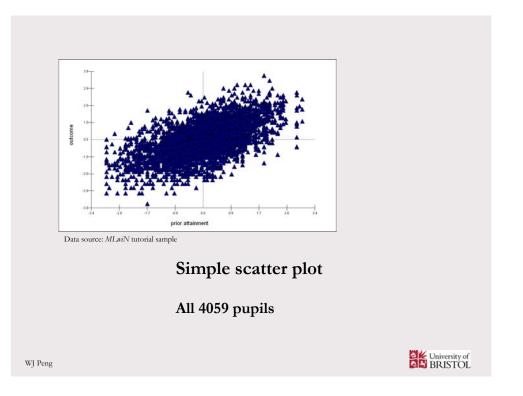
> Wen-Jung Peng Graduate School of Education University of Bristol

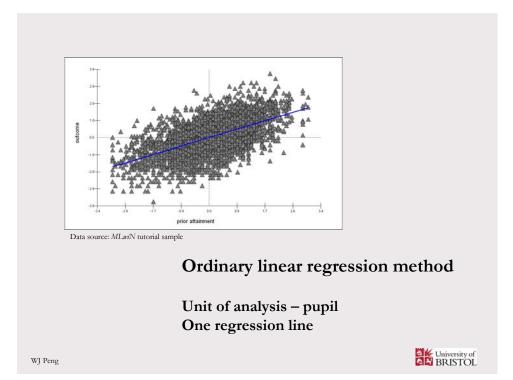

> > University of BRISTOL

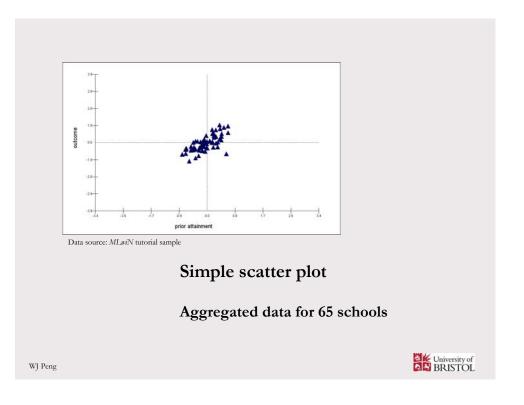
Review some concepts

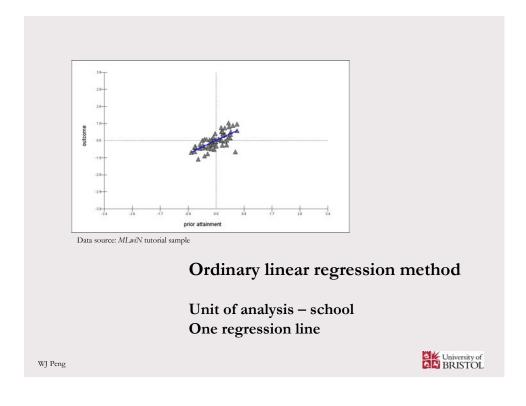
The data set used to address the related issues in this lecture – *MLwiN* tutorial sample

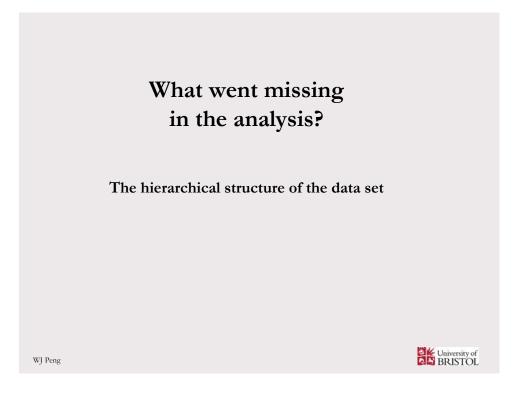
(see Rasbash, et al, 2005 - A User's Guide to MLwiN)

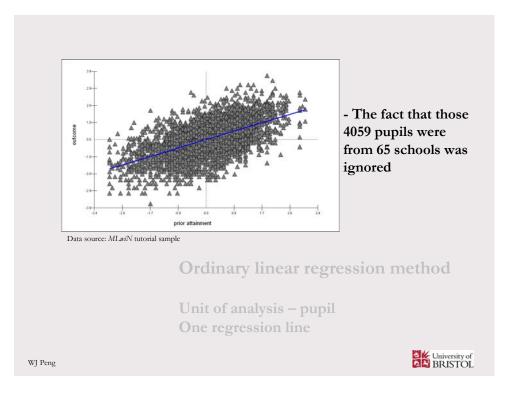

WJ	Peng
----	------

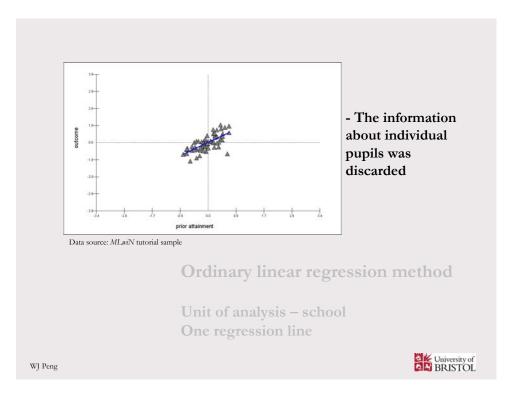

University of BRISTOL

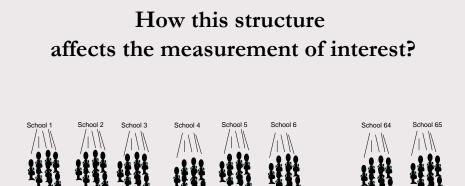


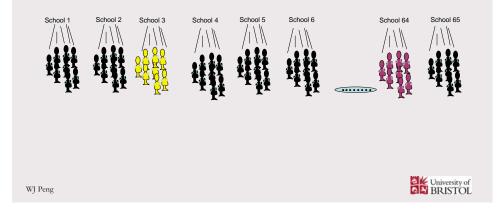

Q1: The relationship between 'pupil's exam score at age 16' and 'pupil's score at age 11 on the London Reading Test' - the effect of 'standlrt' (prior attainment) on 'normexam' (outcome)

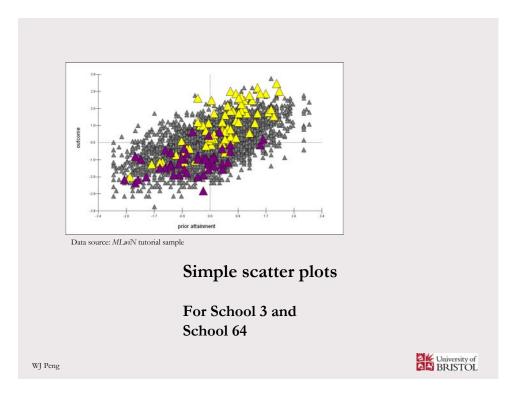


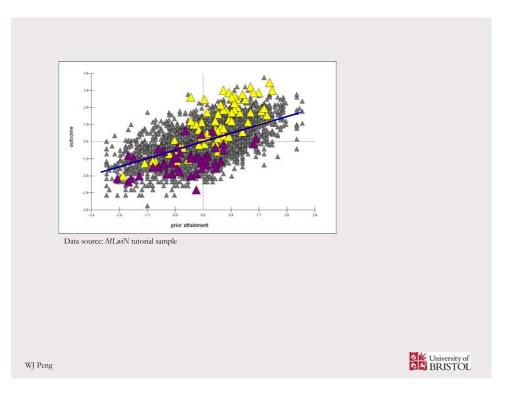


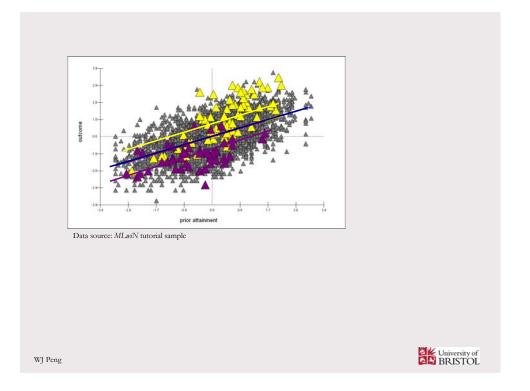


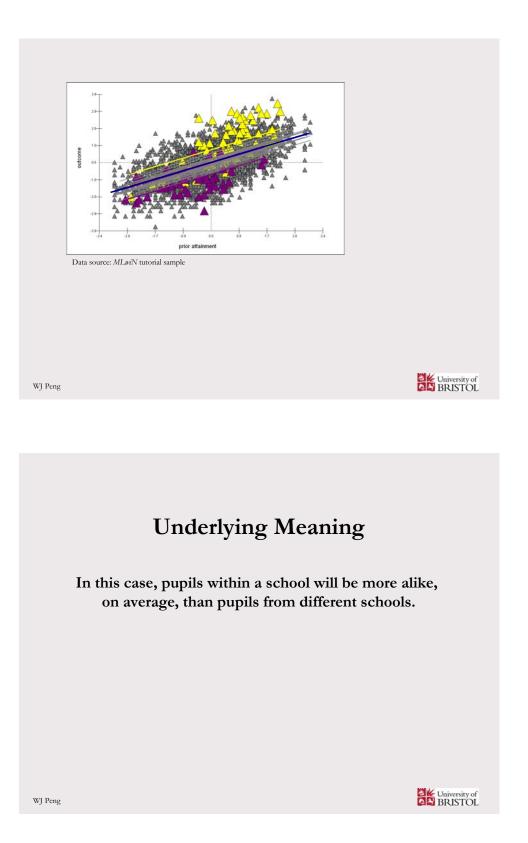


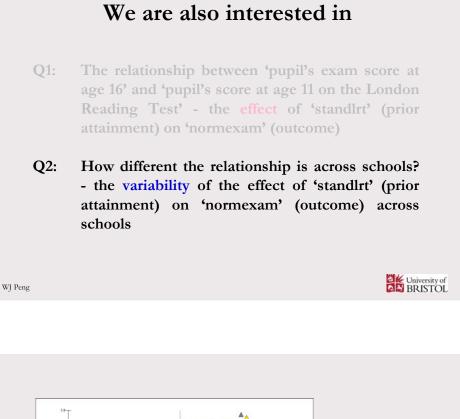


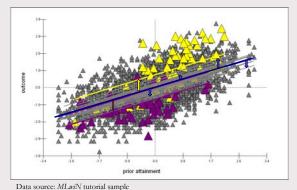





.....


How this structure affects the measurement of interest?



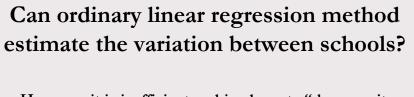


The variation between schools

Can ordinary linear regression method estimate the variation between schools?

It is possible that "The variation between schools could be modelled by incorporating separate terms for each school..."

(Rasbash, et al., 2005)

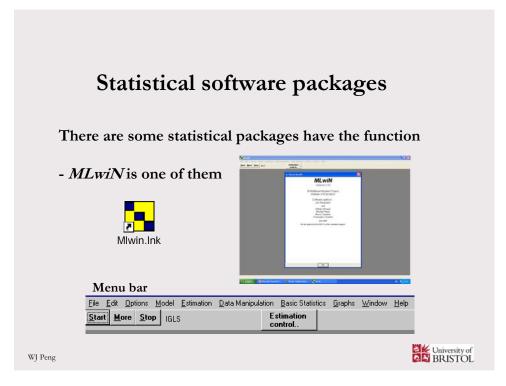

University of BRISTOL

For example, to fit 64 school dummy variables in a model using school 1 as the reference school

WJ Peng

norm	exam, = $a_1 + \beta_1$ standlrt, $+ \beta_2$ school_2, $+ \beta_3$ school_3, $+ \beta_4$ school_4, $+ \beta_4$ school_5, $+ \beta_4$
norm	$\mu_{a} = \mu_{a} + \mu_{b} + \mu_{b$
	$\beta_{11} \text{school} _ 11_i + \beta_{12} \text{school} _ 12_i + \beta_{13} \text{school} _ 13_i + \beta_{14} \text{school} _ 14_i + \beta_{15} \text{school} _ 15_i + \beta_{15} \text{school}$
	$\beta_{16} \text{school}_{16_i} + \beta_{17} \text{school}_{17_i} + \beta_{18} \text{school}_{18_i} + \beta_{19} \text{school}_{19_i} + \beta_{20} \text{school}_{20_i} + \beta_{20} \text{school}$
	$\beta_{21} \text{school}_{21_i} + \beta_{22} \text{school}_{22_i} + \beta_{23} \text{school}_{23_i} + \beta_{24} \text{school}_{24_i} + \beta_{25} \text{school}_{25_i} + \beta_{25} \text{school}$
	$\beta_{26} \text{school} \ 26_i + \beta_{27} \text{school} \ 27_i + \beta_{28} \text{school} \ 28_i + \beta_{29} \text{school} \ 29_i + \beta_{30} \text{school} \ 30_i + \beta_{30} \text{school}$
	$\beta_{31}\text{school}_31_i + \beta_{32}\text{school}_32_i + \beta_{33}\text{school}_33_i + \beta_{34}\text{school}_34_i + \beta_{35}\text{school}_35_i + \beta_{34}\text{school}_34_i + \beta_{35}\text{school}_35_i + \beta_{35}\text{schoo}_35_i + \beta_{35}\text{schoo}_3$
	β_{36} school_36 _i + β_{37} school_37 _i + β_{38} school_38 _i + β_{39} school_39 _i + β_{40} school_40 _i +
	$\beta_{41} \texttt{school_41}_i + \beta_{42} \texttt{school_42}_i + \beta_{43} \texttt{school_43}_i + \beta_{44} \texttt{school_44}_i + \beta_{45} \texttt{school_45}_i + \beta_{4$
	$\beta_{46} \text{school}_46_i + \beta_{47} \text{school}_47_i + \beta_{43} \text{school}_48_i + \beta_{49} \text{school}_49_i + \beta_{50} \text{school}_50_i + \beta_{47} \text{school}_50_i + \beta_{47} \text{school}_49_i + \beta_{47} \text{schoo}_49_i + \beta_{47} $
	$\beta_{51} \texttt{school}_51_i + \beta_{52} \texttt{school}_52_i + \beta_{53} \texttt{school}_53_i + \beta_{54} \texttt{school}_54_i + \beta_{55} \texttt{school}_55_i + \beta_{55} \texttt{schoo}_55_i + \beta_{55} \texttt{scho}_55_i + \beta_{55} \texttt{schoo}_55_i + \beta_{55} \texttt{schoo}_55_i + \beta_{55$
	$\beta_{56} \text{school}_56_i + \beta_{57} \text{school}_57_i + \beta_{58} \text{school}_58_i + \beta_{59} \text{school}_59_i + \beta_{60} \text{school}_60_i + \beta_{57} \text{school}_60_i + \beta_{57} \text{school}_60_i + \beta_{57} \text{school}_60_i + \beta_{57} \text{school}_50_i + \beta_{57} \text{schoo}_50_i + \beta_{57} $
	$\beta_{61} \texttt{school}_61_i + \beta_{62} \texttt{school}_62_i + \beta_{63} \texttt{school}_63_i + \beta_{64} \texttt{school}_64_i + \beta_{63} \texttt{school}_65_i$

However, it is inefficient and inadequate "because it involves estimating many times coefficients...because it does not treat schools as a random sample..."

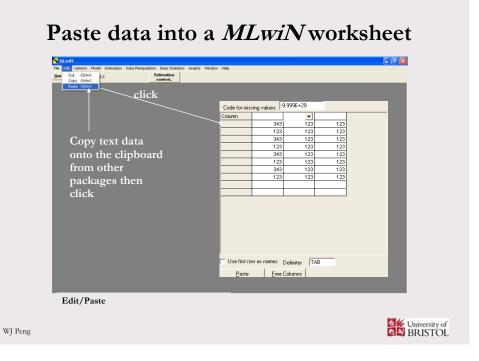

	(Rasbash, et al., 2005)
Think about a national data set with hundreds of schools	
	University of PRISTO

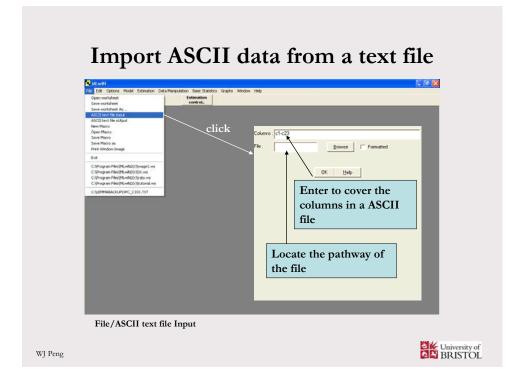
A statistical technique that allows an analysis to take account of the levels of hierarchical structure in the population so that we can

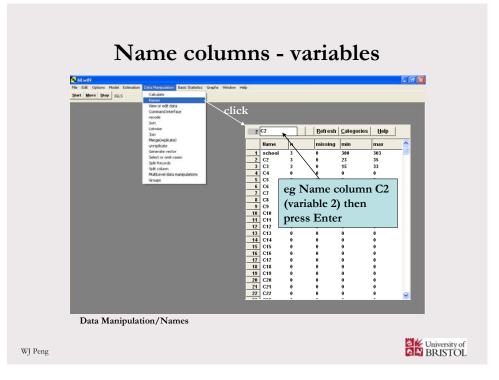
- treat sample as random
- specify and fit a wide range of multilevel models
- understand where and how effects are occurring

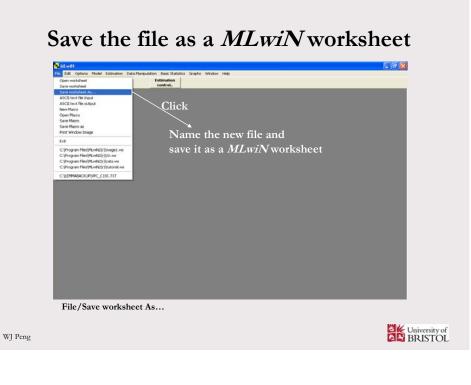
(Rasbash, et al., 2005)
University of BRISTOL

MLwiN		
e Edit Options Model Estimation Data Manij	Jation Basic Statistics Graphs Window Help Estimation	
art More Stop	control.	

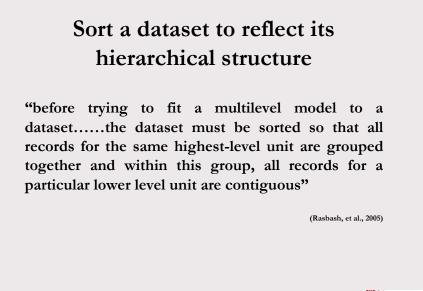

Get started with creating a MLwiN worksheet

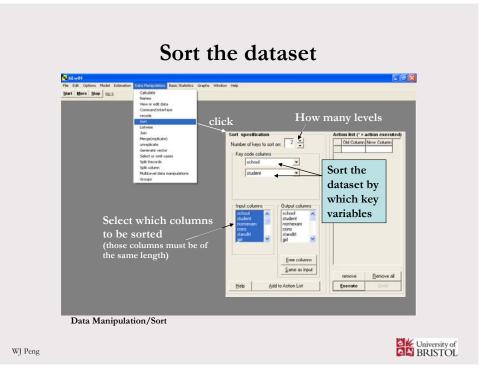

MLwiN can only input and output numerical data


- code data numerically
- assign an identical numerical code to all missing data
- three ways of creating a *MLwiN* worksheet:
 - input data into a *MLwiN* worksheet
 - copy and paste data into a *MLwiN* worksheet
 - import ASCII data from a text file


WJ Peng

No. 100 Control House Control Control State	or Cellshiresulator Back Strates Orgh W Cellshire Cellshire Cellshire Consult defaults reach Son Consult defaults reach Son Consult defaults reach Son Consult defaults reach Consult defaults reach Son Consult Consult defaults Son Consult Consult defaults Son Consult Consult defaults Son Consult Son Consul	ick goto line 1 view Help Font CI(1) C2(0) C3(0) 0 0 0 0 0 0 0 0 0 0 0 0 0
Data Manipul	ation/View or edit data	





Declare the missing data	
Ver Edit Storage Holde Editation: Data Respublicon: Basic Statistics: Graphs: Window: Help: Start bit: Analitem Charling remains and resing value code)	
siley	
Worksheet Numbers Directories	
# digits before decimal point 4 #significant digits	
# digits after decimal point 3 exponent	
Set all values of to be missing	
Help Apply Done Cancel	
Set a specific missing value code (be sure the same missing value code is used for every variable)	
inissing value code is used for every variable)	
Options/Worksheet/Numbers	_
WJ Peng	University of BRISTOL

Mill with File Edit Options Start More Ste	totel Extensition Data Mangulation Basis St Gualdons Multiple regression Main Effects and Interactions Heracitory Hemai Catanate Lables Trajectories Residueli		ore Helip					
	Reiduali Variance function Entervala and tests Constrain Parameters Weights Subscripts HDRC +	ievel range bols school (j) 1.65 65 student (i) 1.196 40	1		Options	<u>H</u> elp	9	
		Details L2ID: 1, j= 1 of 65 NI 73	L2 D: 2,j= 2 of 65 N1 55	L2 ID: 3,j = 3 of 65 N1 52	L210: 4,j = 4 df 65 Nf 79	L210: 5,j = 5 of 65 N1 35		<u>^</u>
View		L2/D: 6, j = 6 of 65 N1 80	L2 D: 7,j= 7 of 65 N1 88	L210: 8,j = 8 of 65 N1 102	L210: 9,j = 9 of 65 N1 34	L2ID: 10,j = 10 of 65 N1 50		
	rchical					L2ID: 15,j = 15 of 65 NI 91		
struc	ture of a data	L210: 16,j = 16 of 65	L2 D: 17, j = 17 of 65	L2 ID: 18,j = 18 of 65	i L210: 19,j = 19 of 65	L210: 20,j = 20 of 65		
	fter fitting a	N1 88	NT 126	N1 120	N1 55 L210: 24,j = 24 of 65	NT 39		
mod	el	NI 73	NT 90	NT 28	NH 37	NI 73		
		L210: 26,j = 26 of 65 NI 75	L2 ID: 27, j = 27 of 65 N1 39	L2 ID: 28,j = 28 of 65 N1 57	L210: 29,j= 29 of 65 N1 79	L210: 30,j = 30 of 65 N1 42		
		L2ID: 31, j = 31 of 65 N1 49	L2 D: 32, j = 32 of 65 NI 42	L2 D: 33,j = 33 of 65 N1 77	L210: 34,j = 34 of 65 N1 26	L2ID: 35,j = 35 of 65 N1 38		

Checklist

All value codes are numerical?	
An identical missing value code?	
The dataset has been sorted?	
The dataset is a MLwin worksheet?	

WJ Peng

Understand the notation used in *MLwiN*

An example – linear regression with continuous variables x and y for one school with i number of pupils

$\hat{y}_i = a + bx_i$	i = 1, 2, 3the number of pupils
$y_i = \hat{y}_i + e_i$	e_i = residual (or error) ie, the difference
$= a + bx_i + e_i$	between y_i and \hat{y}_i – pupil level
	<i>a</i> = intercept (average across all pupils)
	b = slope (coefficient – the effect of x)

a (intercept) and b (slope of x) define the average line across all pupils in the school.

WJ Peng

Understand the notation used in *MLwiN*

For one school	$y_i = a + bx_i + e_i$
For a number of schools	$y_{i1} = a_1 + bx_{i1} + e_{i1}$ $y_{i2} = a_2 + bx_{i2} + e_{i2}$ $y_{ij} = a_j + bx_{ij} + e_{ij}$
There is Thus	$a_{j} = a + u_{j} - \text{school level}$ $y_{ij} = a + bx_{ij} + u_{j} + e_{ij}$

WJ Peng

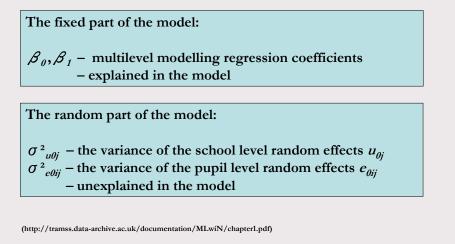
University of BRISTOL

Understand the notation used in MLwiN

For a number of schools	$y_{ij} = a + bx_{ij} + u_j + e_{ij}$
Introduce x_0 (=1) and symbols β_0 and β_1 to denote a, b	$y_{ij} = \beta_0 x_0 + \beta_1 x_{ij} + u_{0j} x_0 + e_{0ij} x_0$ $x_0 \text{ called cons in } MLwiN$

 $y_{ij} = \beta_{0ij} x_0 + \beta_I x_{ij}$ $\beta_{0ij} = \beta_0 + u_{0j} + e_{0ij}$

alled cons in *MLwiN* general notation


 $a + bx_{ij} + u_j + e_{ij}$

i = pupil level, j = school level

 $\mathcal{\beta}_0$ and $\mathcal{\beta}_1$ define the average line across all pupils in all schools.

WJ Peng

WJ Peng

Fit a multilevel model in *MLwiN* - start with simple models -

"Multilevel modelling is like any other type of statistical modelling and a useful strategy is to start by fitting simple models and slowly increase the complexity."

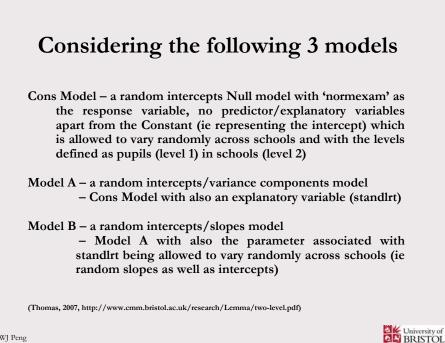
"It is important...to know as much as possible about your data and to establish what questions you are trying to answer."

(Rasbash, et al., 2005)

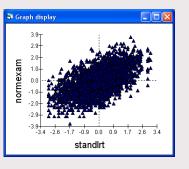
University of BRISTOL

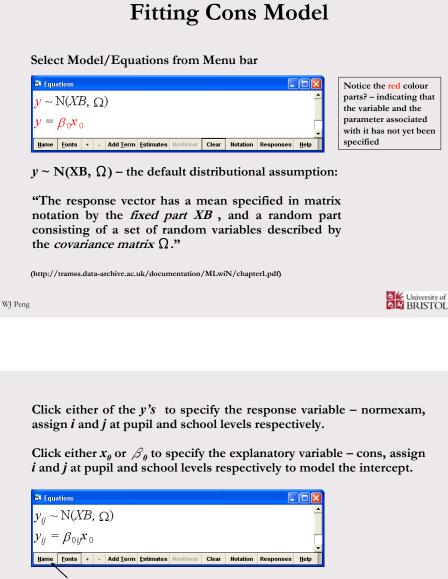
University of BRISTOL

Research questions


We are interested in exploring - via data modelling - the size, nature and extent of the school effect on progress in normexam.

Q1 - What the relationship between the outcome attainment measure normexam and the intake ability measure standlrt would be?

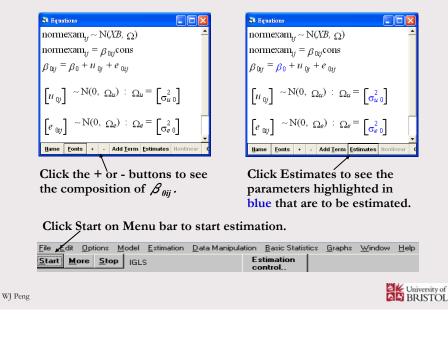

Q2 - How this relationship varies across schools (what the proportions of the overall variability shown in the plot attributable to schools and to student)?

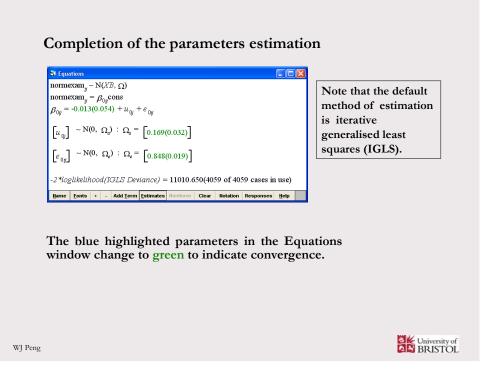

(http://tramss.data-archive.ac.uk/documentation/MLwiN/chapter1.pdf)

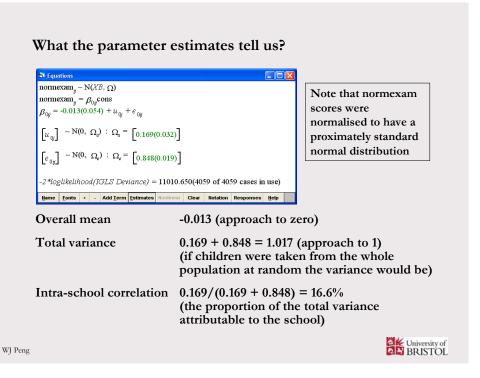
WJ Peng

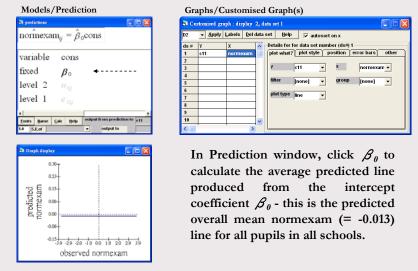
WJ Peng

Click Name to show the names of the variables.




Notice the variables and parameters have changed from red to black? – indicating that specification is completed.


(http://www.cmm.bristol.ac.uk/research/Lemma/two-level.pdf)


Cons Model has now been specified

Graphing prediction

Graphing prediction

Models/	Treater		E	
normexar	$\mathbf{n}_{ij} = \hat{\boldsymbol{\beta}}_{0}$	cons		
variable	cons			
fixed	β_0	+		-
level 2	u _{Qj}	.		-
level 1	e _{oij}			
e Eonts Barne	Çalc Help	output from		e12
LØ S.E.of		▼ out	out to	

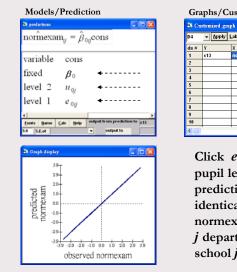
predicted

WJ Peng

Graphs/Customised Graph(s)

D3	▼ Apply	Labels Del	data	set <u>H</u> elp
ds#	Y	х	^	Details for for data set number (ds#) 1
1	c12	normexam		plot what? plot style position error bars other
2				
3			i	y c12 v x normexam v
4				
5			í	filter [none] - group school -
6				plot type ine
7			i	plot type ine -
8			i	
9				
10			-	

Click also u_{0j} to include the estimated school level intercept residuals in the prediction function and produce the predicted lines for all 65 schools. The line for school *j* departs from the average prediction line by an amount u_{0j} .


observed normexam

-2.0

-10 0.0 1.0 2.0 2.9

Graphing prediction

Graphs/Customised Graph(s)							
🗟 Customised graph : display 4, data set l							
D4 ▼ Apply Labels Del data set Help 🔽 autosort on x							
ds#	Y	x	^	Details for for data set number (ds#) 1			
1	c13	normexam		plot what? plot style position error bars other			
2							
3			1	y c13 v X normexam v			
4				filter Inopel - group echool -			
5				filter [none] v group school v			
6				plot type line 👻			
7							
8							
9			1				
10			×				
<		>					

Click e_{0ij} to include the estimated pupil level intercept residuals in the prediction function too. Plot shows identical predicted and observed normexam (r = 1). Pupil *i* in school *j* departs from the predicted line for school *j* by an amount e_{0ij} .

Fitting Model A - an random intercepts model -

$\begin{array}{c c} & \mathbf{E}_{\text{continues}} & & \mathbf{E}_{\text{continues}} \\ & \mathbf{y}_{g} \sim \mathbf{N}(XB, \Omega) \\ & \mathbf{y}_{g} = \boldsymbol{\beta}_{0g} \mathbf{x}_{0} + \boldsymbol{\beta}_{1} \mathbf{x}_{1g} \\ & \boldsymbol{\beta}_{0g} = \boldsymbol{\beta}_{0} + \boldsymbol{u}_{0g} + \boldsymbol{e}_{0g} \end{array}$	"Note that x_0 has no other subscript but that x_1 has collected subscripts <i>ij</i> .
$\begin{bmatrix} u_{0} \end{bmatrix} \sim \mathbf{N}(0, \ \Omega_{u}) : \ \Omega_{u} = \begin{bmatrix} 2 \\ \sigma_{u0}^{2} \end{bmatrix}$ $\begin{bmatrix} e_{0y} \end{bmatrix} \sim \mathbf{N}(0, \ \Omega_{u}) : \ \Omega_{g} = \begin{bmatrix} \sigma_{e0}^{2} \end{bmatrix}$	<i>MLwiN</i> detects that cons is constant over the whole data set, whereas the values of standlrt change
-2*loglikelihood(IGLS Deviance) = 11010.650(4059 of 4059 cases in use) - t Hame Eonts + - Add Ierm Estimates Honlinear Clear Hotation Responses Help Click Add Term to add an explanatory variab	at both level 1 and level 2."

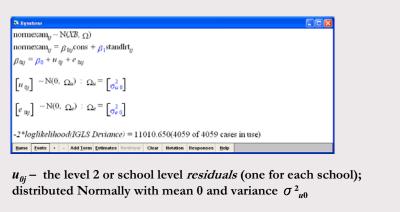
– standlrt.

(http://tramss.data-archive.ac.uk/documentation/MLwiN/chapter1.pdf)

WJ Peng

University of BRISTOL

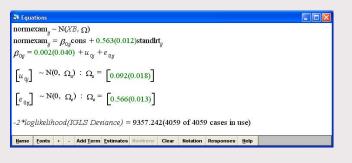
Click the +, -, and Name buttons to see how much the detail of the model is displayed.


 β_{θ} (the intercept) and β_{I} (the slope of standlrt) define the average line across all pupils in all schools.

"The model is made multilevel by allowing each school's summary line to depart (be raised or lowered) from the average line by an amount u_{0j} ." Pupil *i* in the school *j* departs from its school's summary line by an amount e_{0ij} .

(http://tramss.data-archive.ac.uk/documentation/MLwiN/chapter1.pdf)

In other words.....


 e_{0ij} – the level 1 or pupil level residuals (one for each pupil); distributed Normally with mean 0 and variance $\sigma_{e_{0ij}}^2$

(http://tramss.data-archive.ac.uk/documentation/MLwiN/chapter1.pdf)

WJ Peng

S Equations		3	
normexam _{ij} ~ N(XB, Ω)			
$normexam_{ij} = \beta_{0ij} cons + \frac{\beta_1}{\beta_1} standlrt_{ij}$			
$\beta_{0j} = \frac{\beta_0}{\mu_0} + u_{0j} + e_{0ij}$			
$\begin{bmatrix} \mu_{0j} \end{bmatrix} \sim \mathbf{N}(0, \ \Omega_{ij}) : \ \Omega_{ij} \equiv \begin{bmatrix} \sigma_{ij}^2 \\ \sigma_{ij} \end{bmatrix}$ $\begin{bmatrix} e_{0j} \end{bmatrix} \sim \mathbf{N}(0, \ \Omega_{e}) : \ \Omega_{e} \equiv \begin{bmatrix} \sigma_{e}^2 \\ \sigma_{e}^2 \end{bmatrix}$			
$\begin{bmatrix} e_{0j} \end{bmatrix} \sim \mathbf{N}(0, \ \Omega_e) \ : \ \Omega_e \equiv \begin{bmatrix} 2 \\ \sigma_{e \ 0} \end{bmatrix}$			
-2*loglikelihood(IGLS Deviance) = 11010.650(4059 of 4059 case	es in use)		
Name Fonts + - Add Term Estimates Nonlinear Clear Notation Responses Help			
Hame Fonts • - Add Ierm Estimates Nonlinear Clear Notation Responses Help			
The parameters highlighted in blue are Click Start on Menu bar to start estimat	tion.	 	
The parameters highlighted in blue are Click Start on Menu bar to start estimat	t ion. <u>B</u> asic Statistic	 <u>₩</u> indow	Help
The parameters highlighted in blue are Click Start on Menu bar to start estimat Ele Edt Options Model Estimation Data Manipulation Start More Stop 1615	tion.	 <u>₩</u> indow	<u>H</u> elp
The parameters highlighted in blue are Click Start on Menu bar to start estimat Ele Edt Options Model Estimation Data Manipulation Start More Stop 161 S	tion. Basic Statistic stimation ontrol	 ⊻indow	Help
The parameters highlighted in blue are Click Start on Menu bar to start estimat Elle Ed% Options Model Estimation Data Manipulation Start More Stop IGLS Es	tion. Basic Statistic stimation ontrol	 <u>₩</u> indow	

Completion of the parameters estimation

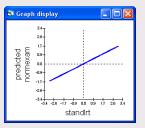
Slope – the slopes of the lines across schools are all the same, of which the common slope is 0.563 with SE = 0.012

Intercept – the intercepts of the lines vary across schools. Their mean is 0.002 with SE = 0.040. The intercept of school j is 0.002 + u_{0j} with a variance of 0.092 and SE = 0.018.

(http://tramss.data-archive.ac.uk/documentation/MLwiN/chapter1.pdf)

WJ Peng

(http://tramss.data-archive.ac.uk/documentation/MLwiN/chapter1.pdf)

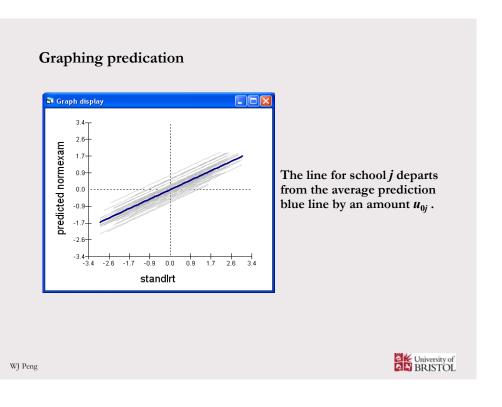

WJ Peng

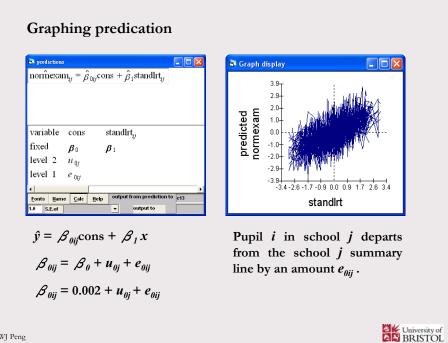
Graphing predication

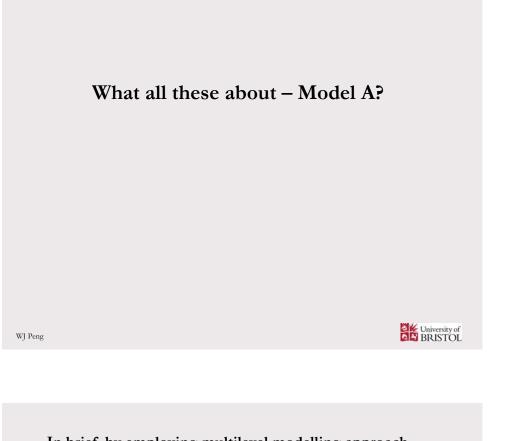
	9 P	0	$s + \hat{\beta}_1 standlrt_{ij}$	
variable	cons	:	standlrt _y	
fixed	β_0		β_1	
level 2	H _U			
level 1	e ou			
4				,
	e <u>C</u> alc	Help	output from prediction	

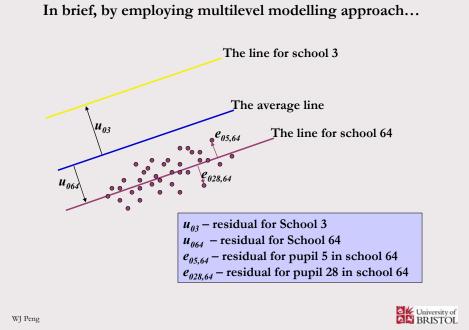
D1	 Apply 	Labels Del	data	set Help 🔽 autosort on x
ds#	Y	X	^	Details for for data set number (ds#) 1
1	c11	standirt		plot what? plot style position error bars other
2				
3				Y c11 • X standirt •
4				
5				filter [none] v group [none] v
6				distance in the second s
7			1	plot type ine -
8				
9				
10			1_	
44			\sim	

$\hat{y} = \beta_{\theta} \text{cons} +$	$\beta_1 x$
--	-------------


 $\hat{y} = 0.002 + 0.563$ standlrt


The average line across all pupils in all schools

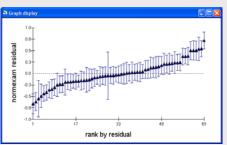

WJ Peng


	Iniversity of BRISTOL

Graphing predication 🗃 Graph display $normexam_{ij} = \hat{\beta}_{0j}cons + \hat{\beta}_1standlrt_{ij}$ 3.4-2.5-1.7-0.9-0.0 -0.9--1.7predicted normexam ${\rm standlrt}_{ij}$ variable cons fixed β_0 β_1 level 2 n_{0j} -2.6 level 1 -3.4 17 -0.9 0.0 0.9 1.7 2.6 3.4 Eonts Barne Cale Belp output from pro standlrt $\hat{y} = \beta_{0j} \text{cons} + \beta_1 x$ One line for each school $\beta_{0j} = \beta_0 + u_{0j}$ $= 0.002 + u_{0j}$ University of BRISTOL

Graphing residuals

Settings Plots	
Dutput Columns	
te tuqtuo frete	30 Set columns
residuals to	C30
1.96 SD(comparative) of residual to	C31
standardised(diagnostic) residuals to	C32
normal scores of residuals to	
normal scores of standardised residuals	
ranks of residuals to	0.33
deletion residuals	
leverage values	
Influence values	
Calculate weighted residuals	0
vet 2.school 💌 Calc	Help

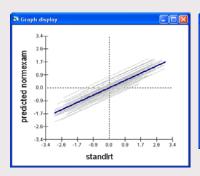

Model/Residuals/Settings

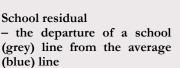
33 schresrank		<u>R</u> efresh <u>C</u>	ategories	<u>H</u> elp	
Name	n	missing	min	max	^
23 c23	0	0	0	0	
24 c24	0	0	0	0	
25 c25	0	0	0	0	
26 c26	0	0	0	0	
27 c27	0	0	0	0	
28 c28	0	0	0	0	
29 c29	0	0	0	0	
30 schres	65	0	-0.6583684	0.7233134	
31 sch2sd	65	0	0.1284661	0.5170535	
32 c32	65	0	-2.4094	2.5058	
33 schresrank	65	0	1	65	
34 c34	0	10	0	0	
DE	•	à	•	•	×

Residuals for individual schools, of which their mean is 0 and their estimated variance of 0.092

WJ Peng

Graphing residuals	
Residuals	Graph display
Settings Plots	
single findadised reidual in romal scores fined set version painvise fined set reidual in reiduals disprose by variable disprose by variable fined set by variable fined set of the reiduals fined set	In the second se
relect subset Apply Heb Model/Residuals/Plots	Each vertical line represents residual with 95% confider interval estimated for each school




s a ence interval estimated for each school.

University of BRISTOL

What is meant by residual?

These school residuals might be regarded as school effect – expressed by the term 'value added' in school effectiveness and improvement research.

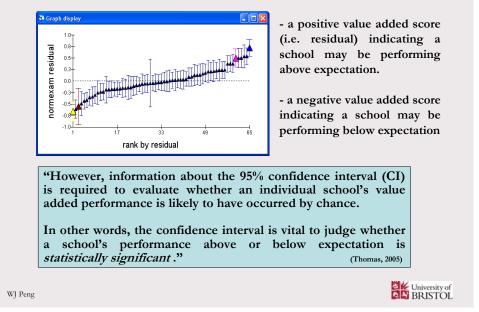
rank by residual

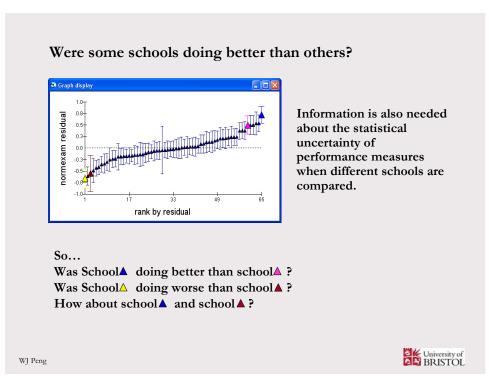
WJ Peng

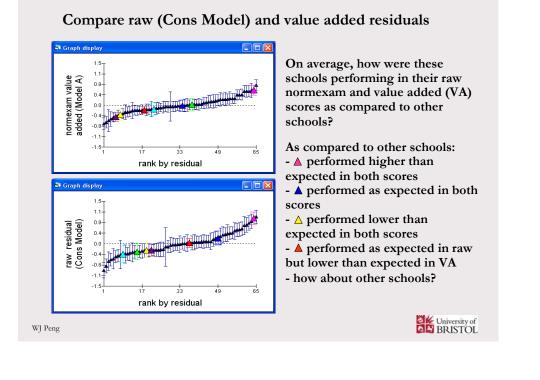
What is meant by value added?

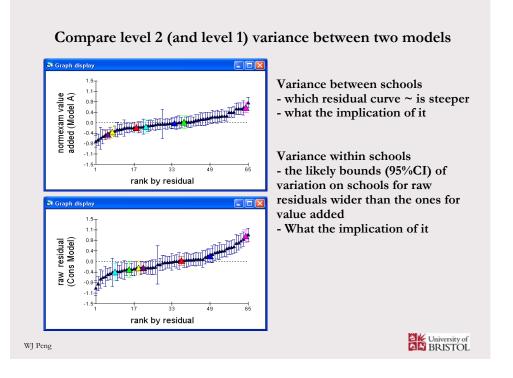
In this case, value added (or residual) for each school represents the differences between the *observed* level of school performance (pupil normexam scores taken at age 16) and what would be *expected* on the basis of pupils' prior attainment (pupul standlrt scores taken at age 11).

exam

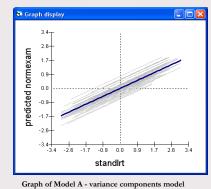

In other words "value added is a measure of the relative progress made by pupil in a school over a particular period of time (usually from entry to the school until public examinations in the case of secondary schools, or over particular years in primary schools – in this case, between age 11 and 16) in comparison to pupils in others schools in the same sample."

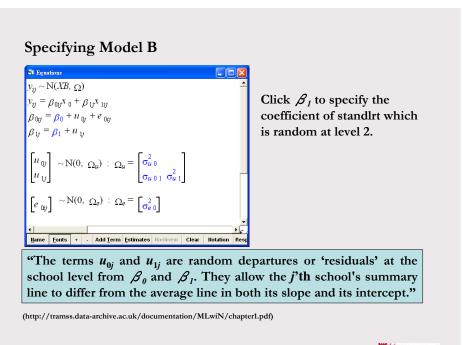

(Thomas, 2005)


(See Thomas (2005) Using indicators of value added to evaluation school performance in UK. Educational Research Journal. 2005 September 2005. China National Institute of Educational Research: Beijing – in Chinese)

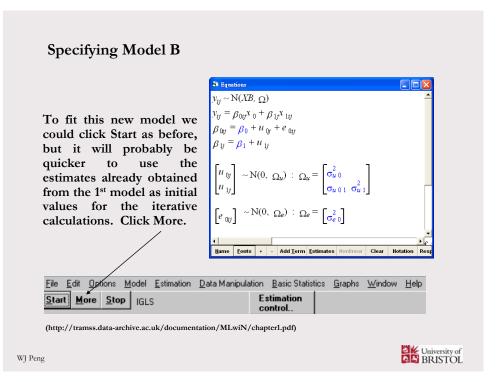


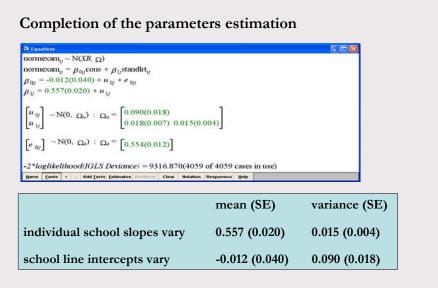
Were some schools doing better than others?



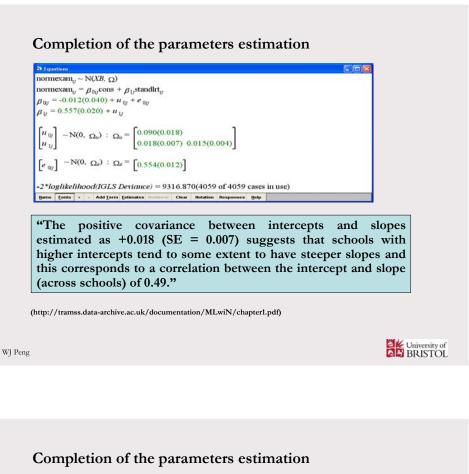


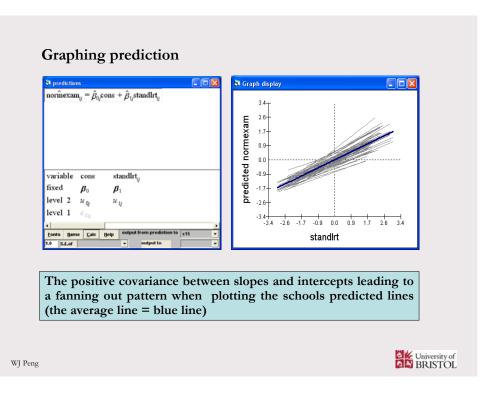
Model A which we have just specified and estimated assumes that the only variation between schools is in their intercepts. "However, there is a possibility that the school lines have different slopes. This implies that the coefficient of standlrt will vary from school to school."

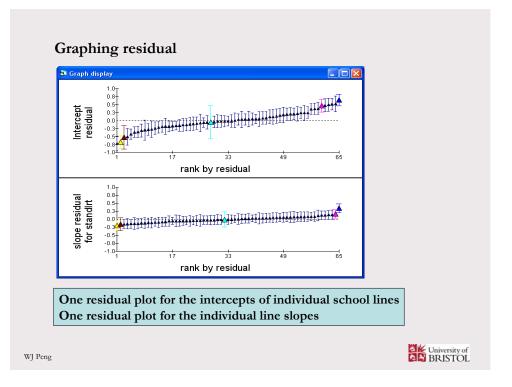

(http://tramss.data-archive.ac.uk/documentation/MLwiN/chapter1.pdf)

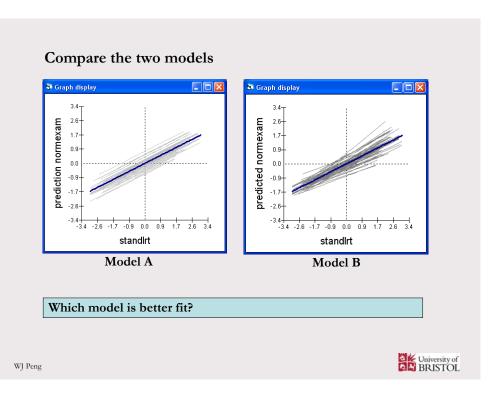

WJ Peng

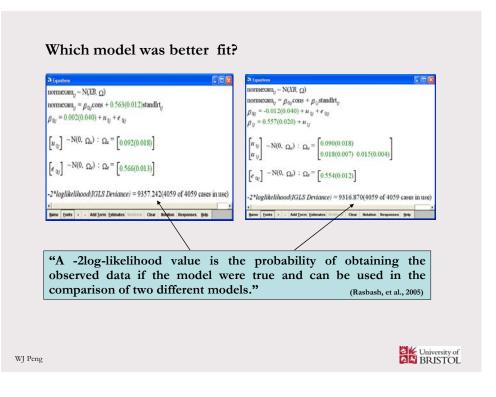
WJ Peng

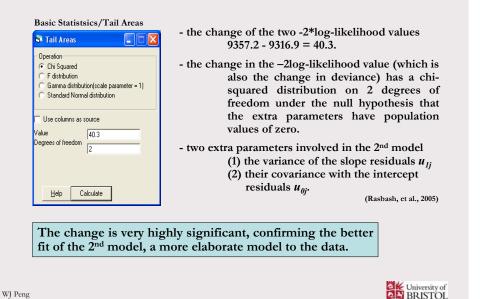



(http://tramss.data-archive.ac.uk/documentation/MLwiN/chapter1.pdf)






 $\frac{\left| \mathbf{u}_{u} \right|^{2}}{\left| \mathbf{u}_{u} \right|^{2}} = \frac{\left| \mathbf{u}_{u} \right|^{2}}{\left| \mathbf{u}_{u} \right|^{2}} + \frac{\left| \mathbf{u}_{u} \right|^{2}} + \frac{\left| \mathbf{u}_{u} \right|^{2}} + \frac{\left| \mathbf{u}_{u} \right|$



Which model is better fit - the likelihood ratio test

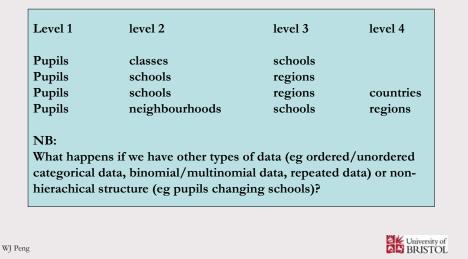
Examples of other modelling

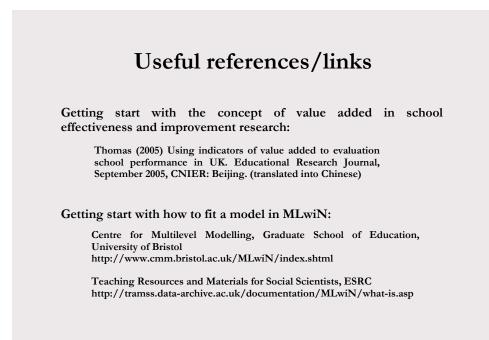
Gender effects

- Do girls make more progress than boys? (F)
- Are boys more or less variable in their progress than girls? (R)

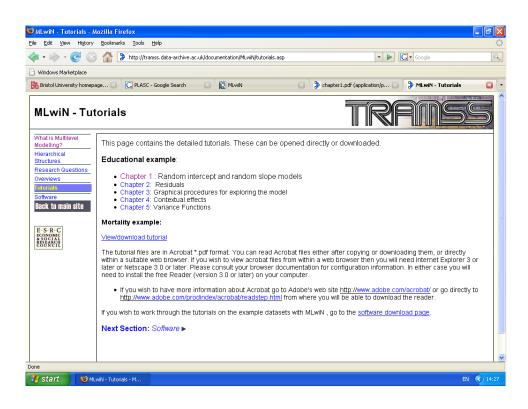
Contextual effects

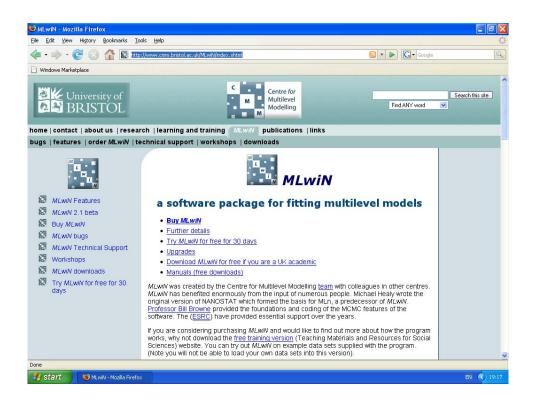
- Are pupils in key schools less variable in their progress? (R)
- Do pupils do better in urban schools (or key schools)? (F)
- Does gender gap vary across schools? (R)


Cross-level interaction


- Do boys learn more effectively in a boys' or mixed sex school? (F)
- Do low ability pupils fare better when educated alongside higher ability pupils? (F)

(Jones, 2007; Rasbash, et al., 2005)




Examples of other hierarchical structures in education settings

