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The multivariate repeated measures model

Suppose we have several measurements made at each occasion for a sample
of individuals. These might be, say, blood pressures, anthropometry,
ventricular mass, diet etc. We are interested in asking questions about the
causal priority or sequence, for example whether a change in blood pressure
is associated with a later alteration in ventricular mass, rather than the
reverse.

Traditionally such questions have been approached through path type models
with measurements at successive (fixed) occasions and relationships across
occasions studied to examine the strength of the relationships (path
coefficients) in various time directions. Thus, if  a prior measurement of x1

has a stronger relationship with a later measurement of x2  than a prior
measurement of  x2  has with x1  we might conclude that x1  is causally prior
to x2 . In reality the situation would seem to be more complicated than this
simple model since the time lag itself presumably enters into any
interpretation and this itself may be a function of age etc. Furthermore, we
are restricted with such models to fixed common occasions, whereas in many
longitudinal studies the occasion times vary. For such data structures
repeated measures models are more appropriate.

With repeated measures data we can also study the relationship across time,
and have the potential for modelling the strength (correlation) between
measurements in continuous time.  It is worth pointing out that with these
models we do not have the scaling problems (identified by Goldstein, 1979
and Plewis, 1985) since we can have physically different measurements of the
‘same’ construct (such as educational achievement) and so long as we can
describe the change over time (perhaps by prestandardising) we are then only
concerned with correlation structures rather than in making ibferences about
absolute change. Of course, these correlations may depend on the precise
form of standardisation and this would need to be investigated. In the case
where we are relating measurements across occasions we also need to
consider the interpretation of possibly different measurements at each
occasion.

There is a special case where the repeated measures approach approximates
the fixed occasion model but also provides more flexibility. Consider the
repeated measurement of students over time, where different measurements
are used for different age ranges. If there is just one measurement on each
student within each age range then we can formulate the repeated measures
model as a multivariate model, fitting a term to each age range measurement,
with some possibly missing. In the fixed part of the model we would adjust
for any age relationship  within each age range. Correlations estimated from
this model would then be age adjusted correlations between the
measurements. The age ranges may overlap and if we have more than one
occasion for some individuals where the same measurement is used, this is
easily accomodated using a further level in the model, below the individual



subject level. We note that this model avoids the need to consider ‘vertical
equating’ procedures designed to produce a common scale for all
measurements, which in general has considerable drawbacks (Goldstein and
Wood, 1988).

What is required is a procedure for cross-correlating a pair of measures with
lags and estimating separate parameters according to whether x1  or x2

comes later in the time sequence and to be able to model the correlation as a
function of the time difference. If we can do this then we are in a position to
judge the relative strengths of the relationships as described above. In the
next section we show how such correlations can be derived from a
multivariate repeated measures model and then introduce an alternative
formulation.

The multivariate repeated measures model

To illustrate the procedure consider the following 3-level model for two
measurements
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where i referes to the measurement, j refers to occasion and k refers to
individual subject. The terms under the summations include both fixed and
random terms, the latter for example including polynomial terms in age with
random coefficients. Level 1 has no variation and we need to specify the
covariance structure at level 2 which is the between-occasion level.

The level 3 variation is that across individual subjects. If we regard the level
2 (within subject) variation as composed of measurement error and
essentially random flutuations then we may use this level 3 variation as the
basis for inference.

To illustrate the procedure we use data taken from a longitudinal study of
aging (Stini, 1990). We have the following between-subject covariance
matrix for subjects between the ages of 60 and 99 years, measured on up to
12 occasions and with age centered at 70 years.



Table 1. Between-individual covariance matrix for boys 11 - 16 years

Log (wt.) BMI Age (logwt.) Age (BMI)

Log (wt.) 0.028

BMI 0.0052 0.0069

Age (logwt.) -0.00016 0.0 0.000041

Age (BMI) 0.0 0.000019 0.0000070 0.000012

If we denote this matrix by Ω  then the correlation between any function of
the random coefficients at this level can be written as
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where the rows of X  define the function of the random coefficients. Thus to
calculate the correlation between log weight at age 69 and bone mineral
index at age 71 we form

X =
−





1 0 1 0

0 1 0 1

which gives a value of 0.36. The corresponding correlation between BMI at
69 years and log weight at 71 years is 0.37. Extending the time intervals we
find that the correlation between log weight at 65 years and BMI at 75 years
is 0.33 whereas that between BMI at 65 years and log weight at 75 years is
0.37.

We have fitted a very simple model here to describe the between subject
variation and there appears to be little difference between the correlations.
We now fit a more complex mode with random quadratic coefficients at the
subject level. The results are in table 2.

Table 2. Between-individual covariance matrix for boys 11 - 16
years - correlations off-diagonal

Log (wt.) BMI Age
(logwt.)

Age (BMI) Age2

(logwt)

Age2

(BMI)

Log (wt.) 0.032

BMI 0.39 0.0080

Age (logwt.) 0.11 -0.07 0.000086

Age (BMI) 0.13 0.07 -0.05 0.000037

Age2   (logwt) -0.82 -0.42 -0.44 0.56 2.1 x 10-7

Age2 (BMI) -0.00009 -1.95 -1.45 0.13 0.87 1.8 x 10-8



We note that two correlations are less than -1 as a result of sampling
fluctuations and indicates that further elaboration of the model would be
useful. With this model we find the correlations at  69 and 71 years are
respectively 0.403 and 0.376 and at 65 and 75 years are respectively 0.474
and 0.290. Thus, we obtain greater differentiation and the direction from log
weight to BMI is associated with a higher correlation

The estimated correlations will depend upon the complexity of the model and
we note that they are derived as functions of the parameterisation we have
adopted rather than being estimated directly. In the next section we look at
ways of directly estimating these correlations as model parameters, which
should provide estimates less sensitive to the precise form of model.

Non linear estimation of cross-variate correlations

At the subject level we specify, for each variate separately, a random
coefficient structure, for example with the age and age squared coeffs
varying across subjects. We then specify the cross-variate covariance
structure as follows by defining the following covariance functions
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We can implement this in MLn by specifying the functions g g1 2,    as random
design vectors for the covariance term where g1  is zero when x x1 2>  and
vice versa for g2 . Several choices for these functions are possible, for
example
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In both cases in (2) when s=0 the common covariance is 2 12σ . Note that in
the discrete occasion case with equal intervals the first function is a first
order autoregressive process and we are then interested in a comparison of
the autoregressive correlations. We can also have different functions for each
correlation.



These functions are similar to those used by Goldstein et al (1994) in
modelling multilevel time series, but here the correlation structure is at the
highest rather than the lowest level of the hierarchy. The model is fitted using
the linearisation procedures described by Goldstein (1995, Appendix 5.1).

In general, to make inferences about causality, we would wish to investigate
the coefficients of the fitted functions g g1 2,  , and plotting these functions
against s. We can elaborate the model by allowing these functions to depend
on further explanatory variables, notably age itself, and also allowing the
variances to change with age etc.

In practice we would expect the second function in (2) with γ = 1to

describe the structure with sufficient flexibility. Further work on fitting such
functions is in progress.
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