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Abstract

In multilevel modelling it is common practice to assume constant variance at level 1 across individu-
als. In this paper we consider situations where the level-1 variance depends on predictor variables. We
examine two cases using a dataset from educational research; in the first case the variance at level 1
of a test score depends on a continuous “intake score” predictor, and in the second case the variance is
assumed to differ according to gender. We contrast two maximum-likelihood methods based on iterative
generalised least squares with two Markov chain Monte Carlo (MCMC) methods based on adaptive
hybrid versions of the Metropolis-Hastings (MH) algorithm, and we use two simulation experiments to
compare these four methods. We find that all four approaches have good repeated-sampling behaviour
in the classes of models we simulate. We conclude by contrasting raw- and log-scale formulations of
the level-1 variance function, and we find that adaptive MH sampling is considerably more efficient
than adaptive rejection sampling when the heteroscedasticity is modelled polynomially on the log scale.
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1. Introduction

Over the past 15 years or so, fitting multilevel models to data with a hierarchi-
cal or nested structure has become increasingly common for statisticians in many
application areas (e.g., Goldstein, 1986, 1995; Bryk and Raudenbush, 1992; Draper,
2002). The main purpose of fitting such models is to partition the variation in a re-
sponse variable as a function of levels in the hierarchy and relate this variability to
descriptions of the data structure. In education, for example, multilevel modelling can
be used to calculate the proportion of variation in an observation that is explained
by the variability between students, classes, and schools in a 3-level nested struc-
ture. Random-effects modelling of this kind is generally combined with fixed-effects
modelling, in which predictors are additionally related to the response variable as
covariates.

Generally these models assume a constant level-1 variance for the error or residual
term for all observations (in our notation students are at level 1 in the 3-level
structure above), but there is no reason why this should be true in all applications.
An alternative is to allow heteroscedasticity—in other words, to fit models that relate
the amount of level-1 variability to predictor variables. We will refer to this here
as complex level-1 variation. Heteroscedasticity is a common modelling concern
in the standard fitting of linear models to data lacking a hierarchical or multilevel
structure (e.g., Weisberg, 1985), but far less attention has been paid to this topic
with multilevel data.

As our main motivating example we consider a dataset studied in Rasbash
et al. (2000), which was originally analysed in Goldstein et al. (1993). This dataset
contains exam results for 4059 pupils from 65 schools sampled from six inner London
Education Authorities. The response variable of interest is the total score achieved
in GCSE examinations (a standardised test taken at age 16 by these pupils). This
variable has already been normalised (transformed by replacing each value by its
standard normal score) in the dataset we consider.

Table 1 contains mean and variance estimates for the response variable for various
partitions of the dataset. One of the main predictors of interest is a score on a reading
test (LRT) that all pupils took at age 11. For purposes of partitioning we have divided
the pupils into 7 groups of roughly equal sample size based on a standardised version
of the LRT score. From the mean column of the table it is clear that girls generally
do a bit better than boys and that the LRT score is positively correlated with the
exam score. It can also be seen that boys’ exam scores are slightly more variable
than girls’ scores and that the variance of the exam score bears a roughly quadratic
relationship to LRT score. Both of these conclusions mean that in fitting a multilevel
model to this dataset it will be worth considering the need for complex variation at
level 1.

The plan of the paper is as follows. In Section 2 we describe two versions of
a maximum-likelihood approach to the fitting of multilevel models with complex
level-1 variation and examine several examples of complex variance structures. Sec-
tions 3 and 4 present a Markov chain Monte Carlo (MCMC) method for Bayesian
fitting of such models based on adaptive Metropolis-Hastings sampling, using two
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Table 1
A comparison of means and variances of normalised exam scores for various partitions of the GCSE
dataset

Partition Sample size Mean Variance
Whole dataset 4,059 0.000 1.000
Boys 1,623 —0.140 1.052
Girls 2,436 0.093 0.940
Standardised LRT < — 1 612 —0.887 0.731
—1 < standardised LRT < — 0.5 594 —0.499 0.599
—0.5 < standardised LRT < — 0.1 619 —0.191 0.650
—0.1 < standardised LRT < 0.3 710 0.044 0.658
0.3 < standardised LRT < 0.7 547 0.279 0.659
0.7 < standardised LRT < 1.1 428 0.571 0.678
1.1 < standardised LRT 549 0.963 0.703

different proposal distributions. In Section 5 we give results from two simulation
studies investigating the bias and interval coverage properties, in repeated sampling,
of the four fitting methods described in the previous three sections. Section 6 exam-
ines alternatives (a) to our MCMC methods and (b) to our formulation of complex
variance structures, and Section 7 discusses our conclusions and suggests extensions
of the work presented here.

2. Maximum-likelihood-based methods and complex variance structures

We begin by describing a general 2-level model with complex variation (later
sections will examine methods to fit alternatives to this general model with additional
constraints added). The basic structure for a general Gaussian multilevel model is

y ~ Nu(XB, V). (1)

Here y is an (n x 1) vector of responses, not necessarily independently distributed,
with f a (py x 1) vector of fixed-effect coefficients of the predictors in the (n x py)
matrix X; n is the total number of level-1 observations in the data set (4059 students,
in the example in Section 1), and p, is the number of fixed effects in the model.
The (n x n) covariance matrix J for the responses contains all the random structure
in the model; for the two-level case we can write the variance term Vj;;; =2 ;; +
2,i; for observation 7 in level-2 unit j (in our example j runs from 1 to 65, the
number of schools in the GCSE data set). In this expression the variance has been
partitioned into separate terms for the two levels, with e and u denoting random
effects at levels 1 and 2, respectively. The covariances between the responses have
the form Vij ;= f(24,ij, 2ui7j) if the two observations are in the same level-2 unit,
and V;; 1 =0 otherwise (also V;;;» =0 for j# ;). This means that if the y vector
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is ordered so that all the observations in each level-2 unit are grouped together, V'
has a block diagonal form.

In this general formulation the level-1 and level-2 variances and covariances are
potentially different for each pair of observations, but important special cases exist
with simpler structure, e.g., variance-components models where both the level-1 and
level-2 variances are constant across observations. The covariates X may make an
appearance in the random structure of the model, leading to a further partition of
2,ij- An example is a random-slopes regression model with a single predictor X ;;,
in which X, ;; =Q, 00 + 2X;;;Q,.01 —I—Xﬁ,-,-Qu,n. Here Q, consists of the variance
and covariance terms at level 2 expressed as a matrix (with structural zeroes where
necessary; for example, the X, ;; expression above is the product of the matrix

(QM,OO Qu,Ol 0 )

0 Q.0 Q.
with the vector (1,X);,X7;)"). Using this notation the (general) within-block
covariance term can be written f(2, ;;, 2, ;)= XUTQMXV‘, where X;; is a vector of
predictors.

In the language of this section, what was referred to earlier as complex variation at
level 1 simply means partitioning the level-1 variance so that it depends in a natural

way on predictor variables. Fig. 1 presents several potential variance structures that
can be fitted to the GCSE dataset described earlier. The corresponding models are

Yij ~ N(Bo + Bi1X1i, V),

2eij =00 + 2X1,ij8¢ 01 +X12,ij9e,11; (2)

Yij ~ N(Bo + B1X1i, V),
2,ij = Qu,005
Ze,ij = Qe’oo + ZXI,ier,OI +X12,ij~Qe,11; (3)

Yij ~ N(Po + B1X1,i5, V),
2 ii = Qu00 + 2X1,i€0,01 +X1%ij9u,11,

2eij =00 + 2X1,i;8¢ 01 +X12,ier,11; 4)
and

Yij ~ N(Po + Bi1X1,ij + BoXoijs V),

2uij =00 + 22X,/ 01 +X12’l'jQu,llz

2eij = Qe00 + 2X1,ijQc.01 + 2X1 i X2,i7Q0 12 + X2, 2. (5)

In all these models X; refers to the standardised LRT score and X, refers to gender
(coded 0 for boys and 1 for girls). In Eq. (2) we have a simple one-level regression
model with a quadratic variance relationship with LRT; the other models involve
fitting increasingly complex variance structures to the data in a two-level framework.
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Fig. 1. Four different variance structures fitted to the GCSE dataset.

One approach to fitting models such as (2-5) via maximum likelihood (ML)
is based on iterative generalised least squares (IGLS), and its restricted variant
(RIGLS, also known as REML) which corrects for bias. The basic idea is similar
to that of the EM algorithm (Dempster et al., 1977) in that (a) an estimate f§ of f§
in (1) is obtained using a current estimate of V' and (b) an estimate of V' is then
obtained using the f from (a), but in IGLS/RIGLS the estimation of the covariance
matrix V' is recast as a regression problem and weighted least squares is used in
both steps (see Goldstein, 1986, 1989 for details).

Table 2 gives IGLS estimates obtained for models (2-5) applied to the GCSE
data. Both gender and LRT score are evidently useful in predicting GCSE score.
Model (2), which naively ignores the hierarchical nature of the data, hints at het-
eroscedasticity (the ML estimate of €2, is about as big as its standard error (SE)),
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IGLS estimates for models (2-5) fitted to the GCSE dataset (standard errors (SEs) in parentheses)

Parameter Model
(2) (3) 4) (5)

Po —0.002 (0.013) 0.002 (0.040) —0.012 (0.040) —0.112 (0.043)
b 0.596 (0.013) 0.565 (0.013) 0.558 (0.020) 0.554 (0.020)
B2 — — — 0.175 (0.032)
Q.00 — 0.094 (0.018) 0.091 (0.018) 0.086 (0.017)
Qu 01 — — 0.019 (0.007) 0.020 (0.007)
Q1 — — 0.014 (0.004) 0.015 (0.004)
Q.00 0.638 (0.017) 0.559 (0.015) 0.553 (0.015) 0.584 (0.021)
Q.01 0.002 (0.007) —0.015 (0.007) —0.015 (0.006) —0.034 (0.010)
Qe 11 0.010 (0.011) 0.006 (0.009) 0.001 (0.009) —

Qe 12 — — — 0.032 (0.013)
Qe — — — —0.058 (0.026)

but (from the estimates of €, oo in Eqs. (3)—(5)) there is a clear need for two-level
modelling, and the full complexity of what is required to describe the data only
comes into focus with model (5) (in which every estimate is at least 2.2 times as
large as its SE).

3. An MCMC method for a general 2-level Gaussian model with complex level-1
variation

Browne and Draper (2000, 2001) gave Gibbs-sampling algorithms for Bayesian
fitting of 2-level variance-components and random-slopes-regression models, respec-
tively. In this section we consider a general 2-level model with complex variation at
level 1; this can easily be generalised to an N-level model via an approach similar
to the method detailed in Browne (1998). For MCMC fitting of model (1) it is
useful to rewrite it as follows, with y;; denoting the (scalar) outcome for (level-1)
observation 7 in level-2 unit j:

4y ~ Npp(0, Q). ey ~ Ny, (0,9) (6)

Here B,u;, and e; are (py x 1),(p2 x 1), and (p; x 1) vectors of fixed-effects pa-
rameters and level-2 and level-1 residuals, respectively; X;;, Z;;, and X,? are vectors
of predictor values (the C stands for composite; see below); and p; and p, are the
numbers of parameters specifying the random effects at levels 1 and 2, respectively.
The IGLS/RIGLS methods do not directly estimate the u; and e;;, but they can be es-
timated after fitting the model using a method given in Goldstein (1995). In Eq. (6),
Q, and 2, are the variance terms at level 1 and level 2 written as (p; X p;) and
(p2 X py) matrices, respectively.
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Gibbs sampling procedures for fitting multilevel models such as (6) proceed most
smoothly by treating the level-2 residuals as latent variables when forming the full
conditional posterior distributions. In a multilevel model with simple (homoscedastic)
variation at level 1, the level-1 residuals may be calculated at each iteration by
subtraction. In the above model we cannot explicitly compute the individual level-1
residuals; instead we deal with the “composite” residuals XSe;; as these can be
calculated by subtraction. The important part of the algorithm that follows is to store
the composite level-1 variance function for each individual

Zeij=(X5) QX (7)
All the other parameters then depend on the level-1 covariance matrix €2, through
these individual variances. This means that the algorithm that follows, apart from

the updating step for €., is almost identical to the algorithm for the same model
without complex variation (Browne, 1998).

3.1. Inverse-Wishart proposals for the level-1 covariance matrix

In the first MCMC method examined in this paper, we collect together the terms
in the variance equation at level 1, 2, ;;, into the covariance matrix £,. Updating €2,
using a Metropolis-Hastings (MH) algorithm therefore requires a proposal distribution
that generates positive-definite matrices (later we will relax this restriction). We use
an inverse-Wishart proposal distribution with expectation the current estimate QY at
iteration ¢ to generate Q'Y In the parameterisation used, for example, by Gelman
et al. (1995a), the inverse-Wishart distribution Wk_l(v,S) for a (k x k) matrix has
expectation (v — k — 1)7!S. So if we let v=w + k + 1 and S =wQ", where w
is a positive integer degrees of freedom parameter, this will produce a distribution
with expectation Q" The parameter w is a tuning constant which may be set to an
integer value that gives the desired MH acceptance rate.

For prior distributions on the parameters in model (6) we make the following
choices in this algorithm: a generic prior p(£2.) (to be specified in Section 4.2; we use
the same prior for both MCMC methods for comparability) for the level-1 covariance
matrix, an inverse-Wishart prior €, ~ Wp_zl(vz,Sz) for the level-2 covariance matrix,
and a multivariate normal prior f ~ N, (u,,S,) for the fixed effects parameter
vector. The algorithm, which is detailed in Appendix A4, is a hybrid of Gibbs and
MH steps; it divides the parameters and latent variables in (6) into four blocks
and uses multivariate normal Gibbs updates for f and the u;, inverse-Wishart Gibbs
updates for ,, and inverse-Wishart MH proposals for Q..

3.2. An adaptive method for choosing the tuning constant w

Browne and Draper (2001) describe an adaptive hybrid Metropolis-Gibbs sampler
for fitting random-effects logistic regression models. Gibbs sampling may be used in
such models for variance parameters, but Metropolis updates are needed for fixed
effects and latent residuals. Browne and Draper employ a series of univariate normal
proposal distributions (PDs) for these quantities, and give a procedure for adaptive
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Table 3
An illustration of the adaptive MH procedure of Section 3.2 with model (4) applied to the GCSE data

Acceptance Within
Iterations rate (%) w tolerance?
0 — 100 0
100 20 138 0
200 19 195 0
300 30 208 1
400 31 215 2
500 30 229 3

choice of appropriate values for the variances of these PDs to achieve efficient MH
acceptance rates. Here we provide a modification of this procedure for the case of
inverse-Wishart proposals.

We set the tuning parameter w described above to an arbitrary starting value (100
in the example that follows) and run the algorithm in batches of 100 iterations. The
goal is to achieve an acceptance rate for the level-1 covariance matrix that lies within
a specified tolerance interval (r — 4,7 + 4). We compare the empirical acceptance
rate r* for the current batch of 100 iterations with the tolerance interval, and modify
the proposal distribution appropriately before proceeding with the next batch of 100.
The modification performed at the end of each batch is as follows:

w

-1
R2-0-r)/1=-r]

If ¥ >r, thenw —

r

elsew—>w<2—r)—|—1, (8)

where only the integer part of w is used in (8). The amount by which w is altered
in each iteration of this procedure is an increasing function of the distance between
r and r* (the use of the multiplicative factors [2 — (1 —7*)/(1 —r)]"! and (2 —r*/r)
approximates a binary search in which the distance between the current and estimated
optimal w is halved at each step). The adaptive procedure ends when three successive
r* values lie within the tolerance interval; the value of w is then fixed and we proceed
with the usual burn-in and monitoring periods. In the rest of the paper we refer to
the procedure described here as the adaptive MH method.

3.3. An example

We consider the model in Section 2 which has a quadratic relationship between
the variance and the LRT predictor (model (4)). The adaptive procedure was run for
this model with a target acceptance rate of » =32% (based on a recommendation in
Gelman et al., 1995b) and a tolerance of 4 =5%. Table 3 summarises the progress
of the adaptive method in this example; here only 500 iterations are required to adjust
the proposal distribution to give the desired acceptance rate (500—2000 iterations are
typically needed in the applications we have examined).
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Table 4

Parameter estimates for four methods of fitting model (4) to the London schools dataset (SEs/posterior
standard deviations in parentheses). The MCMC methods were monitored for 50,000 iterations after
the adaptive procedure and a burn-in of 500 iterations from IGLS starting values

Parameter MCMC method
IGLS RIGLS 1 2

bo —0.012 (0.040) —0.012 (0.040) —0.011 (0.040) —0.012 (0.040)
b 0.558 (0.020) 0.558 (0.020) 0.560 (0.020) 0.559 (0.020)
Q.00 0.091 (0.018) 0.093 (0.018) 0.095 (0.020) 0.095 (0.020)
Q.01 0.019 (0.007) 0.019 (0.007) 0.020 (0.007) 0.020 (0.007)
Q11 0.014 (0.004) 0.015 (0.004) 0.014 (0.005) 0.014 (0.005)
Q.00 0.553 (0.015) 0.553 (0.015) 0.547 (0.014) 0.553 (0.015)
Qe 01 —0.015 (0.006) —0.015 (0.006) —0.015 (0.007) —0.015 (0.007)
Qe 0.001 (0.009) 0.001 (0.009) 0.009 (0.007) 0.003 (0.009)

Table 4 compares the estimates produced by this MCMC method for model (4)
to those (a) from the IGLS and RIGLS procedures and (b) from another MCMC
method to be described in the next section (here and throughout the paper, MCMC
point estimates are posterior means, and we have used the MCMC diagnostics in
the software package CODA (Best et al., 1995) to develop a monitoring strategy that
ensures good mixing and accurate posterior summaries). We used a slightly infor-
mative inverse-Wishart prior 2, ~ W;zl(v2,S2) for the level-2 covariance matrix for
the MCMC methods based on the RIGLS estimate S, (taking a value of v, small
enough to create an essentially flat prior), and a uniform prior for the level-1 co-
variance matrix. We have found that short burn-in periods from maximum-likelihood
(ML) starting values are sufficient to yield good MCMC results; in all cases in this
paper we use burn-ins of 500 iterations from ML initial values. In this example the
results for all the methods are fairly similar, with one exception: the estimate of
€..11 is noticeably larger using MCMC method 1. This difference highlights the fact
that the first MCMC approach actually fits a model with an extra positive-definite
constraint: we are forcing €. 1 to be positive, which inflates the point estimate. The
second MCMC method, which we consider below, is based on different constraints;
when we examined the chain of values it produced for @, ;; we found that nearly
40% of the values were negative. There is no inconsistency in this result: in the
model to be examined in the next section, €2, ; is not a variance.

4. Truncated normal proposals for the level-1 variance function

The inverse-Wishart updating method assumes that the variance function at level 1
arises from a positive-definite covariance matrix. We now consider an alternative
method that, in a manner similar to IGLS and RIGLS, only requires the variance
at level 1 to be a linear function of the parameters. This MCMC solution will
still have more constraints than the IGLS solution, because we are still considering
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the level-1 and level-2 variances separately and both of these quantities must be
positive.

The constraint used in MCMC method 1 that the covariance matrix at level 1
is positive-definite is actually stronger than necessary. Positive-definite matrices will
guarantee that any vector Xijc will produce a positive variance in Eq. (6); a milder
but still scientifically reasonable constraint is to allow all values of 2, such that
(XUC)TQeXUC- > 0 for all i and j. This restriction appears complicated to work with,
but if we consider each of the parameters in (2, separately and assume the other
variables are fixed the constraint becomes manageable. It is once again useful to
rewrite model (1), this time as follows:

=X+ Zju; + ¢,

l]’

U ~ pz(O: Qu), eij ~ N(O, Z‘e,ij)a (9)

where e =X, Ce,, and X, ;; is given by Eq. (7). Here the composite level-1 residuals

; are normally distributed with variances that depend on the predictors; consequently
the constraint that the level-1 variance is always positive is still satisfied but Q, need
not be positive-definite.

4.1. MH updating: method 2

Our second method is identical to the first for 8, the u;, and Q, (steps 1, 2, and 4
in Appendix 4) but involves a Hastings update with a different proposal distribution
for 2,. We update each parameter in the level-1 variance equation in turn, always
requiring for all i and j at every iteration ¢ in the Markov chain that

T =X5)'QVXS > 0. (10)
Considering first the diagonal terms, €, s, for each k=1,..., p; constraint (10) can
be written

(t)
Z‘e ij _( U(k)) ‘Qe, dl](kk) > O’
where

5w = (X )P — (XHTRVXS; (11)

here lec(k) is the kth element of the vector XUC This is equivalent to requiring that

dC
(1) ij(kk)
Qekk > m%g( = n}ax( c )
7 (Xijy

(12)
We use a normal proposal distribution with variance s7, but reject generated values
that fail to satisfy (12). This amounts to using a truncated normal proposal, as
shown in Fig. 2(i). The Hastings ratio R can then be calculated as the ratio of the
two truncated normal distributions shown in Fig. 2(i) and (ii). Letting the value for
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(ii)

Fig. 2. Plots of truncated univariate normal proposal distributions for a parameter 0. 4 is the current
value 0¢ and B is the proposed new value 0. M is maxy and m is miny, the truncation points. The
distributions in (i) and (iii) have mean 0°¢, while the distributions in (ii) and (iv) have mean 0 *.

Q. 1 at time ¢ be 4 and the proposed value for time (¢ + 1) be B,
1 — @[(max, s — B)/sw]

R= . 13
1 — ®[(maxm — A)/sw] (13)
The update step is then as follows:
Q4 with probability min[1, R Z2eul200)
Qe(thkl) _ .w  With probability min[1, (Q“;klyﬁuflu)] , (14)

Qg{k otherwise

where p(€7 .|y, B, u,€,) and the corresponding density in the denominator of (14)
are given by (28).

The diagonal terms are a special case as they are always multiplied by a positive
quantity in the variance equation, so that the proposal distribution needs only one
truncation point. More generally for the non-diagonal terms €2, ;; we get the follow-
ing. As before, at time ¢ for all i and j constraint (10) must be satisfied; for each
1 <k <1< p; this can be rewritten

(1) C
Ze,l] 2X (k) (I)Q - di](kl) = O’
where

dicj(kl)ZZX"(k) l,(z)QEtkz (X; )Q(Z)XC- (15)

1
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This is equivalent to the two constraints

el i | 2x¢, Xx¢

d<
fo;d > max = max {U(k[) over all (7, ) such that )(Uc.(k)Xijc.(l) > O} ,
L) i)

dC
Qgtzd < nEn = min {MCUU;Z()C over all (i, ) such that XUC(,()X,-(;(Z) < O} .
> e kl— 1 :
(16)

(kY ij(l)
We again use a normal proposal distribution, this time with variance s7,, and again
values failing to satisfy (16) are rejected. This leads to the truncated normal proposal
shown in Fig. 2(iii). The Hastings ratio R is then simply the ratio of the two truncated
normal distributions shown in Fig. 2(iii) and (iv). Letting the value for €, 4; at time
t be A and the proposed value for time (¢ + 1) be B,

_ P[(ming - — B)/su] — P[(max, i+ — B)/si]
O[(min, - — A)/s] — Pl(maxe g+ — A)/su]

The update step is then similar to (14) with subscripts &/ in place of kk in the €,
terms.

(17)

4.2. Proposal distribution variances and prior distributions

In the method outlined above we consider each parameter in €, separately. This
means that we use a separate truncated univariate normal proposal distribution for
each parameter subject to the constraints that the value generated will produce a
positive level-1 variance X, ;; for all i and j. We therefore need to choose a pro-
posal distribution variance for each parameter. Two possible solutions are to use
the variance of the parameter estimate from the RIGLS procedure multiplied by a
suitable positive scale factor, or to use an adaptive approach before the burn-in and
monitoring run of the simulation. See Browne and Draper (2001) for a description
of both of these methods in the case of random effects logistic regression models.

Prior distributions using this method must take account of the constraints imposed
on the parameters. In all the analyses we perform in this paper with this method,
we use a series of marginal uniform priors for the level-1 variance terms subject to
the constraints; in other words, all valid combinations of parameter estimates for €2,
are a priori equally likely. Other attempts at specifying prior distributions may well
fail to respect the constraints.

4.3. Examples

Model (4) was fitted to the GCSE data in Section 3.3, and the estimates produced
by both MCMC methods are shown in Table 4. For the truncated normal method we
used the adaptive MH procedure, in this case with a desired acceptance rate of 50%
as the parameters are updated separately (following the univariate recommendations
of Gelman et al. (1995b)). The advantage of the truncated normal method is that
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Parameter estimates for three methods fitted to model (18) for the GCSE dataset. MCMC method 2,
using truncated normal proposals, was monitored for 50,000 iterations following the adapting period
and a burn-in of 500 iterations from IGLS starting values

Parameter IGLS RIGLS MCMC
method 2

Po —0.161 (0.058) —0.161 (0.058) —0.160 (0.060)

B 0.261 (0.041) 0.261 (0.041) 0.260 (0.040)

Qu,00 0.162 (0.031) 0.165 (0.032) 0.171 (0.035)

Qe.00 0.913 (0.032) 0.914 (0.032) 0.916 (0.032)

Q01 —0.062 (0.020) —0.062 (0.020) —0.062 (0.020)

it can handle variance functions that would not necessarily have a positive-definite
matrix form. For illustration we consider a simple case which the inverse-Wishart
method cannot fit. Our model is as follows:

Yij ~ N(ﬁO + girlijﬁla V),
where

V = Q00 + Qoo + 2 gitl, 201 (18)

This model includes a variance for boys and a term that represents the difference
in variance between boys and girls. The results from fitting this model are given
in Table 5; all methods give roughly the same estimates for the level-1 variance
terms. The total variances produced by the model for boys (£2,,00 + €2..00) and girls
(24,00 + 200 +2 €,,01) are similar to the values given in the part of Table 1 where
the variance in the response is calculated for boys and girls separately.

5. Simulation studies

In this section we examine the bias and interval-coverage properties, in repeated
sampling, of the four methods described above, in two sets of simulated models with
complex level-1 variation based on the GCSE example. We first consider model (4),
which features a quadratic variance relationship with the input reading test (LRT)
predictor. As true (population) parameters for our simulation we used values close to
the estimates obtained in the actual data, with one exception: we increased €2, so
that the correlation of the random effects at level 1 was reduced. This is because sam-
ple datasets drawn from multilevel models with high correlation cause convergence
problems with the IGLS and RIGLS methods (Browne and Draper, 2001).

One thousand datasets were generated randomly according to model (4)—with
the same numbers of level-1 and level-2 units (4059 and 65, respectively) as in
the original GCSE data set, and the same distribution of level-1 observations within
level-2 units—and fitted using the four methods, with the results presented in Table
6. For the MCMC methods (in both of the simulation studies) the posterior distribu-
tion with each dataset was monitored for 10,000 iterations after the adapting period
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Table 6

Summary of results for the first simulation study, with LRT score random at levels 1 and 2. Bias
results in (a) are relative except those in brackets, which are absolute (the true value in those cases
is zero). Monte Carlo standard errors (SEs) in (a) are given in parentheses. The Monte Carlo SEs for
the estimated interval coverages in (b) range from 0.7% to 1.0%

(a) Relative bias of point estimates (%)

Parameter IGLS RIGLS MCMC MCMC

{True Value} method 1 method 2

Bo {0.0} [ —0.00 (0.001)] [ —0.00 (0.001)] [ —0.00 (0.001)] [ —0.00 (0.001)]

B {0.5} —0.30 (0.14) —0.30 (0.14) —0.30 (0.14) —0.30 (0.14)

Quo0 {0.1} —1.81 (0.59) —0.08 (0.60) 2.79 (0.62) 2.79 (0.62)

Q.01 {0.02} — 227 (1.23) —0.73 (1.25) 3.01 (1.29) 2.98 (1.30)

Q.11 {0.02} —3.00 (0.96) — 047 (0.92) — 1.75 (0.97) —1.79 (0.97)

Qo0 {0.5} —0.10 (0.09) —0.10 (0.09) 0.01 (0.09) —0.01 (0.09)

Q.01 {—0.02} —0.61 (1.15) —0.61 (1.15) — 1.53 (1.16) — 1.53 (1.16)

Q.11 {0.05} 0.64 (0.70) 0.65 (0.70) 4.63 (0.71) 4.77 (0.70)

(b) Interval coverage probabilities at nominal levels 90%/95%

Parameter IGLS RIGLS MCMC MCMC
method 1 method 2

Po 89.3/94.4 89.5/94.5 89.7/95.3 89.7/95.2

B 87.4/94 .4 87.6/94.7 87.6/94.6 87.7/94.5

Qu.00 89.4/93.1 90.7/93.6 91.1/96.0 91.1/96.0

Q01 90.0/94.4 90.3/94.6 88.7/94.1 88.8/94.1

Q11 86.9/91.0 87.6/92.4 85.7/91.6 85.8/92.1

Qe.00 90.7/94.1 90.7/94.1 90.2/94.1 90.9/94.8

Q.01 90.2/95.0 90.2/95.0 89.8/95.1 90.5/94.9

Q11 90.6/95.1 90.7/95.1 90.0/95.0 90.9/95.4

(c) Mean interval widths at nominal levels 90%/95%

Parameter IGLS RIGLS MCMC MCMC
method 1 method 2

Po 0.135/0.161 0.136/0.162 0.138/0.165 0.138/0.165

b 0.073/0.087 0.074/0.088 0.073/0.088 0.073/0.088

Q.00 0.063/0.075 0.064/0.077 0.067/0.081 0.067/0.081

Q01 0.025/0.030 0.026/0.031 0.026/0.032 0.026/0.032

Q1 0.018/0.022 0.019/0.022 0.018/0.022 0.018/0.022

Qe 00 0.048/0.057 0.048/0.057 0.048/0.057 0.048/0.057

Q.01 0.024/0.028 0.024/0.028 0.024/0.029 0.024/0.029

Q.11 0.037/0.044 0.037/0.044 0.037/0.044 0.038/0.045

and a burn-in of 500 from IGLS starting values. Uniform priors were used for the
level-1 variances and fixed effects. A (slightly) informative inverse-Wishart prior was
used for the level-2 covariance matrix in line with the results in Browne and Draper
(2000). Interval estimates at nominal level 100(1 — )% with the IGLS and RIGLS

approaches were of the form éﬂ:dfl(l —oc/2)@(é) based on the large-sample normal
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Table 7

Summary of results for the second simulation study, with separate variances at level 1 for boys and
girls. Monte Carlo standard errors (SEs) in (a) are given in parentheses. The Monte Carlo SEs for the
estimated interval coverages in (b) range from 0.7% to 1.0%

(a) Relative bias of point estimates (%)

Parameter IGLS RIGLS MCMC
{True Value} method 2

Bo {—0.15} —0.45 (1.31) —0.45 (1.31) —0.46 (1.31)
pi {025} —0.83 (0.53) —0.83 (0.53) —0.83 (0.53)
Q00 {0.2} —1.38 (0.59) 0.41 (0.60) 3.71 (0.62)
Qe00 {0.9} —0.19 (0.11) —0.16 (0.11) 0.09 (0.11)
Qo0 {—0.05} 1.42 (1.24) 1.29 (1.24) 0.32 (1.24)

(b) Interval coverage probabilities at nominal levels 90%/95%

Parameter IGLS RIGLS MCMC
method 2
Po 90.5/94.7 90.7/94.9 90.8/95.1
b 89.1/94.3 89.4/94.3 89.7/94.3
Q.00 88.3/92.5 89.2/93.4 90.0/95.3
Q.00 89.2/94.8 89.3/94.8 89.6/95.0
Qe 01 90.3/95.7 90.4/95.7 90.4/95.1

(c) Mean interval widths at nominal levels 90%/95%

Parameter IGLS RIGLS MCMC
method 2
Po 0.204/0.243 0.206/0.245 0.208/0.249
b 0.134/0.159 0.134/0.159 0.134/0.160
Q.00 0.124/0.147 0.126/0.150 0.133/0.160
Q.00 0.105/0.125 0.105/0.125 0.105/0.125
Q.01 0.065/0.077 0.065/0.077 0.065/0.078

approximation; this is what users of most multilevel packages such as MLwiN (Ras-
bash et al., 2000) and HLM (Bryk et al., 1988) would report, if they provide interval
estimates at all (such packages routinely report only point estimates and estimated
asymptotic standard errors with maximum-likelihood methods). With the Bayesian
MCMC methods we give results based on posterior means as point estimates and
90%/95% central posterior intervals.

Our second simulation study (Table 7) was based on model (18) from Section 4.3,
in which the male and female subsamples had different level-1 variances (MCMC
method 1 is not available for this model). We again created 1000 simulation datasets
with population values similar to the estimates obtained with the GCSE dataset. With
the Bayesian approach to fitting, uniform priors were used for the level-1 variances
and fixed effects, and a I'(¢, &) prior (with ¢ =0.001; this distribution has mean 1 and
variance ¢~ ') was used for the reciprocal of the level-2 variance parameter Q, o9, in
line with the results in Browne and Draper (2001).
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It is evident from Tables 6 and 7 that all four methods performed reasonably well
in both models. RIGLS succeeded in reducing the (already small) biases arising from
IGLS estimation in most cases, and the relative biases of the MCMC methods are also
small (ranging from 0% to 4.8%, with a median absolute value of 1.5%). Interval
coverages for all four methods were all close to nominal, with actual coverages
ranging from 86-91% and 91-96% at nominal 90% and 95%, respectively; all four
methods achieved this level of coverage with intervals of comparable length; and
the ratios of 95% and 90% interval lengths for each method were all close to the
value (@71(0.975)/971(0.95)) to be expected under normality. The ML methods
have the clear advantage of speed (on the original GCSE data set IGLS/RIGLS
and MCMC methods 1 and 2 took 2, 168, and 248 s on a 500 MHz Pentium PC,
respectively, with the MCMC methods based on 10,000 monitoring iterations), but
the ML approach has two potential disadvantages: on data sets with small numbers
of level-1 and level-2 units, it requires more sophisticated methods for constructing
interval estimates for variance parameters (to achieve good coverage properties) than
the large-sample normal approximation used here (Browne and Draper, 2001), and
it may fail to converge when the Q. and/or €, matrices exhibit a high degree of
correlation between the parameters quantifying the random effects. The Bayesian
methods are considerably slower but have the additional advantage that inferences
about arbitrary functions of the model parameters are automatic once the model
parameters themselves have been monitored.

6. Other MCMC methods
6.1. Gibbs sampling

There are special cases of the problem of complex level-1 variation that can be
fitted using a standard Gibbs sampler. The model (Eq. (18)) used in the second
simulation, where we use a different level-1 variance term for each gender, is one
such example. Here we could reparameterise the model with two variances, one for
boys (o7) and one for girls (aj), rather than a boys’ variance plus a difference.
Scaled-inverse-y> priors (see, e.g., Gelman et al., 1995a) can be used for these
two variances, with parameters (v,,s7) and (vg,sj), respectively. If we divide the
children into boys’ and girls’ subgroups B and G, of size n, and n,4, then step 3 of
the algorithm given in Appendix 4 can be rewritten as two Gibbs sampling steps as

follows: the full conditional for 67 is

(03] 9, By, Q) ~ T~ (ap, by),

where

ny +vp
ap = 3

1
and by = vy + > €} (19)

i,jEB
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and the full conditional for 05 is exactly analogous. Now the level-1 variance
is 2., =02(i,j €B) + aﬁ[(i,jeG) and the other steps of the algorithm are as
before.

6.2. Modelling the variance on the log scale

The developers of the software package BUGS (Spiegelhalter et al., 1997) use a
different approach to fitting complex level-1 variation in one of their examples, the
Schools data set (example 9 in Vol. 2 of Spiegelhalter et al., 1996). They model the
logarithm of the level-1 precision as a function of predictors and other parameters:

Vi =XiiB + Ziju; + e,
e ~N(O,7;"),  u; ~Np(0,2,),
log(tij) = (X)) QX5 (20)
This results in a multiplicative, rather than an additive, variance function:
2eij= T,;l =exp[ — (XUC)TQeXUC]
= exp[ - ()Q/C‘(l))TQe,ll)Q/C'(l)] e exp[ - (X::/C'(n))TQe,nn)([/c'(n)]- (21)

The advantages of this approach are that the parameters are now unconstrained, the
level-1 variance will never be negative, and it is easier to specify a prior with this
method. The disadvantages are that the interpretation of the individual coefficients is
not as easy and computation for these models is slower. The interpretation difficulty
will be apparent mainly when the X variables are categorical.

Model (20) can be fitted in BUGS using adaptive rejection (AR) sampling (Gilks
and Wild, 1992). Alternatively the adaptive MH method used in the truncated normal
algorithm in Section 4.1 can be used, this time with no parameter constraints and
hence no truncation in the normal proposal distributions. Goldstein (1995, Appendix
5.1) shows how to obtain ML estimates for this model; see Yang et al. (2000) for
a set of MLwiN macros to do this.

To explore the differences between log-variance modelling and our earlier ap-
proach, we fitted four different level-1 variance functions to the GCSE dataset to
model the effect of LRT score (X;) on the level-1 variance. We considered the
quadratic relationship examined earlier (model (4)), and the simpler linear relation-
ship

2eij = Q00 + 2X1,ijQ¢,01; (22)
we also considered two exponential relationships
2o ij = exp(—£ 00 — 2X1,ij€201),
Ze.ij = exp(—Qe00 — 2X1,5jQc.01 — X[ Qe 11)- (23)

In each of the four models the level-2 variance structure and fixed effects were as in
Eq. (4). Fig. 3 plots the resulting level-1 estimated variances as a function of LRT
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Fig. 3. Four ways to model the effect of standardised LRT score on the level-1 variance in the
GCSE dataset.

score. In this case for the majority of the data the variance estimates produced by all
four models are fairly similar, with any discrepancies between the models occurring
at the extremes of the LRT range where there are relatively few observations.
Table 8 presents estimates of the four models (using MH method 2), together
with Raftery and Lewis (1992) default diagnostics (for both MH and AR sampling
in the exponential models (23)) and comparative timings. From part (b) of the table
it is evident that the parameter with the worst MCMC mixing for both methods is the
intercept fp. This means that, although the MH method requires longer monitoring
runs than the AR approach for the level-1 variance parameters, the run lengths
required to ensure that all parameter estimates have a specified accuracy (with respect
to 95% interval estimation) will be roughly equal (since the length of monitoring
run chosen will be determined by the largest of the Raftery—Lewis estimates). From
part (c) of the table it can be seen that the MH approach is 4-9 times faster in
real-time execution speed in this example. Results in Table 8 are based on a single
data set but are typical of findings we have obtained with other similar models.

7. Conclusions and extensions

In this paper we have presented several methods for modelling non-constant level-1
variance functions with multilevel data. We have introduced two new adaptive
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Table 8

Parameter estimates for four different level-1 variance functions applied to the GCSE dataset and fit
by MCMC. All methods used a monitoring period of 50,000 iterations after a burn-in of 500 iterations
from maximum-likelihood starting values. Methods with an adaptive MH step at level 1 were run using
a development version of MLwiN; those with an adaptive rejection (AR) step at level 1 were run in
WinBUGS. Posterior standard deviations are given in parentheses in (a)?

(a) Parameter estimates

Exponential Exponential

Parameter Linear Quadratic Linear Quadratic

Po —0.011 (0.041) —0.011 (0.041) —0.011 (0.041) —0.012 (0.041)
i 0.558 (0.020) 0.559 (0.020) 0.558 (0.020) 0.559 (0.020)
Q.00 0.095 (0.020) 0.095 (0.020) 0.095 (0.020) 0.095 (0.020)
Q01 0.020 (0.007) 0.020 (0.007) 0.020 (0.007) 0.020 (0.007)
Qo 0.014 (0.005) 0.014 (0.005) 0.014 (0.005) 0.014 (0.005)
Q.00 0.556 (0.012) 0.553 (0.015) 0.591 (0.023) 0.591 (0.027)
Qe.01 —0.015 (0.006) —0.015 (0.007) 0.027 (0.012) 0.027 (0.012)
Q11 — 0.003 (0.009) — —0.0005 (0.016)

(b) Raftery—Lewis values (in thousands of iterations); main entries apply to MH method 2, with
the corresponding values for AR in parentheses

Exponential Exponential
N Linear Quadratic Linear Quadratic
Po 16.3 16.0 16.8 (17.1) 17.5 (17.7)
b 7.4 6.9 7.4 (7.5) 7.4 (7.0)
Qu,00 43 43 4.4 (43) 4.3 (4.1)
Q01 5.9 5.4 5.4 (5.6) 5.7 (5.7)
Qu 9.6 10.3 9.8 (9.2) 9.4 (9.5)
Q.00 14.4 16.0 14.8 (3.7) 16.2 (4.7)
Q.01 144 14.8 13.7 (3.8) 14.8 (3.9)
Q11 — 16.9 — 15.6 (4.6)
(¢) Timings (in minutes at 500 Pentium MHz)

Exponential Exponential

Method Linear Quadratic Linear Quadratic
Metropolis-Hastings 19 20 23 25
Adaptive Rejection — — 95 227

*Note: The Raftery—Lewis values in (b) estimate the lengths of monitoring runs necessary to ensure
that the actual coverages of the nominal 95% central posterior intervals for the given parameters are
in the range 94-96% with Monte Carlo probability at least 95%.

Metropolis-Hastings sampling methods for fitting such functions subject to differ-
ent constraints. The two methods give similar estimates for models where the true
parameter values are not affected by the constraints, but if the true values do not sat-
isfy the additional positive-definite matrix constraint of the inverse-Wishart proposal
method then the estimates from the two methods will differ.
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The main advantage of the inverse-Wishart method is that it models the level-1
variance function as a matrix in a manner analogous to the usual treatment of the
level-2 variance function, meaning (among other things) that informative inverse-
Wishart priors at level 1 can be used with this approach. The main advantage of
the truncated normal proposal method is that it is more general and can deal with
any variance function at level 1. Both methods have bias and interval coverage
properties that are similar to those from the maximum-likelihood (IGLS and RIGLS)
approaches, and all four methods perform satisfactorily in repeated sampling in this
regard.

In Section 6.2 we considered an alternative formulation of the level-1 variance
function in terms of the log of the precision at level 1. This method has two
advantages: there is no need to impose constraints on the terms in the resulting
variance function, and it is therefore easier to contemplate a variety of prior dis-
tributions for the resulting variance parameters. The main disadvantage of this ap-
proach is that the individual terms in the variance function may not be as easily
interpreted, making it potentially difficult to construct sensible informative priors.
Table 8 shows clearly, however, that adaptive-rejection sampling is much less ef-
ficient than adaptive Metropolis-Hastings sampling to achieve default MCMC ac-
curacy standards with variance (or precision) functions that are exponential in the
parameters.

Our examination of multiple models (e.g., models (2-5) for the GCSE data in
Section 2, and the alternative formulations of the variance function in Section 6)
brings up the topic of model choice with heteroscedastic multilevel data. We have
found two approaches useful: (i) gradually expanding simple models such as (2)
in directions suggested by deficiencies uncovered from residual plots, monitoring
the significance of the new parameters which index the model expansions (for in-
stance, reading the columns of Table 2 from left to right) and stopping when new
model expansion parameters are no longer significant; and (ii) employing predictive
diagnostics, in which (a) the data are divided into non-overlapping modeling and
validation subsamples M and V in a way that respects the multilevel structure, (b)
each of the models under scrutiny is fit to M, yielding predictive distributions for
all observations in V' from each model, and (c) the actual data values in V' are com-
pared with their predictive distributions under each model using, e.g., a log scoring
rule as in Gelfand and Ghosh (1998) and Draper (2002).

There are two obvious extensions of this work, to arbitrary variance structures at
higher levels and to multivariate normal responses. Two approaches to fitting random
effects at level 2 and above appear common in current applied work: modelling
all random effects independently, or fitting fully dependent random effects with a
complete covariance matrix at each level (see the Birats example in Spiegelhalter
et al. (1996) for an illustration of both formulations). It is fairly easy to fit any
block-diagonal covariance structure at a higher level using Gibbs sampling, in a
straightforward extension of the approach given in Section 6.1. The adaptive MH
sampler with a truncated normal proposal (method 2, Section 4.1) can be used to fit
any dependence structure among the random effects at the higher levels, including
non block-diagonal covariance matrices.
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With multivariate normal response models the variance function at the lowest
level includes variances for each response plus covariances between responses. This
variance function could also be extended to include predictors that may influence the
variance of individual responses in an analogous way to the univariate model. We
intend to report on MCMC sampling algorithms for general multivariate-response
multilevel models elsewhere.
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Appendix A. Details of MCMC method 1

e In step 1 of the algorithm described in Section 3.1, the full conditional distribution
in the Gibbs update for the fixed effects parameter vector  is multivariate normal:
with p, as the number of fixed effects

p(ﬂ | Y U, Q) ~ pr(ﬁ,\,ﬁ),

where

PN X (vij — Zijuy) _
ﬂ:D[Z’ S +8,
and

-1

XTx..

A ey —1

D_[ZZ”nLSp] . (24)

ij elj
e Step 2 involves a Gibbs update of the level-2 residuals, u;, also with a multivariate
normal full conditional distribution: with p, the number of parameters describing
the random effects at level-2 and n} the number of level-1 units in level-2 unit j

Pt | 9, By Qs Q) ~ Ny (i 1, D)),

where

. oA el Z5(yiy — XiiP)

i=1
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and
* —1
. KAV
D= ZZ’—’+Q;1 : (25)
e,ij

i=1
e Step 3 employs a Hastings update using an inverse-Wishart proposal distribution
for the level-1 covariance matrix €2.. Specifically, the Markov chain moves from

QU at time (t—1) to Q" as follows:
o0 {Q: with probability min |1 RM} }

QU v ) (26)

Q=Y otherwise

Here (a) 2} ~ W,,_ll(WJr p1+ l,ng)), where w is chosen as in Section 3.2 and
p1 is the number of rows or columns in €2,; (b) the Hastings ratio R in (26) is

- (%) exp (5 {00 V(@) — v ). @D

where o= (2w + 3p; + 3)/2; and (c) the full conditional distribution for Q. in
(26) is

P(Qe |y, Bu, Q) oc [ {Z;ff exp {—
i

where we have expressed the right-hand side of (28) for convenience in terms of
Ze,ij as in Eq (7)

Finally, step 4 involves a Gibbs update of the level-2 covariance matrix €2,:
expressed as a Wishart draw of Q! the full conditional is

1
= — Xy = z,»,»uj)z] } 28)

e,ij

-1

J
P 3, B2 ~ Wy [T+, [ D )"+ 52 ||, (29)

j=1
where p; is the number of rows or columns in Q, and J is the number of level-2
units in the data set. An improper uniform prior on €2, corresponds to the choice

(VZ:SZ) = (_pZ - 1:0)

Appendix B. Computing details

MLwiN is a package for performing maximum-likelihood and Bayesian calcula-
tions in a wide variety of hierarchical and other multilevel models, developed by
the Multilevel Models Project at the University of London. It is available for a
nominal charge from the developers’ web site, http://multilevel.ioe.ac.uk/.
Sample code for the models in this paper is not easy to distribute, because MLwil
uses a point-and-click graphical user interface for constructing its models, but exam-
ples like the ones examined here may be found in the MLwiN user’s guide (Ras-
bash et al., 2000). HLM5 is a package which performs maximum-likelihood and
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generalised-estimating-equations calculations in a large variety of hierarchical models.
It is available for a nominal fee at www.ssicentral.com/hlm/hlm.htm.
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