
Module 6: Regression Models for Binary 
Responses Concepts 

Fiona Steele1 
Centre for Multilevel Modelling 

 
 
Pre-requisites 
 
� Modules 1-3 
 
 

Contents
 

Introduction ......................................................................................... 2

Introduction to the Example Dataset ........................................................... 2

C6.1 Preliminaries: Mean and Variance of Binary Data .................................... 4

C6.2 Moving towards a Regression Model for y: The Linear Probability Model ....... 7

C6.2.1 Revision of linear regression ............................................................ 7 
C6.2.2 Applying linear regression to binary y: the linear probability model ............. 8 
C6.2.3 Example: application of the linear probability model to US voting intentions . 9 
C6.3 Generalised Linear Models ............................................................... 11

C6.3.1 A general model for the response probability ....................................... 11 
C6.3.2 The logit/logistic model ................................................................ 12 
C6.3.3 The probit model ........................................................................ 14 
C6.3.4 The complementary log-log model .................................................... 15 
C6.3.5 Choice of link function .................................................................. 16 
C6.3.6 Estimation of the generalised linear model ......................................... 18 
C6.4 Latent Variable Representation of a Generalised Linear Model ................. 19

C6.5 Application of Logit and Probit Models to State Differences in US Voting 
Intentions .......................................................................................... 22

C6.5.1 Probabilities, odds and odds ratios ................................................... 22 
C6.5.2 Interpretation of a logit model ........................................................ 25 
C6.5.3 Comparison of probit and logit coefficients ......................................... 28 
C6.5.4 Interpretation of a probit model ...................................................... 28 
C6.5.5 Significance testing and confidence intervals ....................................... 29 
C6.6 Adding Further Predictors in the Analysis of US Voting Intentions ............. 33

C6.6.1 Interpretation of a logit model using odds ratios ................................... 33 
C6.6.2 Interpretation of logit and probit models using predicted response 

probabilities .............................................................................. 34 
                                          
1 With many thanks to Rebecca Pillinger, George Leckie, Kelvyn Jones and Harvey Goldstein for 
comments on earlier drafts. 

Module 6 (Concepts): Regression Models for Binary Responses 
Introduction 

Centre for Multilevel Modelling, 2009 1

� C6.7 .................................................................................................. Interaction Effects
 ................................................................................................... 39

� C6.8 ............................................................................................ Modelling Proportions
 ................................................................................................... 41

C6.8.1 The binomial distribution ............................................................... 41 
C6.8.2 Two approaches to analysing proportions............................................ 41 
C6.8.3 Example: Analysis of state-level voting intentions in the 2004 US general 

election .................................................................................... 42 
C6.8.4 Extra-binomial variation (over and under dispersion) ............................. 43 
C6.8.5 Multilevel modelling ..................................................................... 46 

 

All of the sections within this module have online quizzes for you to 
test your understanding.  To find the quizzes: 
 
 
From within the LEMMA learning environment 

� Go down to the section for Module 6: Regression Models for Binary 
Responses Concepts 

� Click "6.1 Preliminaries: Mean and Variance of Binary Data "  
to open Lesson 6.1 

� Click                to open the first question 
  

Most of the sections within this module have practicals so you can 
learn how to perform this kind of analysis in MLwiN or other 
software packages. To find the practicals: 

 
From within the LEMMA learning environment 

� Go down to the section for Module 6: Regression Models for Binary 
Responses Concepts 

Then either 
� Click "6.1 Preliminaries: Mean and Variance of Binary Data " to open Lesson 

6.1 
� Click  

Or 
� Click  Print all Module 6 MLwiN Practicals 
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Introduction 
 
In Module 3 we considered multiple linear regression models for the relationship 
between a continuous response variable (y) and a set of explanatory variables (x) 
which may be continuous or categorical.  In this and the next few modules, we 
consider regression models for categorical response variables. 
 
We will consider models for two types of categorical variable (see C1.3.8 for a 
classification scheme for variables):  
 
� Nominal, where the numeric codes assigned to categories are simply labels 

(e.g. sex, ethnicity) 
 
� Ordinal, where the numeric codes imply some ordering (e.g. strength of 

agreement with a statement in a questionnaire with categories ranging from 
‘strongly agree’ to ‘strongly disagree’) 

 
In many subject areas, but especially in the social sciences, categorical responses 
are more common than continuous responses.  In this module, we consider models 
for a particular type of categorical response – binary or dichotomous responses, 
that is variables with only two categories.  Examples include: 
 
� Voting intentions in two-party systems, e.g. Republican vs. Democrat in the US 
 
� Exam performance where only a pass or fail is recorded, e.g. in a driving test 
 
� Mortality or presence of a medical condition 
 
Note that when there are only two categories, it does not matter whether one 
category can be thought of as ‘higher’ than the other; the distinction between 
nominal and ordinal is irrelevant. In later modules, we will see how the methods 
described here can be extended to handle categorical responses with more than 
two categories.  In that case, the distinction between nominal and ordinal is 
important and we will need to consider different (but closely related) models for 
each.  
 
To introduce ideas, we will assume in this module that our data do not come from 
a hierarchically-structured population.  However, all methods we describe can be 
extended to allow for and to explore clustered data and, in Module 7, we will meet 
multilevel models for binary response data. 
 
 

Introduction to the Example Dataset 
 
We will illustrate methods for analysing binary responses using data from the 2004 
National Annenberg Election Study (NAES04), a US survey designed to track the 
dynamics of public opinion over the 2004 presidential campaign.  See 
http://www.annenbergpublicpolicycenter.org for further details of the NAES. 
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We analyse data from the National Rolling Cross-Section of NAES04.  The response 
variable for our analysis is based on voting intentions in the 2004 general election 
(variable cRC03), which was asked of respondents interviewed between 7 October 
2003 and 27 January 2004.  The question was worded as follows: 
 
� Thinking about the general election for president in November 2004, if that 

election were held today, would you vote for George W. Bush or the 
Democratic candidate?  

 
The response options were: Bush, Democrat, Other, Would not vote, or Depends.  
A small number of respondents reported that they did not know or refused to 
answer the question. Don’t knows and refusals were excluded from the analysis, 
and the remaining categories were combined to obtain a binary variable coded 1 
for Bush and 0 otherwise.  
 
The survey covered 49 states, but we restrict our analysis to only three – 
California, New York and Texas.  The total sample size in the selected states is 
3688.  (In C6.8 and Module 7 we extend the analysis to all 49 states.) 
 
In this module, we consider three explanatory variables: 
 
� Age in years 
� Sex (coded 0 for male and 1 for female) 
� State (coded 1 for California, 2 for New York and 3 for Texas) 
 
In C6.8 (where we analyse the proportion of respondents who would vote Bush in a 
state) we consider two explanatory variables: 
 
� Proportion of non-white respondents in the state 
� Proportion of respondents who attend religious services at least once a week 
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C6.1 Preliminaries: Mean and Variance of Binary 
Data

 
Denote by yi the binary response for individual i, coded 0 or 1. 
 
Mean of binary y 
 
Recall that the population mean, or expected value, of a variable y is given by 
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where N is the population size and {yi} are the values of y for members of the 
population.  
 
Suppose that in the population there are R individuals with a y-value of 1, and 
therefore N-R individuals with a y-value of 0.  Then the expression for the 
population mean simplifies to the proportion of individuals with a y-value of 1, 
which we will denote by �: 
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When y is taken as the response variable in an analysis, we will refer to � as the 
response probability.2  Some authors refer to � as the success probability, where 
obtaining a y-value of 1 is regarded a success and a value of 0 a failure.  
 
Of course, we will not generally know the population mean and we will estimate it 
by the proportion of individuals with a y-value of 1 in our sample: 
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where r and n are the sample values of R and N. 
 
 
Variance of binary y 
 
Recall also that the population variance (the square of the standard deviation) of a 
variable y is given by 
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2 This should not be confused with the probability of responding in the survey.  Here, we use the 
term response probability for the probability of being in a particular response category (y = 1). 
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For binary y we substitute � for � and, using the facts that i) ii yy �2  (because 12 = 
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Therefore the variance simplifies to 
 

)1()var(2 ��� ��� y .  (6.2) 
 
The sample estimate of the variance, denoted by 2�̂  or 2s , is 
 

)ˆ1(ˆ2 �� ��s . 
 
 
The Bernoulli and binomial distributions 
  
From (6.1) and (6.2) we can see that the mean and variance for a binary variable y 
are defined by a single parameter �, unlike a continuous y which needs two 
separate parameters to define its mean and variance.  A distribution with mean � 
and variance �(1- �) is called a Bernoulli distribution. 
 
Sometimes y is said to follow a binomial distribution but, strictly, the binomial 
distribution has an extra parameter that is redundant for binary data.  The more 
general binomial distribution applies to grouped binary data, where instead of 
observing a binary y for each individual we observe the proportion of individuals in 
a group with the value y = 1.  In the case of grouped data, we need � and the total 
number in a group (the denominator for the response probability) to define the 
distribution of the proportion. The Bernoulli distribution is a special case of the 
binomial distribution with the additional ‘denominator’ parameter set to 1. 
(Grouped binary data are the subject of C6.8 at the end of this module.) 
 
Expected value for an individual: towards modelling 
 
For a given individual i, their expected value for y is denoted by 
 

)1Pr()( ��� iii yyE � .  (6.3) 
 
In the absence of other information �i = �, i.e. their expected value is simply the 
response probability for the population (estimated by the sample response 
probability i�̂ ).  More generally, however, an individual’s response will depend on 
their values on a set of explanatory variables x1, x2, …, xp and therefore the 
expected response will vary across individuals (hence the i subscript on �).  Our 
objective in this module is to specify a suitable model that relates an individual’s 
response probability �i to their values on the xs: x1i, x2i, …, xpi. 
 



Module 6 (Concepts): Regression Models for Binary Responses 
C6.1  Preliminaries: Mean and Variance of Binary Data 

Centre for Multilevel Modelling, 2009 6

 
Don’t forget to do the practical for this section! (see beginning of 
document for details of how to find the practical)  

Please read P6.1, which is available in online form or as part of a pdf 
file. 
 
Don’t forget to take the online quiz for this section! (see page 2 for 
details of how to find the quiz questions) 
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C6.2 Moving towards a Regression Model for y: The 
Linear Probability Model 

 
You may be thinking: why can’t we just use multiple linear regression to analyse 
binary response data?  While it is possible to use multiple regression – called a 
linear probability model when the response is binary – there are a number of 
problems with this approach, so it is not generally recommended.  The aim of this 
section is to describe these problems, thereby motivating the need for special 
techniques.  
 
C6.2.1 Revision of linear regression 
 
Consider the linear regression model for continuous y and a single explanatory 
variable x (Module 3): 
 

iii exy 		� 10 

   (6.4) 
 
where ei is a residual term representing unobserved characteristics of individual i 
that determine the response yi after controlling for the effect of xi.    
 
Because ei is unobserved we can fix its mean at whatever we like, and we usually 
assume a zero mean so that 0
  is then the mean of y when x = 0.  Under this 
assumption, the mean or expected value of an individual’s y-value is 
 

ii xyE 10)( 

 	� .  (6.5) 
 
Note that the expected value on the left hand side of (6.5) might more accurately 
be written E(yi|xi), that is “the expected value of yi given or conditional on xi”.  
This notation is used to emphasise the point that we are modelling the expected 
value of yi as a function of xi.  In this module we will use the simpler form E(yi), 
but bear in mind that in regression we are always modelling the conditional mean 
of yi (conditional on whatever explanatory variables are included in the model).  
 
So far we have assumed that ei has zero mean.  Two other standard regression 
assumptions (see C3.1.2) are that the ei have constant variance 2

e� , and that they 
follow a normal distribution.  Putting together these assumptions about ei we 
have: ),0(~ 2

ei Ne � .  Note also that we assume the ei for different individuals are 
independent. 
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