

Racing Aeolus 2011

The Bristol Entry

2 K Overview

- The 2011 Team
- Review of last year's entry
- New features of 2011 vehicle
 - Improved turbine blades and hub
 - Updates to electric transmission & control system
- On-going work
 - Active variable pitch system
 - Shroud Development

The 2011 Race Team

- Clive Rendall (Faculty of Engineering Technician)
- James Baker (Electrical Engineering PhD Student)
- Ed Power (Aerospace Engineering PhD Student)
- James Teague (Electrical Engineering Undergraduate)
- Jon Steele (Electrical Engineering Undergraduate)
- Tom Pygott (Electrical Engineering Undergraduate)
- Drew O'Sullivan (Electrical Engineering Undergraduate)
- Hokyeom Kim (Mechanical Engineering Undergraduate)
- Roger Zhang (Mechanical Engineering Undergraduate)

Work Package Outline for Aeolus

Aerodynamics

Aero-structural

Test

Aero-structural

Dynamics

Test

Review of 2010 Vehicle

- Twin rotors to achieve max turbine swept area of 4m²
- Off-the-shelf turbine blades
- All-electric drive-train
 - 2 x 1kW generators
 - 2 x 1kW rear-hub mounted motors

9 K Twin Rotor Design Strategy

- Maximum vehicle dimensions restrict turbine swept area to 3.141m² (width limit = 2m)
- Wind direction not always aligned with the main-axis of the vehicle
- Some energy can be recovered as swirl from the front turbine to the rear
- Some redundancy of components

10 2010 Vehicle: Frame

- Student project developed an aluminium frame and mechanical subsystem interface designs
- 2011 frame remains unchanged, but recognised that composite structure and aerodynamic cowling would be beneficial for future vehicle development

Vehicle: Frame

12 **2010** Vehicle: Drivetrain

- Dual independent channels
- Infinite gear ratios (Electric CVT)
- Lossless clutch
- All-electric in-house design based upon PIC micro-controllers
 - Overcomes current and usage limits imposed by off-the-shelf design
 - Lightweight, maintainable and reconfigurable

2010 Vehicle: Drivetrain

15 **2010** Vehicle: Safety Features

- Both wheels and turbines fitted with electric and mechanical braking systems
- Turbine
 - Mech Fail-safe sprung loaded brake
 - Electric Passive and active overspeed detection will operate without power supply (failsafe)
- Wheels
 - Mechanical disc brakes
 - Ability to run motors in shorted "generate" mode

16 **2010** Race Outcomes

- Design functioned
 - First team to build an "all-electric" design that worked (all other teams used mechanical drive-trains)
 - First UK entry to build a working design
- Given award for innovative nature of design
- Placed last in race
- Poor weather conditions (low wind speeds + rain)
- Huge value of seeing other designs/experience

17 W Design Successes

- Aluminium frame very robust and weatherproof
- Easily removable turbines essential
- Flexibility of programmable electric drive-train
- Completely different to existing designs

18 W Design shortcomings

- Electric drive-train
 - Not noise or weather resistant
 - Low efficiency at low vehicle speeds
 - Can't "pre-charge" turbine
- Turbines
 - Too high a thrust/torque ratio under race conditions
 - Very slow and difficult to reconfigure for difficult conditions
- No data-acquisition systems
- Safety features not completely fail-safe

KThe 2011 Entry

20 Ke The 2011 Vehicle

- Based upon 2010 architecture:
 - Retains existing frame
 - Retains electric drive-train
- Design improvements:
 - New turbine blades designed through undergraduate research project
 - Variable pitch hub system developed through undergraduate design project
 - Electrical control system redesign

21 K Blade Design

C_p Values for Blade Designed for Different Tip Speed Ratios and Number of Blades

22 K Blade Design

The Performance of Blades Designed for Different Tip Speed Ratios at a Five Blade Configuration

23 K Blade Design

Final Design Features

Rotor Configuration	Two Equal Sized Wind
	Turbines
Generator	Variable RPM
Swept Area (m²)	2m² each
Rotor Diameter (m)	1.596
Optimum Tip Speed Ratio	7
No. of Blades	5
Overall Blade Twist (deg.)	27.4 (nonlinear)

24 Blade Manufacture

- ProLab blade mould manufactured using **CNC** miller
- Glass-fibre skins with foam core
- Steel root fitting for hub attachment

Variable Pitch Mechanism

 Variable pitch hub mechanism developed through undergraduate design project

Variable Pitch Mechanism

- Only partial manufacture of variable pitch mechanism possible in time available
- Angle of blades is fully adjustable but must be fixed at start of race
- Future work will implement an automatic pitch system for active control during race

Control System Upgrades

28 Power Flow Overview

29 😢 2010 Control System

№ Vehicle Control System for 2011

Con-Going Work and Future Projects

32 Month On-Going Work and Future Projects

- On-going and future projects for after 2011 race:
 - Completion of active pitch mechanism
 - Further improvements to electric control system
 - Composite Shrouds to improve aerodynamic efficiency of turbines (initial development has been started)
 - Aerodynamic vehicle shell and potential development of composite chassis for reduced weight

33 **W** On-Going Work: Shroud Development

- Aerodynamic and flat duct profiles investigated by team of Engineering Design students
- Testing completed at various wind speeds
- Effects of yaw, inaccurate yaw and turbine pressure drop investigated
- Initial manufacturing work started with support from Aviation Enterprises Ltd

Acknowledgements

The team would like to express their immense thanks to the following partners who have made their entry into the Aeolus Race possible

