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Experimental Methods for
Oxidation Studies
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Pieces are cut periodically from 10-3000+
hours of exposure and characterized using

A) Optical Microscopy

B) Nano-indentation

C) Other methods ...



Oxidation of Neat Resins
Three-Resin Systems: PMR-15, BMI-5250/4* and AFR/PE-4*
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PMR-15 aged at 550°F (288 °C) for 200 hours A
unoxidized oxidized potting resin

* Microstructural changes due to oxidation can be observed with optical,
SEM, nanoindentation (modulus changes) and X-Ray tomography.

» Oxidation in neat resins is controlled by diffusion in oxidized layers.

» A three-zone model can be used to understand the oxidative region

development BMI/5250-4 and AFR/PE-4 oxidation data are under

US ITA (export control) Restriction



Oxidation in Neat Resin — Constituent Scale

Thermo-Chemical Model : Diffusion/Reaction/Conversion Simulations
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Damage development during
Thermo OX|dat|on in Neat Resms

ged @ 343°C
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* Cracks first develop at ~ 200 hrs of aging

 Extensive edge cracking, loss of material,

 Cracks provide pathways for oxidation into the specimen interior
*Oxidation accelerates due to sorption on crack-tips




Oxidation in Composites

Unidirectional G30-500/PMR-15
aged at 288°C

» Oxidized resin becomes lighter in
color

« Development and growth of voids
and microcracks into surface

 Preferential oxidation in axial
direction




Characterizing Damage

G30-500/PMR-15
Composite Oxidation
@ 288 °C, 2092 hr

Development of damage at the
fiber-matrix interface
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R e . Close-up tilted view of the oxidized fiber end

*Debonding of fiber-matrix interface — embrittlement associated with oxidation




Cracks are seen in the Areas of Maximum Oxidation Depth
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Axial Growth

668-hr aged specimen
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Dark-field image of oxidation Fluorescence imaging of cracks
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Summary of Axial

Damage and Oxidation Growth

3112 hr

G30-500/PMR-15




Axial Oxidation and Damage Growth
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Crack Length (um)

Distribution of
Axial Crack Lengths and Oxidation Extent
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Long Aging Times
= Crack length data less reliable at longer
aging times since crack coalescence
occurs and the oxidation extent and
crack lengths become highly nonuniform

= Damage propagation will likely require a
stochastic modeling scheme to predict the
material behavior.

Oxidation Extent (um)

Short Aging Times
= Up to 668 hours, linear crack growth
indicating a uniform distribution of crack
length

= Deterministic representative single cell
micromechanics models can be used to
describe the effective oxidation behavior of
the unidirectional composite.
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Transverse Growth

3112-hr aged specimen

Dark-field image of oxidation

Fluorescence imaging of cracks




Summary of Transverse G30-500/PMR-15
Damage and Oxidation Growth
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Transverse Oxidation and Damage Growth

1000
Transverse growth

S 800 - :

=. _—

" ®
=

éél) 600 - -
2

= i |
= 400
£

M Crack size
§ 200 F -

[ )
0 | |

| | | |
0 500 1000 1500 2000 2500 3000 3500

Time, hr



Thermo-oxidation Modeling Framework

Constituent

Behavior Composite

Architecture
(RVE)

A. Oxidation Models for
PMR-15 [1,2],
BMI and AFR-PE/4
Systems

Oxidation Layer
Growth

B. Micro-Mechanics Model
Oxidation-induced Stress and
Deformation in PMR-15[3]

Un-oxidized

Crack

oxidized

C. Damage Evolution and
g . Damage

Damage o
State Damage-Diffusivity Criterion
Interaction Model for PMR-15 <€
Stress
[1] Pochiraju and Tandon, JEMT, 2006 State

[2] Tandon, Pochiraju, Schoeppner, PDS 2006
[3] Pochiraju, Tandon, Schoeppner, MTDM, 2008



Modeling — Stress

/ Diffusion Coupling
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Mass Diffusion due to concentration gradients
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Oxidation Orthotropy due to
Diffusive Fiber-lnterphases Assemblages

RVE-Based
Oxidation
Modeling

Gepresentative Volume Elements with \
explicit fiber, matrix and interphase
domains
*3-D coupled Finite Element Technique
with Parallel Solvers.

*200 Hours of Aging Time Simulations
*Oxygen concentration and oxidation

Qtate simulations /
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B. Evolution of Stress During Oxidative Aging
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e Oxidation Layer (Left) and

stress fields (right) after 10
Hours of aging.

The peak Von Mises effective
stresses (2.4 MPa) are at the
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e Oxidation Layer (left) shown

at 200 hours

Average peak stress near the

free edge is 47.3 MPa

e Average interstitial matrix
stresses are at 1.2 MPa

e Average fiber stress = 25 MPa

e Matrix strength ~ 41MPa
@288 C
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Oxygen Concentration Profiles with
Prescribed Crack Growth: 1.33 um/hour
Without Stress-Diffusion Coupling
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30 hours, a =40 um 100 hours, a = 133 um

T

150 hours, a = 200 um ,. 200 hours, a = 266 um

e No Coupling
0.395 0.593 0.790 *

T v =0




Oxidation Layer Measurements with Damage
125 pum

Oxidation in the vicinity of crack tip at the edge
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Oxidation in the vicinity of crack tip in the interior
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G30-500/PMR-15
@ 196 Hours

500 um

Damaged Areas (266 um crack)
Axial: 385 um

Transverse: 63.09 pm

Ratio: 6.1




Oxidation at the Laminate Scale

Cross-ply laminate, [0/90],,
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Cross-ply laminate, [0/90],,

View is of cross-section perpendicular to 0° direction

250 hr 1500 hr 2000 hr

» Preferential oxidation growth along the fiber paths for the cross-ply laminate
* Maximum/minimum oxidation extent occur at the plies midplane




Quasi-isotropic laminate, [0/£45/90],¢

View is of cross-section perpendicular to 0° direction

250 hr 750 hr 1500 hr 2000 hr

o Maximum/minimum oxidation extent do not occur at the plies midplane
* Ply oxidation extent is strongly influenced by the orientation of its neighboring plies




Oxidative Damage Propagation [0/£45/90] 5




Concluding Remarks

Using the mechanistic oxidation reaction models, a comprehensive model
for oxidation evolution in neat polymers has been created.

— A three-zone diffusion-reaction-oxidation model was created and validated
for PMR-15 neat resins ( Pochiraju and Tandon, JEMT, 2006)

— Parametric studies based on the model were conducted to characterize the
unknown parameters from iso-thermal aging studies (Tandon, Pochiraju, and
Schoeppner, Polymer Degradiation and Stability, 2006)

— Determined the parameters for BMI-5250/4 from the aging studies (Tandon,
Pochiraju and Schoeppner — SAMPE 2006 — Closed Session ITAR Restricted)

Based on dimensional measurements, the oxidation-induced shrinkage of neat
resins has been quantified.

A chemo-mechanics model has been implemented to determine the oxidation
induced stress states in a UD Composite. ( Pochiraju, Tandon and Schoeppner;
Mechanics of Time Dependent Materials, 2008)

Effect of discrete damage on the oxidative layer growth at the laminate scale is
currently being studied.
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