Novel Methods for Testing and Modelling Composite Materials and Laminates

C. T. Sun School of Aeronautics and Astronautics Purdue University West Lafayette, Indiana

September 23, 2004 2nd International Conference on Composites Testing and Model Identification

Outline

- •Testing Notch Strength in Laminates
- •Oblique End Tab for Off Axis Testing
- •Testing and Modeling Nonlinear Behavior of Composites
- •Testing and Modeling Compressive Strength of Composite
- Dynamic Interlaminar Fracture Toughness

Free Edge Stresses

Strength without Edge Effect

Strength in Off-Axis Directions

Failure Loads of [0 / 90 / ± 45]_s Laminate

	Unnotched	Notch Type				
		1	2	3	4	5
0^{o}	4700 (lb/in)	3710	3730	3730	3705	3810
7.5°	2730 (lb/in)	3350	3400	3220	3385	3540
15°	2510 (lb/in)	3150	3200	3100	3300	3300

Notch Strength of Composite Laminates

Net-section Strength

Off-Axis Tension

 $\sigma_{xx} \neq 0, \ \sigma_{xy} \neq 0$

Displacements in Off-Axis Tension

$$U_{x} = \overline{S}_{11} \sigma_{xx} x + \overline{S}_{16} \sigma_{xx} y$$

$$\frac{\mathrm{dx}}{\mathrm{dy}} = \cot \phi = -\frac{\mathrm{S}_{16}}{\overline{\mathrm{S}}_{11}}$$

Oblique Tab Angle

Undeformed (a) and (c) and deformed shapes (b) and (d) of 20° off-axis carbon/ epoxy specimens

Axial strains in 20 deg off-axis specimen with rectangular end tabs

Strain Distribution in 20 deg Specimen with Oblique Tabs

Nonlinear Behavior in Fiber Composites

Plastic Potential and Flow Rule

•Flow Rule

 $d\varepsilon_{ii} = d\varepsilon_{ii}^e + d\varepsilon_{ii}^p$

 $d\varepsilon_{ij}^{p} = \frac{\partial f}{\partial \sigma_{ii}} d\lambda$

 $\overline{\sigma} = \sqrt{3 f}$

One-Parameter Plastic Potential

Transversely isotropic

$$f(\sigma_{ij}) = \frac{1}{2} \left[(\sigma_{22} - \sigma_{33})^2 + 4\sigma_{23}^2 + 2a_{66}(\sigma_{13}^2 + \sigma_{12}^2) \right]$$

•No plastic strain in the fiber direction

- $dW^p = \sigma_{ij} d\varepsilon_{ij}^p = \overline{\sigma} d\overline{\varepsilon}^p$
- Satisfies transverse isotropy

Off-Axis Test-Plane Stress

$$\sigma_{11} = \cos^2 \theta \, \sigma_x$$

$$\sigma_{22} = \sin^2 \theta \, \sigma_x$$

$$\sigma_{12} = -\sin \theta \cos \theta \, \sigma_x$$

$$\overline{\sigma} = h(\theta) \sigma_x$$

$$h(\theta) = \left[\frac{3}{2}(\sin^4 \theta + 2a_{66}\sin^2 \theta \cos^2 \theta\right]^{1/2}$$

$$d\varepsilon_x^p = \cos^2 \theta \, d\varepsilon_{11}^p + \sin^2 \theta \, d\varepsilon_{22}^p - \sin \theta \cos \theta \, d\gamma_{12}^p$$

$$d\overline{\varepsilon}^p = d\varepsilon_x^p / h(\theta)$$

$$\overline{\varepsilon}^p = \varepsilon_x^p / h(\theta)$$
Power Law
$$\overline{\varepsilon}^p = A(\overline{\sigma})^p$$

Master Curve in Effective Stress and Effective Plastic Strain

Compression Test of Off-Axis Composites

A Model for Rate –Dependent Nonlinear Behavior Of Fiber Composites

School of Aeronautics and Astronautics, Purdue University

Failure Modes Produced in Off-Axis Test

 Fiber Microbuckling Failure - fiber orientation equal or less than 15°.

$$\sigma_{\rm cr} = \frac{G_{\rm m}^{\rm ep}}{1 - V_{\rm f}} = G_{12}^{\rm ep} \quad \text{(Microbuckling model)}$$

• In-plane Shear Failure –between 15° and 45°.

• Out-of-plane Shear Failure – greater than 45°.

Strain Rate Effect on Failure Mode

Microbuckling at 10⁻⁵/s strain rate

Uncoated

15 degree AS4/3501-6edCoated withTi

Shear failure at 1/s strain rate

Microbuckling Model

Rosen (1965):

- Idealize the composite as a series of perfectly aligned beam embedded in elastic matrix.
- •Two modes of failure: extension and shear.

Microbuckling Model with Nolinear Matrix Behavior an Misalignments

Sun and Jun (1994)

• Fiber microbuckling in nonlinear matrix including fiber misalignment effect $\sigma_{\rm f}$

EFFECT OF SHEAR STRESS

Compression-Torsion Test

EXAS HIS/DX6002 Carbon/epoxy composites, Vf =65%

Model Predictions and Test Data

AS4/3501-6 (misalignment angle = 2.5 deg)

$$= \mathbf{G}_{12}^{\text{ep}} \quad \sigma_{x_c} \cos^2(\overline{\theta} + \gamma_{12}) = \left[\frac{1}{G_{12}^e} + \frac{6a_{66}^2 \cos^2(\overline{\theta} + \gamma_{12})}{H_p(\sin^2(\overline{\theta} + \gamma_{12}) + 2a_{66}\cos^2(\overline{\theta} + \gamma_{12}))} \right]^{-1}$$

	Strain Rate	Off-axis Angle (°)	Test Result (MPa)	Model Prediction (MPa)
	10 ⁻⁵ /s	5	649.7	627
		11	420.9	419
		15	331.7	355
	10 ⁻³ /s	5	729.4	706
		11	460.9	472
		15	366.4	401
	10-1/s	5	837.7	801
		11	487.0	530
	150/2	5	934.9	940
McDonn	$n \sim 130/s$	11	597.2	626

School of Aeronautics and Astronautics, Purdue University

 σ_{cr}

Longitudinal Compressive Strength

Strain rate	10 ⁻⁵ /s	10 ⁻³ /s
Strength projection from test data (MPa)	1324	1557
Model prediction (MPa)	1392	1547

Shear Failure Mode

In-Plane Shear Strength

Transverse normal stress $\sigma_{22} = 0$

Pure shear strength (MPa)	Nominal axial strain rate (1/s)	Shear strain rate (1/s)
99	0.0001	0.00023
114	0.01	0.02
133	1	1.73
158	600	1300

Shear Strength vs Shear Strain Rate

Montmorillonite Clay Structure

Layer dimension length (width) = 0.5 ~ 1 micron, thickness =1nm

Sodium ions

Comparison of Stress-Strain Behavior of Resin with Different Clay Loadings

Compressive Strength of 0 Degree Composites

Longitudinal (0 deg) Compressive Strength

Fiber volume 35%

Interlaminar fracture Test

Delayed Crack Initiation

Crack Extension History

Typical Crack Speed History Mode I

Mode I Fracture Toughness for AS4/3501-4

ENF Test for Mode II Fracture

Mode II Dynamic Fracture Toughness for S2/8553

Mixed Mode Dynamic Fracture Toughness

