

Ifremer

Composite testing for marine applications

Peter Davies

Materials & Structures group, IFREMER Centre de Brest

Presentation

- Introduction, IFREMER
- Marine applications of composites
- The marine environment
- Floating structures
 - Small boats
 - Racing yachts
 - Offshore

• Underwater structures

- Oceanography
- Offshore
- Assemblies
- Conclusions & Perspectives

Presentation

- Introduction, IFREMER
- Marine applications of composites
- The marine environment
- Floating structures
 - Small boats
 - Racing yachts
 - Offshore
- Underwater structures
 - Oceanography
 - Offshore
- Assemblies
- Conclusions & Perspectives

Small composite boats composites for > 40 ans

- VOC legislation
- Infusion methods
- Carbon.....

Ifremer

Ifremer

Design of small boats (<24m)

Draft standard ISO/DIS 12215 :

"Hull construction - Scantlings -Part 5: Design presures for monohulls"

based on expérience, ABS, DNV, BV, Lloyds...

Aim: achieve a level of structural resistance which guarantees the integrity of the vessel

> Rapporteur: G. Dolto, FIN (Fédération des Industries Nautiques)

Ifremer

1 Plating – Scantling equations

1.1 FRP single skin plating

The minimum required thickness of the plating *t* is the greater of t_1 and t_2 defined below

$$t_1 = b \cdot f_k \cdot \sqrt{\frac{P \cdot k_2}{1000 \cdot \boldsymbol{s}_d}} \quad (\text{mm})$$

$$t_2 = b \cdot f_k \cdot \sqrt[3]{\frac{P \cdot k_3}{1000 \cdot k_1 \cdot E_f}} \quad (mm)$$

Table 1 — Design stresses for FRP single skin plating

Material	Structural element	design stress.ℬ _d N/mm ²
FRP single skin	Hull bottom and side	0,5•σ _{uf}
	Decks and superstructures	0,5σ _{uf}
	Structural and tank bulkheads	0,5 . თ _{uf}
	Watertight bulkheads	0,625·σ _{uf}

where σ_{uf} — is the minimum ultimate flexural strength

Ex. Motor boat design

ISO/DIS 12215: Annex B.Validation: Drop tests

Drop height = $f(V/L^{1/2})$

Racing yachts Test platform for new technology

Groupama 2

Mast: high modulus carbon

Platform: carbon sandwich

Sails: aramid, carbon....

Rigging: PBO, aramid

> Material tests Component tests

Material tests:

Fracture of high modulus fibre composites

Test to simulate slamming impact

Composites offshore Impact testing

4 tons dropped from 3 metres

- Steel
- Composite

Presentation

- Introduction, IFREMER
- Marine applications of composites
- The marine environment
- Floating structures
 - Small boats
 - Racing yachts
 - Offshore

• Underwater structures

- Oceanography
- Offshore
- Assemblies
- Conclusions & Perspectives

Pressure vessel adapted to standard 20 ton capacity test machine

i) Mode I fracture testing of composites

IM7/977-2 UD Carbon/Epoxy

Mode I testing of composites Procedure

Instrumentation, P, d, strain gage To check Displacement Image analysis through viewglass

ii) Mode II (in-plane shear) fracture testing of composites

Four point Edge Notched Flexure specimen

Ifremer

Ifremer

European Projects, BRITE "DEVILS", EUCLID RTP3.8 MAST "AUV", "Composite Housings"

Presentation

- Introduction, IFREMER
- Marine applications of composites
- The marine environment
- Floating structures
 - Small boats
 - Racing yachts
 - Offshore
- Underwater structures
 - Oceanography
 - Offshore
- Assemblies
- Conclusions & Perspectives

Acknowledgements

Small boats:

FIN, Université Bretagne Sud
BV (Groupement National Composites Navals)
A. Roy CRITT Rochefort/ENSMA
P. Casari (Univ. Nantes) *Racing yachts:*Groupama, HDS, Incidences, Cranfield...

Offshore:

Projets CEP&M IFP, DCN, Total...

Underwater:

European projects (BRITE DEVILS, MAST AUV, Composite Housings) DERA, Univ Athènes, SOC...

Assemblies

EUCLID RTP 3.21 (DNV leader, DCN GERBAM,) Adhesive bonding (ENSIETA, ENS, UBO, Multiplast, HDS)

and IFREMER colleagues Dominique Choqueuse, Benoit Bigourdan

