A Standard Qualification Plan for Composite Material Systems

Reducing qualification costs in the composite materials industry

MRLGower and **GDSims**

Division of Engineering and Process Control National Physical Laboratory

Content of presentation

1. Introduction

- 2. Formulation of Standard Qualification Plan (SQP)
- **3.** Round-robin validation of test methods
- 4. Results analysis procedure
- **5.** Finalisation of SQP
- 6. Future work

1-Introduction

What is the Standard Qualification Plan?

Standard Qualification Plan (SQP): a *set of composite material test standards* that will meet the minimum common requirements necessary to allow:

- Quality control
- Initial material selection
- Preliminary design

Costly to

....qualify a product against different specifications

Costly to

....qualify a product against different specifications

Costly to

....introduce new materials because of qualification costs

Difficult to

....find data for materials selection and preliminary design

Feasibility

- SQP feasible due to recent availability of:
 - test panel manufacture standard (ISO 1268)
 - suite of harmonised test methods (mechanical, thermal and physical – see <u>http://www.npl.co.uk/npl/cmmt/cog/index.html</u>)
 - a data-sheet database standard (ISO 10350-2)
- New composite materials could be released with qualification data
- Previous consultation with industry indicated considerable support

Beneficiaries

- End-users/designers
- Suppliers of prepreg composite materials
- Certification bodies e.g. CAA, FAA etc.
- Test houses

Project Objectives

1. Develop a Standard Qualification Plan (SQP) aimed at significantly reducing qualification costs

2. Demonstrate to industry, the *suitability* and *robustness* of test methods proposed in the SQP

3. Recommend and disseminate to industry

2 Formulation Process

- Extensive industry *consultation to agree content* of plan
 - tests most commonly required/performed
 - test standards being used
 - use of test data
 - importance of individual test methods and the need for their inclusion in the SQP
- Output a *draft report* with an *industrial feedback* mechanism

Test Methods

UNCURED

- Mass per unit area
- Resin flow
- Fibre mass per unit area
- Percentage of volatile matter
- Resin and fibre volume fraction
- Glass transition temperature
- Analysis by DSC
- Density of fibre
- Density of resin
- Gell time

CURED

- Tension unidirectional
- Tension multidirectional
- Compression unidirectional
- Compression multidirectional
- Shear ± 45° tension

- Shear strength In-plane
- ILSS Through-thickness
- Flexural
- Mode I fracture toughness
- Mode II fracture toughness
- Filled/open hole tension
- Filled/open hole compression
- Pin-bearing (plain, un-torqued)
- Bolted-joint bearing (torqued)
- Compression-after-impact
- Fatigue
- Creep
- Coefficient of thermal expansion
- Moisture uptake/conditioning
- Effect of water/moisture
- Effect of chemicals
- Effect of heat ageing

Questionnaire results

- uncured properties required for materials selection and quality assurance purposes
- uncured property test methods medium importance, much of this data covered by material suppliers anyway.
- *cured properties* used mainly for materials *selection* and *design*
- *cured property* test methods *high importance*, especially:
 - Tension
 - Compression
 - Shear
 - ILSS through-thickness

SQP/EQP format

- Draft SQP/EQP written in the style of an ISO standard
- Two parts
 - Part A rationale and instructions
 - Part B report sheets
- Based on format of
 - BS EN ISO 11403-1 Acquisition and presentation of comparable multi-point data
 - ISO 10350-2 Acquisition and presentation of comparable single-point data
- ISO test standards chosen as default
- Data included for several ISO test temperatures after dry and hot/wet conditioning

Property			Standard	Unit	Test Condition							
		Symbol			DRY				70°C/85% RH		Test conditions and supplementary	
					-55°C	RT	70°C	125°C*	RT	70°C		
	Fibre and resin volume	V _f	ISO 14127 and			3						
14	fraction	Vr	ISO 1183	%		3						
	•	σ _{Mt11}		MPa	1	3	1			1		
		σ _{Mt22}	Unidirectional BS EN ISO 527-5	MPa	1	1	(1)			(1)		
		E _{t11}		GPa	1	3	1			1		
		E _{t22}		GPa	1	1	(1)			(1)	- Refer to standard for specimen dimensions	
15	Tansian	ε _{Mt11}		%	1	3	1			1	and test details.	
15	Tension	ε _{Mt22}	Multidirectional BS EN ISO 527-4	%	1	1	(1)			(1)	0 not required for belonged febries	
		ν_{12}				1					() – not required for balanced fabrics	
		ν_{13}				-1						
		v ₂₁				1						
		V ₂₃				1						
	Compression	σ _{Mc11}		MPa	1	3	1			3		
		σ _{Mc22}		MPa		1	(1)			1	Refer to standard for specimen dimensions and	
16		E _{c11}	ISO 14126 unidirectional, multidirectional	GPa	1	3	1			3	test details. Type A, B_1 and B_2 specimens,	
10		E _{c22}		GPa		1	(1)			1	(end loading).	
		E _{Mc11}		%	1	3	1			3	() – not required for balanced fabrics	
		ε _{Mc22}		%		1	(1)			1		
	Shear ±45° tension	τ _{M12}		MPa	1	3	1	1	1	1		
17		Υ _{M12}	BS EN ISO 14129	%	1	3	1	1	1	1		
		G ₁₂		GPa	1	3	1	1	1	1		
18	U.S.S. through thickness	τ _{M1}	BS EN ISO 14130	MPa	1	3	1	3	1	3		
		τ_{M2}	D5 ER 150 14150	MPa		1	1					
	Flexural	σ _{Mf11}		MPa		3						
		σ _{Mf22}	MPa			3					Refer to standard for specimen dimensions and	
19		E _{f11}	BS EN ISO 14125	MPa		3					test details. Provide details of which method used: Method A (3 point flexure) and Method B	
			E _{f22}		MPa		3					(4 point flexure)

N.B. * - for 180°C cure resins only

G₁₃

COMPTEST 2004, 21-23 September University of Bristol

3

GPa

Specimen Sampling

- Each property (per test environment) to be determined from a series of 30 tests
- 3 material batches
 - 2 panels per batch
 - 5 specimens per panel
- MIL-HDBK-17 recommends a min. of 30 specimens taken from at least 5 batches

Specimen Sampling

Presentation of results

- Results presented in report sheets of Part B
 - mean and standard deviations of 30 tests
 - individual results provided to allow further data analysis
 - procedure provided for generation of A- and B- basis design allowables based on methods of MIL-HDBK-17
- Certain data values recommended to be normalised with respect to a nominal V_f – procedure provided
- Normalise all mechanical stiffness and strength properties except:
 - 90° (transverse) tension (UD laminates)
 - 90° compression (UD laminates)
 - interlaminar shear
 - in-plane shear
 - short beam strength
 - bearing
 - strain energy release rates
 - Poisson's ratio

3 Round-robin validation of test methods

- Round-robin (RR) conducted on 6 test methods
- Tests selected for RR dependent on importance of data, likelihood of error in testing, availability of previous data
- Analysis of results to ISO 5725
- Organisations were encouraged to assess at an early stage the use of the SQP in their operations

Materials

Material	Supplier	Description	Fibre type
1	Hexcel	913 Carbon-T300J-5-35%	T300J (12k)
2	SP Systems	SE84LV/HSC/300/300/37±3%	T700 (24k)

N.B. Both materials donated by industry

Typical of Aerospace/Formula 1 automotive applications

Panel/specimen preparation

- Unidirectional specimens machined from 1 and 2 mm thick panels
- Test panels manufactured according to
 - ISO 1268 Part 4 Preparation of fibre-reinforced, resin bonded, lowpressure, laminated plates or panels for test purposes
- Specimens extracted following
 - ISO 2818 Preparation of test specimens by machining
- Additional machining guidance
 - Measurement Good Practice Guide Machining of Composites and Specimen Preparation (NPL GPG No. 38)

Test Methods

Test	Standard	Properties measured
Tension	BS EN ISO 527-1 and -5	σ _{mt11} , E _{t11} , ν ₁₂
Compression	BS EN ISO 14126	σ _{mc11} , E _{c11}
Flexure	BS EN ISO 14125	σ _{mf11} , E _{f11}
Interlaminar shear (ILSS)	BS EN ISO 14130	τ _{m1}
DMA	ISO/CD 6721-11	T _g , T _{onset} , T _{loss} , T _{tandelta}

Mechanical tests – 6 specimens, DMA – 3 specimens Specimen preparation undertaken by NPL

Tensile tests to BS EN ISO 527-5

Number of sites	8					
Test speeds used (mm/min)	2 used by all					
Load cell capacities (kN)	100, 250					
Method of deflection measurement	 Biaxial strain gauge Dynamic serial gauge Biaxial extensometer Longitudinal and transverse extensometers Crosshead deflection 					
25	0 mm					
← 20 ← 50 mm Thickr	ness = ~ 1 mm 15 mm					

Compression tests to BS EN ISO 14126

Number of sites	5			
Test speeds used (mm/min)	1 and 1.27			
Load cell capacities (kN)	100, 200, 250			
Method of deflection	Biaxial strain gauges			
measurement	 Extensometer 			
	 Crosshead deflection 			
Loading jig	Celanese			
	 In-house end loading blocks 			

Flexure tests to BS EN ISO 14125

Number of sites	9
Test speeds used (mm/min)	1, 2, 5, 5.21, 6.6, 6.75, 7
,	(3 sites used different test speeds for each material)
Load cell capacities (kN)	1, 5, 10, 20, 50, 100
Span (3-point loading for all	 7 sites used different span for each material
sites)	 2 sites used one span for both materials
Method of deflection	• LVDT
measurement	 Crosshead deflection

ILSS tests to BS EN ISO 14130

Number of sites	6
Test speeds used (mm/min)	1 used by all
Load cell capacities (kN)	5, 100
Span	All sites used different span for each material

DMA tests to ISO/CD 6721-11

Number of sites	5				
	 1 site used a 3-point bend configuration 				
Test mode	 3 sites used a single cantilever bend configuration 				
	 1 site used single and dual cantilever configurations 				
	 20 mm for 3-point bend 				
Test span (range)	 10, 15, 17.5 mm for single cantilever bend 				
	 20 mm for dual cantilever bend 				
Frequency	1 Hz used by all				
Temperature range (°C)	25-200, 25-250, 25-300				
Heating rate (°C/min)	3				

Participants

- Advanced Composites Group
- Motor Industry Research Association (MIRA)
- Ford Motor Company
- Slingsby Aviation
- Aerostructures Hamble
- Composites Testing Laboratory
- Bureau Veritas
- Gearing Scientific
- Triton Technology
- Perkin Elmer Thermal Analysis Solutions
- NPL

Properties measured

Site		Tension		Compre	ession	Fle	xure	ILSS	
Sile	σ _{Mt11}	E _{t11}	ν ₁₂	σ _{Mc11}	E _{c11}	σ _{Mf11}	E _{f11}	τ _{M1}	
1	~	~	~	~	~	✓	~	~	
2	~	~				✓	~		
3	~	~	~	~	~	✓	~	~	~
4	~	~				✓	~		
5	~	~	~	~	~	✓	~	~	~
6	~	~		~		✓	~		
7	~	~		~		✓	~	~	
8						✓		~	
9	~	~	~			✓	~	~	
10									~
11									✓
12									~
Total	8	8	4	5	3	9	8	6	5

4 Analysis of results

 ISO 5725-2 - Accuracy (trueness and precision) of measurement methods and results -- Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method

I - Check of "as-received" data

II – Mandel's h and k consistency statistics

Tensile modulus example of normal pattern

II – Mandel's h and k consistency statistics

Flexural modulus example of abnormal pattern

III – Cochran and Grubb tests

- Cochran test site variances
- Grubb test site means and outlying observations
- Following ISO 5725:
 - Outliers discarded
 - Stragglers retained
- On basis of statistical tests some further data discarded

Tension results

- Explosive fracture
- Various deflection measurement methods used
- Good repeatability and reproducibility after removal of erroneous data

Compression results

• Acceptable failure modes achieved

• Only 1 site checked for bending

- High values of repeatability and reproducibility for strength
- Few sites able to undertake tests

Flexure results

- Acceptable failure modes achieved
- Various deflection measurement methods used
- Various test speeds used
- Systematic errors in measurement observed for 2 sites
- Good repeatability and reproducibility after removal of erroneous data

ILSS results

• Failure modes unacceptable for all sites and both materials

• Data analysed as purpose of this round-robin was not to generate precision data

 Good repeatability and reproducibility after removal of erroneous data

DMA results

- Double peaks reported on $T_{tandelta}$ plots for material 1 not fully cured
- Some difficulties specifying onset and loss modulus peaks
- very low repeatability
- higher reproducibility due to
 - deficiencies in temperature measurement
 - various methods for temperature calibration

IV – Repeatability and reproducibility

Conclusions

- Tensile, flexure, ILSS and compression modulus tests showed good repeatability and reproducibility values
- Compression strength showed considerable within and between site variability – alignment crucial (essential to check for bending)
- Further development and guidance needed for compression testing aspects such as strain measurement, end-tab design and testing of thick sections

Conclusions

- Improvements required in DMA temperature measurement and calibration
 - NPL has developed 3 types of calibration specimen one of which will be used in a DMA calibration standard (ISO/CD 6721-12)
- Use of accurate, calibrated equipment essential for measuring :
 - Load
 - Displacement
 - Specimen dimensions (to accuracy required by standard)
- Displacement/strain should where possible be measured using:
 - Clip gauge extensometers
 - Strain gauges
 - LVDT/dial gauge indicators
- At the very least the crosshead displacement should only be used in conjunction with a machine compliance correction

5 Finalisation of SQP

- Finalisation of SQP as a Good Practice Guide based on feedback from draft and round-robin exercise
- Used as a pre-cursor for standardisation
- *Promoted widely* to the composites industry
- Assessment of current status of material databases

6 Future work

Further effort required for development toward standardisation

Further collaboration with CAA

Collaboration with similar international initiatives (e.g. FAA)

Development of SQPs for other materials/sectors

Additional dissemination to promote and encourage adoption

