QUANTITATIVE THERMOELASTIC STRESS ANALYSIS OF LAMINATED COMPOSITE COMPONENTS

J.S. Earl and J.M. Dulieu-Barton

School of Engineering Sciences, Ship Science University of Southampton Highfield Southampton SO17 IBJ

Funded by EPSRC JREI and Platform Grant

Summary

- TSA-brief introduction
- General thermoelastic theory for orthotropic materials
- Motivation
- Notation for a general laminate
- Revised theory for a general laminate
- Test specimens and material properties
- Calibration Results
- Next steps

Thermoelastic Stress Analysis

$$\Delta(\sigma_1 + \sigma_2) = AS$$

University of Southampton

Thermoelastic effect

$$\Delta T = -\frac{T}{\rho C_{\varepsilon}} \sum_{i=1,2,3} \frac{\partial \sigma_{ij}}{\partial T} \varepsilon_{ij} + \frac{Q}{\rho C_{\varepsilon}}$$
$$\Delta T = -\frac{\alpha}{\rho C_{p}} T \sum_{i=1,2,3} \sigma_{ii}$$
$$\Delta T = -\frac{\alpha}{\rho C_{p}} T \Delta (\sigma_{1} + \sigma_{2})$$

Theory for specially orthotropic material

$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \tau_6 \end{bmatrix} = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \gamma_6 \end{bmatrix}$$

Thermoelastic equations:

Stress
$$\sigma_i = \sum_{i=1}^{6} Q_{ij} (\varepsilon_j + \alpha_j \Delta T)$$

Strain $\varepsilon_i = \sum_{j=1}^{6} S_{ij} \varepsilon_j + \alpha_i \Delta T$

$$\Delta T = -\frac{T}{\rho C_{\varepsilon}} \sum_{i=1}^{6} \frac{\partial \sigma_i}{\partial T} \varepsilon_i + \frac{Q}{\rho C_{\varepsilon}}$$

$$\Delta T = \frac{T}{\rho C_{\varepsilon}} \{ (-Q_{11}\alpha_1 - Q_{12}\alpha_2)(S_{11}\sigma_1 + S_{12}\sigma_2 + \alpha_2\Delta T) + (-Q_{12}\alpha_1 - Q_{22}\alpha_2)(S_{21}\sigma_1 + S_{22}\sigma_2 + \alpha_2\Delta T) \} + \frac{Q}{\rho C_{\varepsilon}} \}$$

Introducing relationships between specific heats

$$C_{p} - C_{\varepsilon} = -\frac{T}{\rho} \sum_{i=1}^{6} \frac{\partial \sigma_{i}}{\partial T} \frac{\partial \varepsilon_{i}}{\partial T}$$

$$\Delta T = -\frac{T}{\rho C_p} (\alpha_1 \sigma_1 + \alpha_2 \sigma_2) + \frac{Q}{\rho C_p}$$

$$S = \frac{(\alpha_1 \sigma_1 + \alpha_2 \sigma_2)}{A^*}$$

Test specimens

Results for a constant applied stress level

 $[[90/0]_6[0] [90/0]_6]_s$ Termed 90/0

University of Southampton

 $[[0]_6[90/0/90] [0]_6]_s$ Termed mixed

Thermoelastic response

 $S = \frac{(\alpha_1 \sigma_1 + \alpha_2 \sigma_2)}{{}^{*}}$

Axes in the specimens

- UD (1, 2), (x, y) and (L, T) are coincident
- 0/90 as above
- Mixed as 0/90
- 90/0 as above but the (1, 2) are rotated by 90°
- +/- 45 as above but the (1, 2) are rotated by 90°
- Mixed as 0/90

Thermoelastic response in terms of stresses in the direction of the laminate axes:

$$S = \frac{(\alpha_x \sigma_x + \alpha_y \sigma_y + \alpha_{xy} \sigma_{xy})}{A^*}$$

Thermoelastic response in terms of the strain in the principal surface material directions:

$$S = \frac{\{(Q_{11}\alpha_1 + Q_{12}\alpha_2)\varepsilon_1 + (Q_{12}\alpha_1 + Q_{22}\alpha_2)\varepsilon_2\}}{4^*}$$

Thermoelastic response in terms of the strain in the direction of the laminate axes:

$$\begin{split} S &= \frac{1}{A^*} [\{ (Q_{11}\alpha_1 + Q_{12}\alpha_2)\cos^2\theta + (Q_{12}\alpha_1 + Q_{22}\alpha_2)\sin^2\theta \} \varepsilon_L + \\ \{ (Q_{11}\alpha_1 + Q_{12}\alpha_2)\sin^2\theta + (Q_{12}\alpha_1 + Q_{22}\alpha_2)\cos^2\theta \} \varepsilon_T + \\ \{ (Q_{11}\alpha_1 - Q_{12}\alpha_2)\cos\theta\sin\theta - (Q_{12}\alpha_1 + Q_{22}\alpha_2)\cos\theta\sin\theta \} \gamma_{LT}] \\ \\ \text{University} \\ \text{of Southampton} \end{split}$$

Strategy

Determine A^* for the laminates and in each case the value should be the same as

$$A^* = \frac{DRF\rho C_p}{Te}$$

This will be done by calculating A^*S using the formula given in the previous slides and estimated material property values.

Material properties

Specimen Lay-up	$lpha_{ m LT}$	α_{LT}	ν_{LT}	E _{LT}
	(x 10 ⁻⁶ /°C)	(x 10 ⁻⁶ /°C)		(MPa)
[0 ₁₃]	6	37	0.25	32816
[05/90/0/90/05]	11	30	0.20*	30237
$[(0/90)_6/0/(0/90)_6]$	19	22	0.09	23367

Specimen Lay-up	α_1	α_2	v_{12}	E_1
	(x 10 ⁻⁶ /°C)	(x 10 ⁻⁶ /°C)		(MPa)
[0 ₁₃]	6.0	37	0.25	32816
[05/90/0/90/05]	6.0	37	0.25	32816
$[(0/90)_6/0/(0/90)_6]$	6.0	37	0.25	32816

Loading and TSA readings

Specimen Lay-up	Load	Stress	Disp.	S _{LOAD}	S _{STRAIN}
	(kN)	(MPa)	Amp.		
			(mm)		
[0 ₁₃]	8±4	57±28	0.22	585	845
[05/90/0/90/05]	8±4	57±28	0.22	765	999
$[(0/90)_6/0/(0/90)_6]$	8±4	57±28	0.22	1136	1136

Calculation of A^*

$[0_{13}]$	[0 ₅ /90/0/90/0 ₅] [(0/	$90)_6/0/(0/90)_6$
5.86E-07	5.39E-07	4.71E-07
5.87E-07	6.82E-07	5.96E-07
5.57E-07	5.34E-07	4.71E-07
5.58E-07	6.76E-07	5.96E-07

$[0_{13}]$ $[0_5/90/0/90/0_5][(0/90)_6/0/(0/90)_6]$

5.86E-07	9.98E+08	5.87E-16
5.87E-07	9.97E+08	5.88E-16
5.57E-07	1.52E+09	3.68E-16
5.58E-07	1.51E+09	3.69E-16

Conclusions

- Calibration of thermoelastic signal is possible if all material property values are known
- The stress in the surface ply of a calibration specimen needs to be calculated accurately
- More work required on laminates that do not have a 0° surface ply.

