Experimental Identification of a Damage Model for Composites using the Grid Technique Coupled to the Virtual Fields Method

Mr Hocine CHALAL, Dr Fodil MERAGHNI, Dr Stéphane AVRIL, <u>Professor Fabrice PIERRON</u>

LMPF Research Group ENSAM Châlons en Champagne France

Conclusion

Usual strategy for in-plane orthotropic elastic moduli measurements

Local strain measurements Uniform stress fields (closed-form solution) Spatial stress distribution

• **Novel** strategy for material parameter identification

Heterogeneous stress fields (no closed-form solution) Full-field strain measurements

Inverse problem

FE model updating

Virtual Fields Method

In-plane shear non linearity

2D Sic/Sic composite (Camus, IJSS, 2000)

The VFM

Experiments/Results

Conclusion

In-plane shear non linearity

$$\sigma_{\rm s} = G_{\rm xy}\varepsilon_{\rm s} - K\varepsilon_{\rm s}^3$$

Damage law

$$\sigma_{\rm s} = G_{\rm xy}^0 (1-d) \varepsilon_{\rm s}$$

$$d = \frac{K}{G_{xy}^0} \varepsilon_s^2$$

Retrieve
$$E_{xx}, E_{yy}, v_{xy}, G_{xy}, K$$

from a heterogeneous strain map

Need to choose other virtual fields

$$Q_{xx} \int_{S_2} \varepsilon_x \varepsilon_x^* dx dy + Q_{yy} \int_{S_2} \varepsilon_y \varepsilon_y^* dx dy + Q_{xy} \int_{S_2} (\varepsilon_x \varepsilon_y^* + \varepsilon_y \varepsilon_x^*) dx dy$$
$$+ Q_{ss} \int_{S_2} \varepsilon_s dx dy - K \int_{S_2} \varepsilon_s^3 dx dy = \frac{u_y^*(L)}{t}$$

Finally

AQ = B \blacksquare $Q = A^{-1}B$ if the fields are « well chosen »

Special virtual fields

 $A = I \implies Q = B$ optimized to resist to noise in data

The VFM

Conclusion

Experimental set-up

Material: 0° glass/epoxy composite (2.1 mm thick)

The grid method

- Service Printed on a photosensitive film (postscript file)
- Photosensitive layer is transferred onto specimen (white glue), backing film removed

Cross grid of pitch p=100 µm

Experimental details

- ul>➡ Digital CCD Camera (8bits, 1280×1024)
- ➡ 60 mm focal lens
- ➡ Frangyne software (Prof. Y. Surrel)
- Sield of view: 30 mm by 20 mm
- ➡ 4 pixels /period
- Smoothing phase maps: 33 x 33, twice
- └ Differentiation: 33 x 33 pixels

Spatial resol. in displacement Δx	Resol. in diplacement σ _u	Spatial resol. in strain ∆ <i>ɛ</i>	Resol. in strain σ_{ε}
200 μm	0.60 μm (p/170)	1.4 mm	120 microdef.

Introduction

The VFM

Experiments/Results

Conclusion

Strain maps

<mark>8</mark>5

Identification results
Special virtual fields

	Q _{xx}	Q_{yy}	Q_{xy}	Q_{ss}	K
Reference (GPa)	44.9	12.2	3.86	3.78	1990
Coeff. var (%)	0.7	2.8	2.4	7.3	31
Identified (GPa)	56	27	-	3.6	1500
Rel. diff. (%)	25	130	*	-5	-25

The VFM

In-plane strain response

Conclusions

- Solution USA Series Strain Maps
- Solution → Solutio
- Good results if information there
- ➡ Problem: what test?

Perspectives

- \checkmark Fibres at an angle (45° ?)
- Solution Design of new tests adapted to VFM
- Solution Implement more sophisticated constitutive models