

Dept. of Industrial Engineering Università degli Studi di Parma - ITALY

COMPTEST 2ND INTERNATIONAL CONFERENCE on Composites Materials and Model Identification

Bristol, 21-23 September 2004

3D Finite Element Damage Analysis of a Twill-weave Lamina subjected to In-plane Shear

Giacomo Baruffaldi, Enrica Riva, Gianni Nicoletto

enrica.riva@unipr.it

- Introduction
- Definitions
- Finite Element based approch
- Results and discussion
- Conclusions and perspectives

Easy handling and shaping

LEVELS OF ANALYSIS

HETEROGENEOUS MATERIALS

DETERMINATION OF THE MECHANICAL BEHAVIOR, INCLUDING DAMAGE DEVELOPMENT, IN A BASKET-WEAVE LAMINATE

- Unit cell definition
- Geometric model
- Parametric fem model
- Mechanical properties of constituent materials
- Boundary conditions
- Damage development simulation

UNIT CELL

Representative unit cell dimensions [mm]						
L	a	b _o	b _t	R _o	R _t	
8.168	2.042	0.171	0.171	6.112	6.112	

CONSTITUTIVE MATERIALS

EXAMPLE 1 CARBON FIBER YARN $V_F = 70\%$

🖻 trasverse isotropic

LOCAL COORDINATE SYSTEM

- L = longitudinal fiber direction
- T and S = transverse fiber directions

EPOXY MATRIX

- ➢ isotropic and homogeneous
- elastic-plastic behavior

BOUNDARY CONDITIONS

DISPLACEMENT FIELDS OF THE UNIT CELL

- \underline{u}° Rigid displacement of the unit cell
- $\underline{\Omega}$ Rigid rotation of the unit cell
- $\underline{\underline{E}}$ Macroscopic homogenized strain
- $\underline{\widetilde{u}}(\underline{x})$ Periodic term (associated with mesoscopic displacement field)

 $\underline{u}(\underline{x}) = \underline{u}^{o} + \underline{\Omega}\underline{x} + \underline{E}\underline{x} + \underline{\widetilde{u}}(\underline{x})$

Ref.: V. Carvelli, C. Poggi - "A homogenization procedure for the numerical analysis of woven fabric composites", Composites: Part A, 2001

BOUNDARY CONDITIONS

<u>Shear loading is simulated by imposing appropriate displacement</u> <u>components at the reference nodes</u>

- **Example 2** Link between the corresponding nodes on coupled sides:
- $\underline{\boldsymbol{\upsilon}}^{\mathsf{A}} \underline{\boldsymbol{\upsilon}}^{\mathsf{C}} = \underline{\boldsymbol{\upsilon}}^{\mathsf{L}} \underline{\boldsymbol{\upsilon}}^{\mathsf{M}}$

$$\underline{\boldsymbol{\upsilon}}^{\mathsf{B}} - \underline{\boldsymbol{\upsilon}}^{\mathsf{D}} = \underline{\boldsymbol{\upsilon}}^{\mathsf{J}} - \underline{\boldsymbol{\upsilon}}^{\mathsf{K}}$$

- $\underline{\boldsymbol{U}}^{\mathsf{F}} \underline{\boldsymbol{U}}^{\mathsf{B}} = \underline{\boldsymbol{U}}^{\mathsf{P}} \underline{\boldsymbol{U}}^{\mathsf{Q}}$
- Elimination of rigid rotations:
- $(l/h)u_3^{F} (l/h)u_3^{B} + u_2^{A} u_2^{C} = 0$ (1)
- $u_3^{B} u_3^{D} + u_1^{C} u_1^{A} = 0$ (2)
- $(l/h)u_1^F (l/h)u_1^B + u_2^D u_2^B = 0$ (3)

Elimination of rigid traslations: $\underline{u}^{E} = 0$

EXP. OBSERVATIONS

DAMAGE IN WOVEN LAMINATES

Ref.: M. Zako et al. - "Finite element analysis of damaged woven fabric composite materials", Composite Science and Technology, 2003

DAMAGE SIMULATION

- σ_{ij} = Mesoscopic localized stress
- X_{ij} = Mesoscopic strength
- q_{ijD} = Reduced elastic modulus
- q_{ii} = Elastic modulus
- D_{ij} = Degradation coefficient

i,j = L, T, S

Degradation coefficients D_{ii}

T.S		D_{LL}	\boldsymbol{D}_{TT}	D _{SS}	\boldsymbol{D}_{LT}	D _{LS}	D _{TS}
, , , , ,	Mode L	0.01	0.01	0.01	0.01	0.01	0.01
	Mode T	1.0	1.0	0.01	1.0	0.2	0.2
	Mode S	1.0	0.01	1.0	1.0	0.2	0.2
	Mode LT	1.0	1.0	0.01	1.0	0.01	1.0
	Mode LS	1.0	0.01	1.0	1.0	1.0	0.01
	Mode TS	1.0	0.01	0.01	0.01	0.01	0.01

Ref.: Blackketter DM et al: "Modeling damage in a plain weave fabric reinforced composite material", Journal of Composites Technology and Research, 1993

ELASTIC RESPONSE

- Displacement is imposed in direction
 1 up to 5% strain.
- Elastic response

Results for single lamina and laminate are very similar because out-of-plane displacement components (direction 2) are nearly zero in both cases.

	Experimental	FEM (Single lamina)	FEM (Laminate)
G [MPa]	3250/3850	3820	3768

SHEAR TEST SIMULATION

Homogenized macroscopic stress-strain curve

- Elastic shear modulus (G) is comparable to experimental results
- Maximum shear stress at initial failure is greater than experimental value (Modeling of yarn-matrix interface is under development)

DAMAGED VOLUME

- Initial damage occurs when the applied shear strain reaches 1.3%
- Large reduction of load due to initial damage

CONCLUSIONS

The FEM model of the unit-cell provided the microscopic stresses and strains in the fiber yarns and the matrix

- The FEM analysis of the unit cell provided the macroscopic shear stress-shear strain curve of basket-weave laminate
- The damage development process in the woven laminate was simulated with a user-defined subroutine
- Initial correlation of the modeling results with experiments in terms of initial stiffness and damage evolution is encouraging
- On-going development deals with the modeling of the yarn-matrix interface