

Progressive Damage Characterization of Stitched, Bi-axial, Multi-ply Carbon Fabrics Composites

<u>M. Vettori</u>^(*), T.Truong Chi^(**), S.V.Lomov^(**), I. Verpoest^(**)

M.Vettori, Et. Al. "Progressive Damage Characterization of Stitched, Bi-axial, Multi-ply Carbon Fabrics Composites"

Outlines

- Brief Material Description
- 券 Aims
- Set Experimental Set-up
- 券 Results
- Conclusions and Future Works

Material (I)

Multi-axial Multi-ply Carbon Fabrics (MMCFs)

also known as Non-Crimp Fabrics (NCF)

Production:

Tows are spread in plies with any chosen orientation and then they are stitched together

Advantages:

- § Unidirectional-straight reinforcement leads to better mechanical properties (No-crimp);
- § Reinforcement orientability;
- § Good drapeability and permeability;
- § Manufacturing time reduction.

Material (II)

- Bi-axial (0/90°) Multi-ply Fabric

Reinforcement:

Producer:Seartex GmbhArchitecture:Bi-axial 0°/90°, 24K, T600Ply Areal Density:150±5% g/m²Stitching Yarn:Polyester(PES)Stitching Pattern:Tricot-WarpAreal Density:6±5% g/m²Fabric Areal Density:325g/m² (exp.)

Resin system:

Producer:	Shell [®]
Resin:	Epikote [®] 828 LV
Hardener:	Epikure® DX 6514
Mixing Ratio:	Resin/Hardener = 100/17

≥ <u>Lay-up</u>:

8 fabrics (16 plies) symmetrical lay-up [(0/90) / (90/0) / (0/90) / (90/0)]_s Final Thickness: $\sim 3.5 \text{ mm}$ Volume fraction: $V_f \sim 40\%$

RTM Process' Parameters

Mold Vacuum	0,4 ÷ 0,6 bar
Injection Pressure	2 ÷ 4 bar
Injection Temperature	40° C
Injection Time	20 ÷ 25′
First Cure	70°C / 60′
Final Cure	160°C / 60′

- MD Channels @ 0.56 mm
 CD Channels @ 0.28 mm
- INTER-layer <u>GAPS</u>
 0/0° Gaps @ 60 mm
 90/90° Gaps @ 80 mm

Intermediate steps:

- Damage evolution monitoring during quasi-static tensile tests along characteristic material directions;
- AE parameters analysis in relation to applied strain;
- Direct Damage Observation by the mean of NDT;
- Evaluation of the stitching role on damaging process

Experimental Set-Up (I)

Damage evolution monitoring

Tensile tests according with ISO 527-4

- 3 test direction:
 Machine, Cross
 and Bias directions;
- 100 kN INSTRON 4505;
- 50mm gage length axial extensometer
- Imposed displacement:
 - 1 mm/min along MD and CD
 - 3 mm/min along BD
- Acoustic Emission Records
 - è 2 broadband transducer
 - è Digital wave equipment

Electrical Resistance Technique

M.Vettori, Et. Al. "Progressive Damage Characterization of Stitched, Bi-axial, Multi-ply Carbon Fabrics Composites"

Results

Damage evolution monitoring

Stress and AE parameters vs strain

Results

Damage evolution monitoring - AE

Stress and AE parameters vs strain

Joule Effects evaluation

ER results

Experimental Set-Up (II)

Damage Observation by NDT

To identify damage at different levels of evolution

è 3 different strain levels has been chosen

Tensile tests were stopped at strain ε₁, ε₂, ε₃
 è Damage inspection by NDT

Experimental Set-Up (III)

Damage Observation by NDT

Ultrasonic C-Scan

HFUS 2000 Ultrasonic system

Transducer Resolution Oscilloscope

5 MHz, pulse-echo type 375 mm (max) digital, 175 MHz

X- Ray Radiography

Philips HOMX 161 - AEA Tomohawk softwareCCD1024 x 1024, 12 bit

Shutter speed 25 frame/s

X-Ray Source Parameters

Voltage	80 – 100 K\
Current	0.3 A
Iris opening	80 %

Contrast Media

Di-iodomethane, 24 hours bath

Results

Damage Observation by NDT

C-Scan Images

Greyscale Histograms

Damaged Area

BD 1% 60 1% 80 80 80 80 80 80 80 80 80 80			Damaged Areas at different strain levels for each test direction			
BD 60 1% 60 6% 40 6% 40 9.8% 20 0 0		8	80 -	 Machine direction Cross direction Bias direction 	Т.	T A
1% 6% 9.8% 0 1% 10 10 10 10 10 10 10 10 10 10	BD	vrea, °	60 -			Γø
6 % 9.8% 0 0 0 0 0 0 0 0 0	1%	ged A			Ψ T	
9.8%	6%	amaç	40 -			
	9.8%		20 -		φ	
			0	_ ↓ ∞		
e1 e2 e3				e1	e2	e3

MD and CD

>

Results

Damage geometrical aspects

Pixel Index **Damage Pattern measurements** 180 -Line 1 160 MD and CD BD ine 2 140 Line 3 **Pixel intensity** 120 100 80 60 20 0 Ô 20 80 100 120 140 160 180 40 60 Length (mm)

- Side radiographies indicates that damage seems distributed repetitively into single fabrics which are are randomly stacked;
- Pixel's intensity is plotted along section;
- Signals are processed with FFT to have main characteristics distances between damages;

Damage geometrical aspects

Damage Pattern measurements

	1 st period L1	2 nd period L2	3 rd period L3	4 th period L4
MD	2.63 mm	3.44 mm	4.97 mm	7.47 mm
CD	5.6 mm	n.p.	n.p.	n.p.
BD (+45°)	2.3 ÷2.77 mm	3.46 ÷4.61 mm	5.54 mm	6.93 mm
BD (-45°)	5.54 mm	<u>n.p.</u>	<u>n.p.</u>	<u>n.p</u> .

- Characteristic distances are close to unit cell characteristic dimensions;
- Stitching pattern superposed with ultrasonic images coincide well with damage pattern.

DAMAGE INITIATE and DEVELOPS FROM STITCHING INDUCED DEFECTS

Conclusions

- Damage has been initially monitored in its evolution by AE recordings and Characteristic regions has been appreciated;
- Different damage mechanism grow at different strain levels;
- Typical damage modes has been observed by non-destructive X-Ray and Ultrasonic techniques;
- Along MD and CD:
 - After initial micro-cracks, damage develops steadily, interesting mainly the matrix, until high strains are reached;
 - At high strains, when matrix cracking mechanism saturate, damage interests longitudinal fibers and grows unsteady till final collapse.
- Along BD:
 - Because of matrix dominated characteristic, stiffness decrease quickly has matrix damage starts to grow;
 - At high strains, some matrix cracks merge together into edge-to-edge flaws that grow leading to final separation of specimen.
- Damage grows following a typical pattern which characteristic lengths are very close to stitching pattern geometry;
- Stitching induced defects are damage nucleation regions.

Future Work

- Damage mode direct identification by optical microscopy;
- FE Numerical simulation of damage development.

Thank you for attention.

Any questions ?

M.Vettori, Et. Al. "Progressive Damage Characterization of Stitched, Bi-axial, Multi-ply Carbon Fabrics Composites"